JPH04128604A - Edge extracting apparatus - Google Patents
Edge extracting apparatusInfo
- Publication number
- JPH04128604A JPH04128604A JP2249290A JP24929090A JPH04128604A JP H04128604 A JPH04128604 A JP H04128604A JP 2249290 A JP2249290 A JP 2249290A JP 24929090 A JP24929090 A JP 24929090A JP H04128604 A JPH04128604 A JP H04128604A
- Authority
- JP
- Japan
- Prior art keywords
- photoreceptor
- element array
- target image
- array
- displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 34
- 238000009792 diffusion process Methods 0.000 claims abstract description 31
- 230000003287 optical effect Effects 0.000 claims abstract description 22
- 108091008695 photoreceptors Proteins 0.000 claims description 62
- 210000000608 photoreceptor cell Anatomy 0.000 claims description 36
- 238000000605 extraction Methods 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 claims description 15
- 238000003384 imaging method Methods 0.000 claims description 14
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 210000001328 optic nerve Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
Landscapes
- Image Analysis (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はエツジ抽出装置に関する。この装置は人工視覚
装置に利用できる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an edge extraction device. This device can be used as an artificial vision device.
F従来の技術]
対象画像のエツジを抽出する方法として、「対象物の像
を対象画像として拡散面上に結像させ、拡散面に近接対
向させて配備した視細胞素子アレイの個々の視細胞素子
からの出力の有無によりエツジ抽出を行うJ方法が提案
されている。F. Prior Art] As a method for extracting edges of a target image, ``an image of the target object is formed on a diffusion surface, and individual photoreceptor cells of a photoreceptor cell element array arranged close to and facing the diffusion surface are used. A J method has been proposed in which edge extraction is performed depending on the presence or absence of output from an element.
本発明はこのようなエツジ抽出方式に関連するので以下
に、上記エツジ抽出方式に就き簡単に説明する。Since the present invention relates to such an edge extraction method, the edge extraction method will be briefly explained below.
第2図(a)を参照すると、図に於いて符号2は拡散面
部材を示している。拡散面部材2は薄い板状であって図
で下方に向いた面は拡散面2Aとなっている。具体的に
はこの拡散面部材としては例えば摺りガラスを利用でき
る。Referring to FIG. 2(a), reference numeral 2 indicates a diffusion surface member. The diffusion surface member 2 has a thin plate shape, and the surface facing downward in the figure is a diffusion surface 2A. Specifically, ground glass, for example, can be used as the diffusion surface member.
第2図(a)に於いて符号3は中心受光素子、符号4は
周辺受光素子を示す。中心受光素子3はこの図の例では
円形状であり、周辺受光素子4は円環形状であって中心
受光素子3に対して同心円をなすように配備されている
。中心受光素子3と周辺受光素子4とは対となって視細
胞素子を構成する。In FIG. 2(a), reference numeral 3 indicates a center light receiving element, and reference numeral 4 indicates a peripheral light receiving element. In the example shown in this figure, the center light receiving element 3 has a circular shape, and the peripheral light receiving elements 4 have an annular shape and are arranged concentrically with the center light receiving element 3. The center light-receiving element 3 and the peripheral light-receiving element 4 form a pair to constitute a photoreceptor element.
なお視細胞素子は、例えば9個の正方形の受光素子を密
接して3行3列に配列し、中心の1個を中心受光素子、
その周囲の8個の受光素子を周辺受光素子とするなど種
々の形態が可能である。Note that the photoreceptor cell element is composed of, for example, nine square light-receiving elements arranged closely in 3 rows and 3 columns, with one in the center serving as the center light-receiving element;
Various configurations are possible, such as using the eight surrounding light receiving elements as peripheral light receiving elements.
中心受光素子3の出力は増幅器5により増幅されるよう
になっており、周辺受光素子4の出力は増幅器6により
増幅されるようになっている。The output of the central light receiving element 3 is amplified by an amplifier 5, and the output of the peripheral light receiving element 4 is amplified by an amplifier 6.
増幅器5,6の出力は演算器7により差分演算される。The outputs of the amplifiers 5 and 6 are subjected to differential calculation by a calculator 7.
