JPH04128642A - Device for x-ray analysis - Google Patents

Device for x-ray analysis

Info

Publication number
JPH04128642A
JPH04128642A JP2250579A JP25057990A JPH04128642A JP H04128642 A JPH04128642 A JP H04128642A JP 2250579 A JP2250579 A JP 2250579A JP 25057990 A JP25057990 A JP 25057990A JP H04128642 A JPH04128642 A JP H04128642A
Authority
JP
Japan
Prior art keywords
conductive material
semiconductor detector
refrigerator
heat conductive
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2250579A
Other languages
Japanese (ja)
Inventor
Yasuhiko Suzuki
泰彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2250579A priority Critical patent/JPH04128642A/en
Publication of JPH04128642A publication Critical patent/JPH04128642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To eliminate labor for compensating liquid nitrogen by providing a heat conductive material whose one end is in contact with a semiconductor detector and whose the other end is attached to a refrigerator that adapts the Carnot's cycle, and equipping a vacuum chamber which can vacuum-insulate heat of the refrigerator and the heat conductive material. CONSTITUTION:An electronic beam 3 is focused to irradiate a sample 2 which is held in a vacuum chamber 1a, then an output signal from a semiconductor detector 5 is processed at a counting processing unit 6. The semiconductor detector 5 is in contact with one end of a heat conductive material 7. The other end of the heat conductive material 7 is attached to a refrigerator 10 which adapts the Carnot cycle. The refrigerator 10 and the heat conductive material 7 are provided in a vacuum chamber 1b which is capable of vacuum insulation. The heat generated in the semiconductor detector 5 conducts through the heat conductive material 7 to the refrigerator 10 which adapts the Carnot refrigeration cycle so as to be released to the outside so that the semiconductor detector 5 can be kept at an extremely low temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線分析装置に関し、特に半導体検出器を用い
たエネルギー分散型X線分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray analyzer, and particularly to an energy dispersive X-ray analyzer using a semiconductor detector.

〔従来の技術〕[Conventional technology]

従来のX線分析装置は、第2図に示すように、真空チャ
ンバー1a内で保持されている試料2へ電子ビーム3を
集束させて照射させ、その時発生するX線4を半導体検
出器5へ入射させ、半導体検出器5からの出力信号を計
数演算装置6で処理するX線分析装置において、半導体
検出器5に熱伝導材7の一端を接触させ、熱伝導材7の
他端を液体窒素8が満たされた容器9に取り付け、半導
体検出器を冷却する構造である。容器9及び熱伝導材7
は真空チャンバー1bにより真空断熱されている。
As shown in FIG. 2, the conventional X-ray analyzer focuses and irradiates an electron beam 3 onto a sample 2 held in a vacuum chamber 1a, and sends the generated X-rays 4 to a semiconductor detector 5. In an X-ray analyzer in which the output signal from the semiconductor detector 5 is processed by the counting unit 6, one end of the thermally conductive material 7 is brought into contact with the semiconductor detector 5, and the other end of the thermally conductive material 7 is exposed to liquid nitrogen. 8 is attached to a container 9 filled with the semiconductor detector to cool the semiconductor detector. Container 9 and thermally conductive material 7
is vacuum-insulated by a vacuum chamber 1b.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のX線分析装置は、半導体検圧器の冷却に液体窒素
を使用しているので、液体窒素が気化するため定期的に
液体窒素を補充するという手間がかかる問題点があった
Conventional X-ray analyzers use liquid nitrogen to cool semiconductor pressure detectors, which has the problem of requiring time and effort to regularly replenish liquid nitrogen because the liquid nitrogen vaporizes.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のX線分析装置は、真空チャンバー内で保持され
ている試料へ電子ビームを集束させて照射させ、半導体
検出器からの出力信号を計数演算装置で処理するX線分
析装置において、半導体検出器に熱伝導材の一端を接触
させ、熱伝導材の他端をカルノー冷凍サイクルを応用し
た冷凍器に取り付け、冷凍器及び熱伝導材は真空断熱で
きる真空チャンバー内に備えられている構成である。
The X-ray analyzer of the present invention is an X-ray analyzer that focuses an electron beam on a sample held in a vacuum chamber and irradiates it, and processes the output signal from a semiconductor detector with a counting unit. One end of the thermally conductive material is in contact with the container, and the other end of the thermally conductive material is attached to a refrigerator that applies the Carnot refrigeration cycle, and the refrigerator and the thermally conductive material are installed in a vacuum chamber that can be vacuum insulated. .

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例のX線分析装置の断面図であ
る。真空チャンバー1a内で保持される試料2へ電子ビ
ーム3を集束させて照射させ、半導体検出器5からの出
力信号を計数演算装置6で処理する。半導体検出器5は
、熱伝導材7の一端に接触している。熱伝導材7の他端
はカルノー冷凍サイクルを応用した冷凍器10に取り付
けられている。冷凍器10及び熱伝導材7は真空断熱で
きる真空チャンバー1b内に備えられている。
FIG. 1 is a sectional view of an X-ray analyzer according to an embodiment of the present invention. An electron beam 3 is focused and irradiated onto a sample 2 held in a vacuum chamber 1a, and an output signal from a semiconductor detector 5 is processed by a counting unit 6. The semiconductor detector 5 is in contact with one end of the thermally conductive material 7. The other end of the heat conductive material 7 is attached to a refrigerator 10 to which the Carnot refrigeration cycle is applied. The refrigerator 10 and the heat conductive material 7 are provided in a vacuum chamber 1b that can be vacuum-insulated.

