JPH04128619A - Radiation-illumino-meter - Google Patents

Radiation-illumino-meter

Info

Publication number
JPH04128619A
JPH04128619A JP24926590A JP24926590A JPH04128619A JP H04128619 A JPH04128619 A JP H04128619A JP 24926590 A JP24926590 A JP 24926590A JP 24926590 A JP24926590 A JP 24926590A JP H04128619 A JPH04128619 A JP H04128619A
Authority
JP
Japan
Prior art keywords
light
light receiving
intensity
receiving device
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24926590A
Other languages
Japanese (ja)
Inventor
Fujio Suga
冨士夫 須賀
Takao Sumiyoshi
孝夫 住吉
Hideaki Kodachi
小太刀 秀明
Choichi Suga
長市 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP24926590A priority Critical patent/JPH04128619A/en
Publication of JPH04128619A publication Critical patent/JPH04128619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To retain a photocurrent which a light receiving device generates independently of the intensity of light of a light source within a constant range always by installing a variable throttle to adjust the quantity of the light injected to the light receiving device automatically in stages in a photo-receptor. CONSTITUTION:A printed board 3 having circuits to amplify the photocurrent from a light receiving device 12, carry out A/D conversion, and operation is installed in the inside of a case and two displaying devices 4 are so arranged in parallel up and down in the opposite side to a photo-receptor 2 in the case as to be exposed only in the displaying parts and the one in the upper side is for displaying the radiation exposure (display unit MJ/m<2>) and the one in the lower side is for displaying the instant value of irradiance (display unit W/m<2>). The variable throttle 10 is able to adjust the quantity of the light to be injected to the light receiving device 12 automatically in stages based on the intensity of the light to be injected to the light receiving device 12. In both cases where the intensity of the light to be injected to the light receiving device 12 is strong and/or weak, the light intensity which the light receiving device 12 receives is made to be within a range where the intensity is in proportion to the photocurrent the light receiving device 12 sends out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光源の光の強弱に関係なく安定して放射照度お
よび放射露光量(積算放射照度)を測定できる放射照度
計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an irradiance meter that can stably measure irradiance and radiation exposure (integrated irradiance) regardless of the intensity of light from a light source.

[従来の技術およびその課題] 第5図Aは従来より放射照度計に用いられている受光器
2′の断面図である。
[Prior art and its problems] FIG. 5A is a sectional view of a light receiver 2' conventionally used in an irradiance meter.

図において、この受光器2′は光入射窓6の透明板7を
通過して入射した光が光拡散板9内部であらゆる方向に
拡散され、拡散光が波長選択フィルタ11に導かれ特定
の波長範囲、たとえば300〜400nmの波長範囲の
光だけが受光素子12人入射れるように構成されている
。受光素子12は受光する光の強度に比例した光電流を
aカし、図示しない増幅器、A/D変換器、演算回路な
どを経て特定波長範囲の放射照度および放射露光量が測
定され、図示しない表示器に表示されるものである。
In the figure, in this light receiver 2', light that has passed through a transparent plate 7 of a light entrance window 6 is diffused in all directions inside a light diffusion plate 9, and the diffused light is guided to a wavelength selection filter 11 to select a specific wavelength. The structure is such that only light in a wavelength range of, for example, 300 to 400 nm can enter the 12 light receiving elements. The light-receiving element 12 transmits a photocurrent proportional to the intensity of the light it receives, and the irradiance and radiation exposure in a specific wavelength range are measured through an amplifier, an A/D converter, an arithmetic circuit, etc. (not shown), and the irradiance is measured in a specific wavelength range. This is what is displayed on the display.