増幅器5,6及び演算器7は、中心受光素子3ど周辺受
光素子4とにより構成された視細胞素子に連なる視神経
素子とでも呼ぶべきものを構成する。The amplifiers 5 and 6 and the arithmetic unit 7 constitute what can be called an optic nerve element connected to a photoreceptor element constituted by the central light receiving element 3 and the peripheral light receiving elements 4.
このように視細胞素子とこの視細胞素子に連なる視神経
素子とを1単位とし、視細胞素子を2次元的に密接して
配列したものを視細胞素子アレイと称する。第2図(a
)で符号9は視細胞素子アレイの視細胞素子配列面を示
している。拡散面部材2はその拡散面2Aを視細胞素子
配列面9に近接対向させて配備される。In this way, a photoreceptor cell element and an optic nerve element connected to the photoreceptor cell element are taken as one unit, and the photoreceptor cell elements arranged closely two-dimensionally are called a photoreceptor cell element array. Figure 2 (a
), reference numeral 9 indicates the photoreceptor element arrangement surface of the photoreceptor cell element array. The diffusion surface member 2 is arranged with its diffusion surface 2A closely facing the photoreceptor element arrangement surface 9.
今、拡散面部材2における拡散面2Aが至る所均−な照
度に照明された状態を考える。増幅器5゜6の増幅率は
この状態に於いて演算器7の出力が0になるように調整
される。Now, consider a state in which the diffusion surface 2A of the diffusion surface member 2 is illuminated with uniform illuminance everywhere. The amplification factor of the amplifier 5.6 is adjusted so that the output of the arithmetic unit 7 becomes 0 in this state.
図示されない対象物の像は図示されない結像光学系によ
り拡散面2A上に対象画像として結像される。すると拡
散面2Aの各部は対象画像の光強度に応じた光を視細胞
素子配列面9に向かって拡散させる。各視細胞素子を構
成する中心受光素子・周辺受光集子は拡散面からの拡散
光を受光すると受光量に応じた信号を出力するが視細胞
素子に連結した演算器から出力が生じるのは、上記視細
胞素子において受光する拡散光強度が視細胞素子内で変
化している場合のみであり、従って視細胞素子アレイに
於いて出力を出している演算器に応じた視細胞素子の集
合を2次元的に捉えると対象画像の輪郭即ち対象画像の
エツジが検出できることになる。An image of an object (not shown) is formed as an object image on the diffusing surface 2A by an imaging optical system (not shown). Then, each part of the diffusion surface 2A diffuses light according to the light intensity of the target image toward the photoreceptor element arrangement surface 9. When the central light-receiving element and the peripheral light-receiving collector that make up each photoreceptor cell element receive diffused light from the diffusing surface, they output a signal according to the amount of received light, but the output from the arithmetic unit connected to the photoreceptor cell element is This is only the case when the intensity of the diffused light received by the photoreceptor cell element changes within the photoreceptor cell element. When viewed dimensionally, the outline of the target image, that is, the edge of the target image can be detected.
視細胞素子アレイに於ける演算器からの出力の特性を見
るために、拡散面上に光を微小なスポットにして結像さ
せ、このスポットを視細胞素子の中心を通る直線(X方
向とする)に沿って移動させて見ると、スポットのX座
標と視細胞素子の中心・周辺受光素子の出力α、βは第
2図(b)に示すようになる。正確にはα、βは増幅器
により増幅された値であり、演算器の出力がα、βの差
になる所からβにはマイナスの重みを付けて示しである
。従って第2図(b)に於いてα+βは演算器の出力に
なる。In order to see the characteristics of the output from the arithmetic unit in the photoreceptor cell element array, light is formed into a minute spot and imaged on the diffusing surface, and this spot is focused on a straight line passing through the center of the photoreceptor cell element (taken as the X direction). ), the X coordinate of the spot and the outputs α and β of the center and peripheral photoreceptor elements of the photoreceptor cell element become as shown in FIG. 2(b). To be precise, α and β are values amplified by an amplifier, and since the output of the arithmetic unit is the difference between α and β, β is shown with a negative weight. Therefore, in FIG. 2(b), α+β becomes the output of the arithmetic unit.