半導体検出器5で発生した熱は熱伝導材7を伝わりカル
ノー冷凍サイクルを応用した冷凍器10により外部へ放
熱され、半導体検出器5は極低温が保たれる。
The heat generated by the semiconductor detector 5 is transmitted through the thermally conductive material 7 and is radiated to the outside by the refrigerator 10 to which the Carnot refrigeration cycle is applied, so that the semiconductor detector 5 is maintained at an extremely low temperature.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、真空チャンバー内で保持
される試料へ電子ビームを集束させて照射させ、半導体
検出器からの出力信号を計数演算装置で処理するX線分
析装置において、半導体検出器に熱伝導材の一端を接触
させ、熱伝導材の他端をカルノー冷凍サイクルを応用し
た冷凍器に取り付け、冷凍器及び熱伝導材は真空断熱で
きる真空チャンバーを備えているので、従来のX線分析
装置では、半導体検出器の冷却用の液体窒素が気化する
ために定期的に液体窒素を補充するという手間がかかる
問題点を無くすことができるという効果を有する。
As explained above, the present invention provides an X-ray analyzer that focuses an electron beam onto a sample held in a vacuum chamber and processes the output signal from the semiconductor detector with a counting unit. One end of the thermal conductive material is placed in contact with the other end of the thermal conductive material, and the other end of the thermal conductive material is attached to a refrigerator using the Carnot refrigeration cycle. The analyzer has the effect of eliminating the troublesome problem of periodically replenishing liquid nitrogen because the liquid nitrogen used to cool the semiconductor detector evaporates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は従来
の技術を示す断面図である。 la、b・・・真空チャンバー、2・・・試料、3・・
・電子ビーム、4・・・X線、5・・・半導体検出器、
6・・・計数演算装置、7・・・熱伝導材、8・・・液
体窒素、9・・容器、 O・・・冷凍器。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional technique. la, b...vacuum chamber, 2...sample, 3...
・Electron beam, 4...X-ray, 5...semiconductor detector,
6... Counting device, 7... Heat conductive material, 8... Liquid nitrogen, 9... Container, O... Freezer.

Claims (1)

【特許請求の範囲】[Claims] 真空チャンバー内で保持されている試料へ電子ビームを
集束させて照射させ、発生するX線を半導体検出器へ入
射させ、半導体検出器からの出力信号を計数演算装置で
処理するX線分析装置において、半導体検出器の冷却に
冷凍サイクルを応用した極低温冷凍器を用いたことを特
徴とするX線分析装置。
In an X-ray analysis device that focuses and irradiates a sample held in a vacuum chamber with an electron beam, causes the generated X-rays to enter a semiconductor detector, and processes the output signal from the semiconductor detector with a counting unit. , an X-ray analysis device characterized by using a cryogenic refrigerator that applies a refrigeration cycle to cool a semiconductor detector.
JP2250579A 1990-09-20 1990-09-20 Device for x-ray analysis Pending JPH04128642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2250579A JPH04128642A (en) 1990-09-20 1990-09-20 Device for x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2250579A JPH04128642A (en) 1990-09-20 1990-09-20 Device for x-ray analysis

Publications (1)

Publication Number Publication Date
JPH04128642A true JPH04128642A (en) 1992-04-30

Family

ID=17209992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2250579A Pending JPH04128642A (en) 1990-09-20 1990-09-20 Device for x-ray analysis

Country Status (1)

Country Link
JP (1) JPH04128642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109700A (en) * 1996-06-21 1998-01-16 Seiko Epson Corp Low temperature device
JP2005257349A (en) * 2004-03-10 2005-09-22 Sii Nanotechnology Inc Superconductive x-ray analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109700A (en) * 1996-06-21 1998-01-16 Seiko Epson Corp Low temperature device
JP2005257349A (en) * 2004-03-10 2005-09-22 Sii Nanotechnology Inc Superconductive x-ray analyzer

Similar Documents

Publication Publication Date Title
JP3867158B2 (en) Cryogenic container and magnetometer using the same
US3611746A (en) Cryostat for cooling vacuum-housed radiation detector
JPH08105852A (en) Differential scanning calorimeter,cooling head for differential scanning calorimeter cell and cooling method for differential scanning calorimeter cell
JP6838256B2 (en) Pretreatment equipment for gas analysis
US20160231259A1 (en) X-ray analyzer
JPH04128642A (en) Device for x-ray analysis
JPH10253762A (en) Energy-dispersive semiconductor x-ray detector
Roberts An optical absorption cell for use at low temperatures
FI96064C (en) Process for providing cooling and cooling device suitable for cooling
JP3952279B2 (en) Detection system
Piercy et al. A liquid helium cooled finger for the Siemens electron microscope
EP1523044B1 (en) Imaging apparatus
JPH10293167A (en) Dewar for electronic spin resonance device
Kapadia et al. The theory of radiative transfer in the plasma of the keyhole in penetration laser welding
Frank et al. Physics and performance of calorimetric particle detectors with dielectric absorbers and superconducting phase transition thermometers
Peterreins et al. Nonequilibrium phonon detectors
Piwiński et al. An efficient high-vacuum thermoelectric cold trap for metal atomic vapours
Stahle et al. Thermalization of X-rays in evaporated tin and bismuth films used as the absorbing materials in X-ray calorimeters
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
Scurlock et al. A simple helium-3 cryostat for specific heat measurements between 0.4 and 4.2° K
JP3436328B2 (en) Silicon wafer heating device
JPH03197832A (en) Vacuum measuring instrument
Huussen et al. A continuous-flow helium cryostat and sample holder with unrestricted manipulation for ion-scattering experiments in uhv
Huang et al. Temperature dependence of the drift mobility of electrons in glassy 10 M sodium hydroxide ice
JPS5998448A (en) Quadrupole mass spectrometer