さて、第4図に図示したように、受光素子12の光電流
の出力特性はこの素子12が受光する光の強度に比例し
て増減するが、ある強度を越えるとこの比例関係が得ら
れなくなる。このため比例関係が得られない場合には、
たとえば第5図Bのような光量調節板21または減光フ
ィルタ(図示せず)を受光器に設けて、受光素子12に
入射する光の量を減じて光の強度を弱め比例関係が得ら
れるように補正していた。また、比例関係が得られてい
ても光の強度が少ない場合には出力電流も小さくなるた
め、放射照度および放射露光量を求めるための電気回路
、たとえば増幅器、A7・′D変換器、演算回路などで
生じる電気的ノイズが出力電流に比して相対的に大きく
なり正確な値が得られない。このため図示しないが第5
図Aにおける受光器2′の光入射窓6や光拡散板9など
を大形として受光素子12に入射する光の量を増やして
強い強度の光が入射するようにしていた。
Now, as shown in FIG. 4, the output characteristics of the photocurrent of the light-receiving element 12 increase or decrease in proportion to the intensity of light received by this element 12, but when the intensity exceeds a certain level, this proportional relationship can no longer be obtained. . Therefore, if a proportional relationship cannot be obtained,
For example, by providing a light amount adjusting plate 21 or a neutral density filter (not shown) as shown in FIG. I corrected it like this. Furthermore, even if a proportional relationship is obtained, if the intensity of light is low, the output current will also be small. Electrical noise caused by such factors becomes relatively large compared to the output current, making it impossible to obtain accurate values. For this reason, although not shown, the fifth
The light entrance window 6, light diffusing plate 9, etc. of the light receiver 2' in FIG.

ところで促進射光試験では、光源に試料をより近づけて
光劣化の速度を速めたり、試料をより遠ざけて光劣化の
速度を緩めたりする方法が採られることがある。この放
射照度および放射露光量を測定する場合、予め光源と受
光器との位置関係により上記のように、受光素子に入射
する光量か多すぎて光の強度が強すぎる場合には光量調
節板または減光フィルタを受光器に設け、光量が少なす
ぎて光の強度か弱すぎる場合には受光器の光入射窓や光
拡散板などを大形とするなど、各々の試験条件に適合す
る受光器を用いる必要がある。従って正確な放射照度お
よび放射露光量を測定するには、各々の試験条件に応じ
た複数の受光器を用意して試験ごとに取り替えて使用し
なければならず、手数がかかると共に設備に費用がかか
り経済的でなかった。
Incidentally, in accelerated light tests, methods are sometimes adopted in which the sample is moved closer to the light source to accelerate the rate of photodegradation, or the sample is moved further away to slow down the rate of photodegradation. When measuring this irradiance and radiation exposure amount, depending on the positional relationship between the light source and the light receiver, as described above, if the amount of light incident on the light receiving element is too large and the intensity of the light is too strong, use a light amount adjusting plate or A light receiver that meets each test condition is equipped with a neutral density filter, and if the light intensity is too low due to the amount of light being too low, the receiver's light entrance window and light diffusion plate are made larger. It is necessary to use Therefore, in order to accurately measure irradiance and radiation exposure, it is necessary to prepare multiple receivers according to each test condition and replace them for each test, which is time-consuming and expensive for equipment. It was not economical.

さらに、図示しないが従来の装置の作動電源は装置の外
部より電源線を通じて供給していたため、簡単に電気を
供給できない場所、たとえば広大な暴露場などではその
設備に費用がかかり、また促進射光試験機内で使用する
には、一般に光源の回りを回転する試料と同位置に取り
付けるため、スリップリングなどの複雑かつ高価な電源
供給機構か必要であった。
Furthermore, although not shown in the figure, the operating power for conventional devices was supplied from outside the device through a power line, which meant that equipment was expensive in places where electricity could not be easily supplied, such as in large exposure areas, and accelerated light testing For in-flight use, the light source is generally mounted in the same position as the sample rotating around it, requiring a complex and expensive power supply mechanism such as a slip ring.

しかしながら、このようにして電源を供給しても配線な
どによる電気的なノイズが大きくなり測定値にバラツキ
を生じる原因となっていた。
However, even when power is supplied in this manner, electrical noise due to wiring and the like increases, causing variations in measured values.

このため、光源の光の強弱に関係なく受光素子に入射す
る光量の変化が少なく、受光素子の出力電流を常に一定
範囲として各種試験条件に対応でき、かつ装置の外部か
ら電源供給を行う必要がなく、どんな場所、装置にも容
易に配役できて正確な放射照度および放射露光量が測定
できる放射照度計の開発が望まれていた。
Therefore, regardless of the strength of the light from the light source, there is little change in the amount of light incident on the light receiving element, the output current of the light receiving element can always be kept within a certain range, and can be used for various test conditions, and it is not necessary to supply power from outside the device. There has been a desire to develop an irradiance meter that can be easily installed in any location or device and that can accurately measure irradiance and radiation exposure.