α、β、α十βの振る舞いは、視細胞素子配列面9と拡
散面2Aとの間隔り。により異なる。即ち、第2図(c
)に示すように間隔り。がより大きくなるとα及びα+
βの山形が緩やかになる。逆に間隔Doが小さく成る程
、α及びα+βの山形がより急峻になることは容易に理
解されるであろう。The behavior of α, β, α and β is the distance between the photoreceptor element array surface 9 and the diffusion surface 2A. It depends. That is, Fig. 2 (c
) spacing as shown. becomes larger, α and α+
The mountain shape of β becomes gentler. Conversely, it will be easily understood that the smaller the distance Do becomes, the steeper the mountain shapes of α and α+β become.
ところで一般に、拡散面上に結像される対象画像は種々
の空間周波数を含んでいる。この場合、第2図(bXc
)に即して説明したことから、より高い空間周波数のエ
ツジを抽出するためには、視細胞素子配列面と拡散面と
の間隔り。をより小さくすべきであることが直感的に理
解されよう。Generally, a target image formed on a diffusion surface includes various spatial frequencies. In this case, Fig. 2 (bXc
), in order to extract edges with higher spatial frequencies, the distance between the photoreceptor element array surface and the diffusion surface must be adjusted. It is intuitively understood that the value should be smaller.
事実、対象画像におけるエツジの空間周波数に対するエ
ツジ抽出感度は間隔り。に依存して変化し、Doの増大
に伴い低い空間周波数を持つエツジの抽出感度が相対的
に高くなる。第3図はこの事情を示している。視細胞素
子1個の直径をRとし、上記間隔り。を、(1/4)R
,(3/4)R,(5/4)R,2Rと順に大きくして
みると、感度が最大となる空間周波数の値は第3図(a
)(b)(cXd)の順に小さくなっているのが分かる
。In fact, the edge extraction sensitivity to the spatial frequency of edges in the target image is approximately the same as the interval. The extraction sensitivity of edges with low spatial frequencies becomes relatively high as Do increases. Figure 3 shows this situation. Let R be the diameter of one photoreceptor element, and use the above spacing. , (1/4)R
, (3/4)R, (5/4)R, and 2R, the value of the spatial frequency at which the sensitivity is maximum is shown in Figure 3 (a).
), (b), and (cXd).
[発明が解決しようとする課題]
さて、本発明が問題としているのは、上記の如きエツジ
抽出方式に於いて抽出すべきエツジの空間周波数が高い
場合である。抽出するべきエツジの空間周波数が高い場
合には前述のように間隔り。[Problems to be Solved by the Invention] The problem to be solved by the present invention is when the spatial frequency of edges to be extracted is high in the edge extraction method as described above. If the spatial frequency of the edges to be extracted is high, use the interval as described above.
を小さくすれば良いが、このようにり。を極めて小さく
した場合には、視細胞素子配列面上における、エツジに
対応した光強度の変化が一つの視細胞内でのみ生じてい
る状態が出来する。It would be better to make it smaller, but like this. When is made extremely small, a state is created in which a change in light intensity corresponding to an edge on the photoreceptor element array surface occurs only within one photoreceptor cell.
第4図を参照すると、符号Si −1+ S i +
S i + 1は互いに隣接する視細胞素子を示してい
る。Referring to FIG. 4, the symbol Si −1+ Si +
S i + 1 indicates photoreceptor elements adjacent to each other.
図に示すように視細胞素子S1の部分に鋭い、即ち空間
周波数の極めて高いエツジEGがあり、エツジEGの左
側は均一な光強度、右側は暗部として考えてみると視細
胞素子51−1は均一な光照射を受けるから出力を出さ
ないし、視細胞素子S、+、は光を受けないからa力を
出さない。As shown in the figure, there is a sharp edge EG with an extremely high spatial frequency in the photoreceptor element S1, and if we consider that the left side of the edge EG has a uniform light intensity and the right side is a dark area, the photoreceptor element 51-1 is Since it receives uniform light irradiation, it does not output any output, and since the photoreceptor cell element S,+ does not receive light, it does not output a-power.