[発明を解決するための手段および作用]上記課題を解
決するために、受光素子に入射する光の量を自動的にか
つ段階的に調節する可変絞りを受光器に設け、光源の光
の強弱に関わらず受光素子が出力する光電流を常に一定
範囲内に保持するようにすることを手段とした。このた
め、光源の光が強いときは受光素子に入射する光量を少
なくし5て光の強さを弱め、光源の光が弱いときは受光
素子に入射する光量を多くして光の強さを強めることが
自動的にでき、光の強弱に関わらず受光素子の出力電流
を常に一定範囲内とすることができるようになり、正確
な放射照度および放射露光量が測定できるようになった
[Means and effects for solving the invention] In order to solve the above problems, the light receiver is provided with a variable diaphragm that automatically and stepwise adjusts the amount of light incident on the light receiving element, and the intensity of the light from the light source is adjusted. The method is to always maintain the photocurrent output by the light-receiving element within a certain range regardless of the current. Therefore, when the light from the light source is strong, the amount of light that enters the photodetector is reduced to weaken the intensity of the light, and when the light from the light source is weak, the amount of light that enters the photodetector is increased to reduce the intensity of the light. This allows the output current of the light receiving element to be always within a certain range regardless of the strength of the light, making it possible to accurately measure irradiance and radiation exposure.

また、光源の光を装置の作動電源に変換する太陽電池を
一体に設けたことも手段としたため、電源設備のない場
所や促進射光試験機内で使用する場合に、電源供給設備
、電源供給機構に費用をかける必要がなくなり、さらに
、測定結果に影響をおよぼす電気的ノイズが少なくなっ
た。
In addition, since we have integrated a solar cell that converts the light from the light source into the operating power of the device, it is possible to use the power supply equipment and power supply mechanism in places without power supply equipment or in accelerated light test machines. There is no need to spend more money, and there is less electrical noise that can affect the measurement results.

[実施例〕 以下、各図面を用いて本発明の1実施例を説明する。[Example〕 Hereinafter, one embodiment of the present invention will be described using each drawing.

第1図は本発明の放射照度計の構成を示すもので、Aは
その断面図、Bは斜視図である。
FIG. 1 shows the configuration of the irradiance meter of the present invention, with A being a sectional view and B being a perspective view thereof.

図において、放射照度計1は受光器2、これから出力す
る光電流を増幅、A/D変換および演算するための回路
を有するプリント基盤3、放射照度および放射露光量を
表示するための表示器4、光源の光を変換してこの放射
照度計1の作動電源とする太陽電池5などより構成され
ている。
In the figure, an irradiance meter 1 includes a photoreceiver 2, a printed circuit board 3 having circuits for amplifying, A/D converting and calculating the photocurrent to be outputted, and a display 4 for displaying irradiance and radiation exposure. , a solar cell 5, etc., which converts light from a light source and serves as an operating power source for this irradiance meter 1.

受光器2は、円筒の一端面を光が入射するための光入射
窓6としこの面に石英ガラス製の透明板7を密着固定し
、他端面を塞いで内部に雨やホコリが侵入しない密閉形
状とした受光器ケース8と、入射光をあらゆる方向に拡
散する光拡散板9、入射光の量を自動的かつ段階的に調
節する可変絞り10(詳細後述)、入射光の中で300
nm未満の波長の光および400nmを越える波長の光
をカットするフィルタを組み合わせて300〜400n
mの波長域の光だけを通過させるようにした波長選択フ
ィルタ11とを透明板7側から順に、各々の周側面が受
光器ケース8内壁に接するように配し、さらに受光器ケ
ース8の底部(円筒の他端面を塞いだ面)には受光素子
12として光強度に比例して光電流を出力するシリコン
フォトダイオードを配して構成されている。また、この
受光器2は直方体形状のケース13の内にこのケース1
3の一平面の中央部に光入射窓6部分だけを露出させて
配しである。
The light receiver 2 has one end face of a cylinder as a light entrance window 6 through which light enters, and a transparent plate 7 made of quartz glass is closely fixed to this face, and the other end face is closed to create a hermetically sealed interior that prevents rain and dust from entering. A shaped receiver case 8, a light diffusion plate 9 that diffuses incident light in all directions, a variable aperture 10 that automatically and stepwise adjusts the amount of incident light (details will be described later), and a
300 to 400 nm by combining filters that cut light with wavelengths less than nm and light with wavelengths exceeding 400 nm.
A wavelength selection filter 11 that allows only light in a wavelength range of (The surface that closes the other end surface of the cylinder) is configured with a silicon photodiode as a light receiving element 12 that outputs a photocurrent in proportion to the light intensity. Moreover, this light receiver 2 is housed in this case 1 within a rectangular parallelepiped-shaped case 13.
3, with only the light entrance window 6 exposed at the center.

ケース13内部には、受光素子12からの光電流を増幅
、A/D変換および演算するための回路を有するプリン
ト基盤3が配してあり、表示器4は受光器2を配したケ
ース13の面の反対面に2個上下並びに表示部分だけを
露出させて配してあり、上段を放射露光量の表示用(表
示単位MJ/m2)、下段を放射照度の瞬時値の表示用
(表示単位W/m2)としている。
Inside the case 13, a printed circuit board 3 having a circuit for amplifying, A/D converting, and calculating the photocurrent from the light receiving element 12 is arranged, and a display 4 is located inside the case 13 in which the light receiving element 2 is arranged. Two pieces are arranged on the opposite side, with only the display part exposed. W/m2).

受光器2の光入射窓6部分を露出させたケース13面に
は、平板状の太陽電池5を1個この窓部分を覆わず密着
して配してあり、また、ケース13内部には太陽電池5
によって充電され、光源の光がなくなったとき、例えば
促進射光試験における暗黒条件や屋外暴露試験における
夜間などの場合で太陽電池5が機能しなくなったとき、
表示内容を保持するための補助電池14が設けである。
On the surface of the case 13 where the light incidence window 6 of the receiver 2 is exposed, one flat solar cell 5 is placed in close contact with the window without covering the window. battery 5
When the solar cell 5 stops functioning when the light from the light source disappears, for example in dark conditions in an accelerated light test or at night in an outdoor exposure test,
An auxiliary battery 14 is provided for retaining the displayed contents.

尚、ケース13は雨やホコリなどから内部を保護するた
めに密閉構造となっており、受光器2、各表示器4は図
示しないパツキンなどを介してケース13に固定されて
いる。
Incidentally, the case 13 has a sealed structure to protect the inside from rain and dust, and the light receiver 2 and each display 4 are fixed to the case 13 via gaskets (not shown) or the like.

ところで、一般に2つの電極に挟まれた液晶は、画電極
に一定の電圧を加えると規則的な配列となるため、この
状態で各種の偏光板を組み合わせることによって光の透
過量を調節できることが知られている。
By the way, it is known that the liquid crystal sandwiched between two electrodes generally becomes regularly arranged when a certain voltage is applied to the picture electrode, and that the amount of light transmitted can be adjusted in this state by combining various polarizing plates. It is being

前述の可変絞り10はこの原理を応用したもので受光素
子12に入射する光強度に対応して受光素子12に入射
する光の量を自動的かつ段階的に調節できるようにした
ものである。
The aforementioned variable diaphragm 10 is an application of this principle, and is capable of automatically and stepwise adjusting the amount of light incident on the light receiving element 12 in accordance with the intensity of light incident on the light receiving element 12.

第2図はこの可変絞り10の概略の断面図であり、円板
状のガラス板の一方の面に一定のパターン(第3図参照
)の電極15aを蒸着したガラス基盤15とこの基盤工
5の周囲に電極16aを蒸着したガラス基盤16とを、
蒸着面を向かい合わせて一定の間隙をあけて配置し、周
囲をシール剤17で塞ぎ、この間隙内に液晶18を充填
しである。また、これらガラス基盤15.16には電極
15aを蒸着した面の反対側にそれぞれ偏光板19.2
0が密着されている。
FIG. 2 is a schematic cross-sectional view of this variable aperture 10, showing a glass substrate 15 on which electrodes 15a of a certain pattern (see FIG. 3) are deposited on one surface of a disk-shaped glass plate, and this substrate construction 5. A glass substrate 16 with an electrode 16a deposited around it,
The vapor deposition surfaces are placed facing each other with a certain gap left between them, the periphery is sealed with a sealant 17, and the gap is filled with liquid crystal 18. Further, on the opposite side of the glass substrates 15, 16 to the surface on which the electrodes 15a are deposited, polarizing plates 19, 2 are provided.
0 is closely attached.