また視細胞素子S、では、エツジ部分が素子を2分して
いるので中心受光素子の出力αと周辺受光素子の出力β
が互いに相殺して出力0もしくはOに近い値になる。演
算器の出力はノイズ除去のためにしきい値処理されるた
め、このような場合Oに近い出力はOとして表される。In addition, in the photoreceptor element S, the edge part divides the element into two, so the output α of the center photoreceptor and the output β of the peripheral photoreceptor
cancel each other out, resulting in an output of 0 or a value close to 0. Since the output of the arithmetic unit is subjected to threshold processing to remove noise, an output close to O in such a case is expressed as O.
このため第4図の場合、実際には視細胞素子S1の位置
にエツジEGが存在するにも拘らずエツジEGは抽出さ
れない。Therefore, in the case of FIG. 4, the edge EG is not extracted even though the edge EG actually exists at the position of the photoreceptor element S1.
このようにエツジEGの位置に位置しているにも拘らず
、エツジを抽出しない視細胞素子を視細胞素子アレイに
於ける「抜は目」と称する。A photoreceptor element that does not extract an edge even though it is located at the edge EG is referred to as a "missing eye" in the photoreceptor element array.
本発明の目的は、このような「抜は目」を生ずることな
く高空間周波数のエツジを確実に抽出できる新規なエツ
ジ抽出装置の提供にある。An object of the present invention is to provide a novel edge extraction device that can reliably extract high spatial frequency edges without causing such "blind spots."
[課題を解決するための手段]
本発明のエツジ抽出装置は「対象画像のエツジを抽出す
る装置」であって、視細胞素子アレイと拡散面部材と結
像光学系と間隔調整手段と変位手段とを有する。[Means for Solving the Problems] The edge extraction device of the present invention is a device for extracting edges of a target image, and includes a photoreceptor element array, a diffusion surface member, an imaging optical system, an interval adjustment device, and a displacement device. and has.
「視細胞素子アレイ」は、中心受光素子とこれを囲繞す
るように設けられた周辺受光素子により構成される「視
細胞素子」と、上記中心・周辺受光素子の出力を所定の
増幅比に増幅する1対の増幅器と、これら増幅器の夫々
の出力に基づき中心受光素子と周辺受光素子の増幅出力
差を演算出力する演算器とを1単位とし、上記視細胞素
子を密接して2次元的に配列してなる。The "photoreceptor cell element array" consists of a "photoreceptor cell element" consisting of a central photoreceptor and peripheral photoreceptors installed surrounding it, and the outputs of the center and peripheral photoreceptors are amplified to a predetermined amplification ratio. One unit consists of a pair of amplifiers, and an arithmetic unit that calculates and outputs the amplified output difference between the central light receiving element and the peripheral light receiving elements based on the respective outputs of these amplifiers. It will be arranged.
視細胞素子や増幅器対、演算器は第2図に即して説明し
たようなものを利用できる。増幅器対を構成する2個の
増幅器の一方をその出力が他方の出力の逆極性となるよ
うな極性反転増幅器とし、演算器を単なる加算器として
も良い。As the photoreceptor elements, amplifier pairs, and arithmetic units, those described with reference to FIG. 2 can be used. One of the two amplifiers constituting the amplifier pair may be a polarity inverting amplifier whose output has the opposite polarity to the output of the other, and the arithmetic unit may be a simple adder.
「拡散面部材」は、視細胞素子アレイの視細胞素子配列
面に拡散面を近接対向して配備される。The "diffusion surface member" is disposed with its diffusion surface closely facing the photoreceptor cell element arrangement surface of the photoreceptor cell element array.
「結像光学系」は、対象物の像を対象画像として拡散面
部材の拡散面上に結像させる。The "imaging optical system" forms an image of the object as a target image on the diffusing surface of the diffusing surface member.
「間隔調整手段」は、拡散面部材の拡散面と視細胞アレ
イの視細胞素子配列面との間隔を変化させる。この間隔
調整手段による「拡散面部材の拡散面と視細胞アレイの
視細胞素子配列面との間隔」の調整により対象画像に於
いて抽出したい空間周波数をもったエツジを選択的に抽
出できる。The "interval adjustment means" changes the interval between the diffusion surface of the diffusion surface member and the photoreceptor element arrangement surface of the photoreceptor array. By adjusting the "distance between the diffusion surface of the diffusion surface member and the photoreceptor element array surface of the photoreceptor array" by this distance adjustment means, it is possible to selectively extract an edge having a desired spatial frequency in the target image.
「変位手段」は、対象画像と視細胞素子アレイとを視細
胞素子配列面内で視細胞素子の配列ピッチ分だけ直交2
方向へ相対的に変位させる。The "displacement means" moves the target image and the photoreceptor cell element array at right angles by an arrangement pitch of the photoreceptor cell elements within the photoreceptor cell element array plane.
relatively displaced in the direction.
変位手段による(゛対象画像と視細胞素子アレイどの視
細胞素子配列面内における変位」は、これを振動的に行
っていも良い(請求項2)。The displacement means ('displacement between the target image and the photoreceptor element array in which photoreceptor element array plane') may be performed in a vibrational manner (claim 2).
また「変位手段による対象画像と視細胞素子アレイとの
相対的な変位」は、「結像光学系を光軸に直交する方向
へ変位させる」ことにより行なっても良いシ、(請求項
3)、「視細胞素子アレイを視細胞素子配列面方向へ変
位させる」ことにより行なっても良く(請求項4)、「
結像光学系と視細胞素子アレイとを一体として、結像光
学系光軸に直交する方向へ変位させる」ことにより行な
っても良い(請求項5)。Further, "relative displacement between the target image and the photoreceptor element array by the displacement means" may be performed by "displacing the imaging optical system in a direction perpendicular to the optical axis" (Claim 3). , may be carried out by "displacing the photoreceptor cell element array in the direction of the photoreceptor cell element array surface" (claim 4);
The imaging optical system and the photoreceptor cell element array may be integrated and displaced in a direction perpendicular to the optical axis of the imaging optical system (claim 5).
[作 用]
第4図に戻って、エツジEGを例えば右方向へ視細胞素
子の配列ピッチ分だけ変位させてみると視細胞素子S、
どS2.1の圧力が変化する。従って対象画像と視細胞
素子アレイの相対変位により出力の変化する視細胞素子
位置にはエツジが存在することになる。従って上記変位
を直交2方向につき行えば第4図に示すような高い空間
周波数のエツジでも確実に抽出可能である。[Function] Returning to FIG. 4, if the edge EG is displaced, for example, to the right by the arrangement pitch of the photoreceptor elements, the photoreceptor elements S,
The pressure in S2.1 changes. Therefore, an edge exists at the photoreceptor element position where the output changes due to the relative displacement between the target image and the photoreceptor element array. Therefore, if the above displacement is performed in two orthogonal directions, even edges with high spatial frequencies as shown in FIG. 4 can be reliably extracted.
その際、変位は1度だけでも良いが、変位を振動的に行
うと、即ち第4図でエツジの位置を視細胞素子S1の直
径を振幅として行うと、視細胞素子S1に連なる演算器
から振動的な圧力を時間的に継続して取り出すことがで
き以後の情報処理に好都合である。この場合、相対的な
変位は以後の情報処理時間に比して十分に短い時間で出
力振動が起こるように十分な高周波数で行うようにする
。At this time, the displacement may be only one degree, but if the displacement is performed oscillatingly, that is, if the edge position is determined using the diameter of the photoreceptor element S1 as an amplitude in FIG. Vibratory pressure can be extracted continuously over time, which is convenient for subsequent information processing. In this case, the relative displacement is performed at a sufficiently high frequency so that the output vibration occurs in a sufficiently short time compared to the subsequent information processing time.
口実施例] 以下、具体的な実施例を3例挙げる。Example] Three specific examples are listed below.
第1図(a)は請求項3の装置の実施例を示す。FIG. 1(a) shows an embodiment of the apparatus according to claim 3.