第3図Aはガラス基盤15および16に蒸着した電極1
5aのパターン図で、aおよびb部分が電極15aの蒸
着面である。ここで、ガラス基盤15および16の電極
15a(第3図Aでa部分)に通電すると両電極間に挟
まれた部分の液晶の配列が一定方向に規則的に揃うこと
になり、偏光板19.20との相互作用によってこの部
分で光の透過量著しく減らすことができる(第3図C参
照)さらにこのb部分の電極にも通電すると同じくb部
分でも光の透過量著しく減らすことができる(第3図C
参照)。
FIG. 3A shows electrode 1 deposited on glass substrates 15 and 16.
In the pattern diagram 5a, portions a and b are the deposition surfaces of the electrodes 15a. Here, when electricity is applied to the electrodes 15a of the glass substrates 15 and 16 (portion a in FIG. 3A), the arrangement of the liquid crystals in the portion sandwiched between the two electrodes becomes regular in a certain direction, and the polarizing plate 19 By interaction with .20, the amount of light transmitted in this part can be significantly reduced (see Figure 3 C).Furthermore, when the electrode of this part b is also energized, the amount of light transmitted in part b can be significantly reduced as well ( Figure 3C
reference).

第4図は受光素子12に入射する光の強度と受光素子1
2の出力電流との関係のグラフである。
Figure 4 shows the intensity of light incident on the light receiving element 12 and the light receiving element 1.
2 is a graph of the relationship with the output current of No. 2.

この図において、受光素子12に入射する光の強度がA
を越えると光の強度と出力電流との比例関係がなくなる
ため、第3図Cのようにガラス基盤15および16の電
極でa、b部分に通電し、この部分からの入射光を著し
く減少させて受光素子12に入射する光量を少なくし、
またBより少ない場合にはこのa、b部分に通電せずに
受光素子12に入射する光量を多くして(第3図り参照
)、受光素子12に入射する光の強度が常にA−Bの範
囲になるように段階的に調節できるものである。
In this figure, the intensity of light incident on the light receiving element 12 is A
If the value exceeds the current, the proportional relationship between the light intensity and the output current disappears, so as shown in Figure 3C, electricity is applied to parts a and b of the glass substrates 15 and 16 to significantly reduce the incident light from these parts. to reduce the amount of light incident on the light receiving element 12,
If it is less than B, increase the amount of light that enters the light receiving element 12 without energizing parts a and b (see the third diagram) so that the intensity of the light that enters the light receiving element 12 is always equal to A-B. It can be adjusted step by step to fit the desired range.

また、受光素子12に入射する光の強度がA−Bの範囲
では、第3図Bのようにガラス基盤15および16の電
極a部分のみに通電してこの部分だ1寸光の透過量を著
しく減少させるものである。
In addition, when the intensity of the light incident on the light receiving element 12 is in the range A-B, as shown in FIG. This is a significant reduction.

また、第4図て受光素子12に入射する光強度が同一で
あっても、受光素子ユ2に入射する光量はAを越える場
合、Bを越える場合1.A −Bの範囲の各場合で異な
るため、予めこゎら各場合の光電流の出力状態を記憶し
ておき、可変絞り1oの各状態(第3図B、C,D参照
)に応じて放射照度および放射露光量を求めるようにし
ている。
Further, as shown in FIG. 4, even if the intensity of light incident on the light receiving element 12 is the same, if the amount of light incident on the light receiving element 2 exceeds A or B, 1. Since each case in the range A-B is different, the output state of the photocurrent for each case is memorized in advance, and the output state of the photocurrent is adjusted according to each state of the variable aperture 1o (see Fig. 3 B, C, and D). Illuminance and radiation exposure are determined.

尚、木実絶倒では可変絞りに液晶を用いて構成1−だか
、受光素子に入射する光の強さに応して正確に入射する
光量を調節できるものであれば機械式、たとえば、写真
機の絞りなとと同様な構造のものを転用してもよい。
In addition, in the case of tree removal, a liquid crystal is used for the variable diaphragm in configuration 1-, but if it is possible to accurately adjust the amount of light incident on the light receiving element according to the intensity of the light incident on the light receiving element, a mechanical type, such as a photographic one, may be used. It is also possible to use one with a similar structure to the aperture of the machine.

[発明の効県] このように構成した本発明の放射照度計は、受光素子に
入射する先の強弱に対応して自動的かつ段階的に入射す
る光の量を調節できるため、受光素子に入射する光の強
度が強い場合ても弱い場合でも、受光素子が受ける光強
度をこの受光素子が出力する光電流と比例関係となる一
定範囲内とすることかできる。
[Effects of the Invention] The irradiance meter of the present invention configured as described above can automatically and stepwise adjust the amount of light incident on the light receiving element in accordance with the intensity of the light incident on the light receiving element. Regardless of whether the intensity of the incident light is strong or weak, the light intensity received by the light receiving element can be kept within a certain range that is proportional to the photocurrent output by the light receiving element.

従って、たとえば促進射光試験で光源と試料間の距離を
変えて促進速度の異なる試験を行う場合、従来はこの距
離に応じた複数の放射照度81(光量調節板や減光フィ
ルタを設けたもの、光入射窓や光拡散板を大形にしたも
のなど)を用いる必要かあったが、本発明の放射照度計
は1台で全ての条件に対応でき、常に上記の比例関係を
保ちかつ電気的なノイズの影響を受(寸ず正確な測定か
でき、経済的であると共に試験の条件によって取り替え
る手間などがかからず省力化か計ねることにな−)さら
に、作動電源に太陽電池を用いたため、外部からの電気
の供給か不要になり、どんな場所、どんな製電にも容易
に配、設できかつこのための設備に要する費用がかから
す経済的であると共に電源供給のための配線やスリ・ツ
ブリング機構なとによる電気的ノイズが解消でき、正確
さが一層増大した測定かできるようになった。
Therefore, for example, when conducting an accelerated radiation test with different acceleration speeds by changing the distance between the light source and the sample, conventionally, a plurality of irradiances 81 (equipped with a light intensity adjustment plate or a neutral density filter) according to this distance, However, the irradiance meter of the present invention can handle all conditions with a single unit, always maintains the above proportional relationship, and is electrically (It is possible to make very accurate measurements, is economical, and saves labor because there is no need to replace it depending on the test conditions.)Furthermore, it uses a solar battery as the operating power source. Therefore, there is no need to supply electricity from outside, and it can be easily distributed and installed in any place and in any power production facility, and it is economical and requires no wiring for power supply. This eliminates the electrical noise caused by the slitting and twisting mechanisms, making it possible to perform measurements with even greater accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成で、Aはその断面図、Bは斜視図
、第2図は可変絞りの断面図、第3図Aはガラス基盤に
蒸着した電極のパターン図、同B〜Dは光が透過する状
態を示す図、第4図は受光素子が受ける光強度と受光素
子の出力電流との関係を示すグラフ、第5図Aは従来の
放射照度計の受光器の断面図、同Bは光量調節板の平面
図である。 1、・・・放射照度計、2.2′・・・受光器、3・・
・プリレト基盤、4・・・表示器、5・・太陽電池、6
・・・光入射窓、7・・・透明板、8・・・受光器ケー
ス、9・・・光拡散板、10・・・可変絞り、】1・・
・波長選択フィルタ、12・・・受光素子、13・・・
ケース、14・・・補助電池、15・・・ガラス基盤、
15as16a・・電極、17・・・シール剤、18・
・・液晶、】9.20・・・偏光板、21・・・光量調
節板。 dt掻に通電 h@榛に通電 通電な1− 第1 第4図 第5図
Fig. 1 shows the configuration of the present invention, A is a cross-sectional view thereof, B is a perspective view, Fig. 2 is a cross-sectional view of a variable aperture, Fig. 3 A is a pattern diagram of an electrode deposited on a glass substrate, and B to D of the same figure. 4 is a graph showing the relationship between the light intensity received by the light receiving element and the output current of the light receiving element. FIG. 5A is a cross-sectional view of the light receiver of a conventional irradiance meter. B is a plan view of the light amount adjustment plate. 1....Radiance meter, 2.2'...Receiver, 3...
・Prereto base, 4...Display device, 5...Solar cell, 6
...Light entrance window, 7...Transparent plate, 8...Receiver case, 9...Light diffusion plate, 10...Variable aperture, ]1...
・Wavelength selection filter, 12... Light receiving element, 13...
Case, 14... Auxiliary battery, 15... Glass base,
15as16a...electrode, 17...sealant, 18.
...Liquid crystal,]9.20...Polarizing plate, 21...Light amount adjustment plate. dt energizing h @ 盛 energizing 1- 1 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)光源の放射照度および放射露光量を測定表示する
装置であって、受光素子に入射する光の量を自動的にか
つ段階的に調節する可変絞りを受光器に設け、光源の光
の強弱に関わらず受光素子が出力する光電流を常に一定
範囲内に保持するようにして、放射照度および放射露光
量を測定表示することを特徴とする放射照度計。
(1) A device that measures and displays the irradiance and radiation exposure of a light source, in which the receiver is equipped with a variable diaphragm that automatically and step-by-step adjusts the amount of light incident on the light receiving element. An irradiance meter characterized by measuring and displaying irradiance and radiation exposure by always keeping the photocurrent output by a light-receiving element within a certain range regardless of its intensity.
(2)光源の光を装置の作動電源に変換する太陽電池を
一体に設けたことを特徴とする請求項(1)記載の放射
照度計。
(2) The irradiance meter according to claim (1), further comprising an integral solar cell that converts light from the light source into an operating power source for the device.
JP24926590A 1990-09-19 1990-09-19 Radiation-illumino-meter Pending JPH04128619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24926590A JPH04128619A (en) 1990-09-19 1990-09-19 Radiation-illumino-meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24926590A JPH04128619A (en) 1990-09-19 1990-09-19 Radiation-illumino-meter