符号2は第2図に於けると同じく拡散面部材、符号8は
視細胞素子アレイを示ず。符号9は視細胞素子配列面を
示す。The reference numeral 2 is the same diffusion surface member as in FIG. 2, and the reference numeral 8 does not indicate the photoreceptor element array. Reference numeral 9 indicates a photoreceptor element array surface.
また符号11は視細胞素子アレイの1単位を構成する視
細胞素子と増幅器対と演算器の組み合わせを示す。これ
らは第2図に即して説明したのと同様のものである。Further, reference numeral 11 indicates a combination of a photoreceptor element, an amplifier pair, and an arithmetic unit constituting one unit of the photoreceptor element array. These are similar to those described with reference to FIG.
拡散面部材2の拡散面2Aど視細胞素子配列面9どの対
向間隔は間隔調整手段15により拡散面部材2を図の左
右方向へ移動させることにより調整できるようになって
いる。The distance between the diffusing surface 2A and the photoreceptor cell element array surface 9 of the diffusing surface member 2 can be adjusted by moving the diffusing surface member 2 in the left-right direction in the figure using the distance adjusting means 15.
符号13で示す結像光学系は、対象物12の像を対象画
像として拡散面2A上に結像する。An imaging optical system indicated by reference numeral 13 forms an image of the object 12 on the diffusing surface 2A as a target image.
符号16は変位手段を示す。変位手段16は、抽出すべ
きエツジの空間周波数が高い場合(このとき間隔調整手
段15は拡散面2Aと視細胞素子配列面の間隔を十分に
小さく設定する)に、結像光学系ユ3を図の上下方向及
び図面に直交する方向へ視細胞素子の配列ピッチを振幅
として振動的に変位させる。これにより振動的な出力を
出す視細胞素子の配列集合として対象画像のエツジを抽
出できる。Reference numeral 16 indicates displacement means. The displacement means 16 moves the imaging optical system unit 3 when the spatial frequency of the edge to be extracted is high (at this time, the interval adjustment means 15 sets the interval between the diffusion surface 2A and the photoreceptor element array surface to be sufficiently small). The arrangement pitch of the photoreceptor elements is vibrably displaced in the vertical direction of the figure and in the direction orthogonal to the figure, with the arrangement pitch of the photoreceptor elements as the amplitude. As a result, the edges of the target image can be extracted as a set of arrays of photoreceptor elements that produce vibratory output.
第1図(b)は請求項4の装置の実施例を示す。FIG. 1(b) shows an embodiment of the apparatus according to claim 4.
煩雑を避けるため、混同の恐れがないと思われるものに
就いては第1図(a)に於けると同一の符号を用いた。To avoid complication, the same reference numerals as in FIG. 1(a) are used for items that are considered to have no risk of confusion.
第1図(b)の実施例では符号17が変位手段を示す。In the embodiment shown in FIG. 1(b), reference numeral 17 indicates a displacement means.
変位手段17は、抽出すべきエツジの空間周波数が高い
場合に、視細胞素子アレイ8を図の上下方向及び図面に
直交する方向へ視細胞素子の配列ピッチを振幅として振
動的に変位させる。これにより振動的な出力を出す視細
胞素子の配列集合として対象画像のエツジを抽出できる
。When the spatial frequency of the edge to be extracted is high, the displacement means 17 vibrably displaces the photoreceptor cell element array 8 in the vertical direction of the drawing and in the direction orthogonal to the drawing, using the arrangement pitch of the photoreceptor cell elements as an amplitude. As a result, the edges of the target image can be extracted as a set of arrays of photoreceptor elements that produce vibratory output.
第1図(c)は請求項5の装置の実施例を示す。FIG. 1(c) shows an embodiment of the apparatus according to claim 5.
この図に於いても混同の恐れがないと思われるものに就
いては第1図(a)に於けると同一の符号を用いた。In this figure as well, the same reference numerals as in FIG. 1(a) are used for parts that are considered to be free from confusion.