Publications (1)

Publication Number Publication Date
JPH04128619A true JPH04128619A (en) 1992-04-30

Family

ID=17190394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24926590A Pending JPH04128619A (en) 1990-09-19 1990-09-19 Radiation-illumino-meter

Country Status (1)

Country Link
JP (1) JPH04128619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338868A (en) * 2000-03-24 2001-12-07 Nikon Corp Illuminance-measuring device and aligner
JP2009112263A (en) * 2007-11-07 2009-05-28 Panasonic Electric Works Co Ltd Ultraviolet ray irradiation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111742A (en) * 1976-03-15 1977-09-19 Shimadzu Corp Light control device
JPS60250220A (en) * 1984-05-28 1985-12-10 Hitachi Ltd Optical monitor
JPS6177724A (en) * 1984-09-25 1986-04-21 Toshiba Corp Infrared-ray control device
JPS61239123A (en) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd Photodetector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111742A (en) * 1976-03-15 1977-09-19 Shimadzu Corp Light control device
JPS60250220A (en) * 1984-05-28 1985-12-10 Hitachi Ltd Optical monitor
JPS6177724A (en) * 1984-09-25 1986-04-21 Toshiba Corp Infrared-ray control device
JPS61239123A (en) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd Photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338868A (en) * 2000-03-24 2001-12-07 Nikon Corp Illuminance-measuring device and aligner
JP2009112263A (en) * 2007-11-07 2009-05-28 Panasonic Electric Works Co Ltd Ultraviolet ray irradiation system

Similar Documents

Publication Publication Date Title
CA2463697C (en) Liquid crystal display and calibration method therefor
JPH02133627U (en)
US5115124A (en) Semiconductor photosensor having unitary construction
US20060146330A1 (en) Color measurements of ambient light
US20030042420A1 (en) Flame sensor
US2455116A (en) Method of and apparatus for measuring the color quality of light
JPH04128619A (en) Radiation-illumino-meter
CN102445325A (en) Device and method for measuring shade number of automatic darkening welding filter
JP2010112808A (en) Optical power meter
US5391883A (en) Ozone meter
JPS6382326A (en) Element for ultraviolet ray sensor
Fabricius et al. Quantum efficiency characterization of back-illuminated CCDs: Part II. Reflectivity measurements
JPH07209185A (en) Surface scattering type turbidity meter
JPH03202732A (en) Color sensor
JP2501003B2 (en) Device for measuring the reflectance of the surface to be measured
JP2013171007A (en) Optical power meter
JPS5937446A (en) Irradiance monitor device for light-proof test equipment
US5061066A (en) Method for realizing a primary photometric standard of optical radiation using a photodetector and photodetecting apparatus therefor
GB2107112A (en) Radiation detector
JP2632306B2 (en) Battery charge measurement method
Caputo et al. Innovative amorphous silicon balanced ultraviolet photodiode
JPS60250220A (en) Optical monitor
Coppo et al. An experimental study of nonlinear effects in room temperature HgCdTe thermal optical bistability: Increasing absorption and self-defocusing
JPH0448228A (en) Optical power meter with wavelength measuring function
SU890083A1 (en) Method of determination of optically active impurities in solid bodies