第3図(c)の実施例では符号18力(変位手段を示す
。変位手段18は、抽出すべきエツジの空間周波数が高
い場合に、結像光学系13と視細胞素子アレイ8とを一
体として図の上下方向及び図面に直交する方向へ視細胞
素子の配列ピッチを振幅として振動的に変位させる。こ
れにより振動的な出力を出す視細胞素子の配列繋合とし
て対象画像のエツジを抽出できる。In the embodiment shown in FIG. 3(c), the reference numeral 18 indicates a force (displacement means).The displacement means 18 is used to integrate the imaging optical system 13 and the photoreceptor element array 8 when the spatial frequency of the edge to be extracted is high. As a result, the array pitch of the photoreceptor elements is vibrated in the vertical direction of the diagram and in the direction orthogonal to the diagram as an amplitude.This allows the edges of the target image to be extracted as the array connection of the photoreceptor elements that produce a vibratory output. .
[発明の効果]
以上、本発明によれば新規なエツジ抽出装置を提供でき
る。この装置は上記の如き構成とな−)でいるから、従
来のエツジ抽出装置に於いて問題となっていた「抜は目
」を生ずることなく対象画像のエツジを抽出することが
可能である。[Effects of the Invention] As described above, according to the present invention, a novel edge extraction device can be provided. Since this device has the above-described configuration, it is possible to extract the edges of the target image without causing the "knock-outs" that have been a problem with conventional edge extraction devices.
なお本発明の実施において、対象画像と視細胞素子アレ
イとを視細胞素子配列面内で視細胞素子の配列ピッチ分
だけ直交2方向へ相対的に変位させる場合、変位が1度
限りであると振動的であるとを問わず、「配列ピッチ分
」とは厳密に配列ピッチに等しい変位である必要はなく
、変位は実質的に配列ピッチに等しければ良い。即ち配
列ピッチ分は「配列ピッチ程度」という意味である。In carrying out the present invention, when the target image and the photoreceptor element array are relatively displaced in two orthogonal directions by the arrangement pitch of the photoreceptor elements within the photoreceptor element array plane, it is assumed that the displacement is only once. Irrespective of whether it is vibrational or not, the "array pitch" does not have to be a displacement strictly equal to the array pitch, and it is sufficient that the displacement is substantially equal to the array pitch. In other words, the arrangement pitch means "approximately the arrangement pitch."
第1図は本発明の詳細な説明するための図、第2図およ
び第3図は従来技術を説明するための図、第4図は本発
明の詳細な説明するための図である。
200.拡散面部材、800.視細胞素子アレイ、12
.、。
対象物、13.、、結像光学系、16.17.18.
、 、変位手段代理人 樺 山 亨≦4
本 多 章 悟−
売1図
(a)
(C)
’7’l’540
形δ
口
(a)
Do=’/4−R
ど/ジノ
Lるーくらう・R
(C)
凸−%R
rd)
Do=Z−R
9間用液数
?I′Sl′I用″!L数FIG. 1 is a diagram for explaining the present invention in detail, FIGS. 2 and 3 are diagrams for explaining the prior art, and FIG. 4 is a diagram for explaining the present invention in detail. 200. Diffusion surface member, 800. Photoreceptor cell element array, 12
.. ,. Object, 13. ,,Imaging optical system, 16.17.18.
, , Displacement means agent Toru Kabayama≦4
Book Multi-Chapter Satoru - Sales 1 Figure (a) (C) '7'l'540 Form δ Mouth (a) Do='/4-R Do/Jino L Rukurau・R (C) Convex-%R rd) Do=Z-R Number of liquids for 9? For I'Sl'I''!L number
Claims (1)
光素子とこれを囲繞するように設けられた周辺受光素子
により構成される視細胞素子と、上記中心・周辺受光素
子の出力を所定の増幅比に増幅する1対の増幅器と、こ
れら増幅器の夫々の出力に基づき中心受光素子と周辺受
光素子の増幅出力差を演算出力する演算器とを1単位と
し、上記視細胞素子を密接して2次元的に配列してなる
視細胞素子アレイと、 この視細胞素子アレイの視細胞素子配列面に拡散面を近
接対向して配備される拡散面部材と、対象物の像を対象
画像として上記拡散面部材の拡散面上に結像させる結像
光学系と、 上記拡散面部材の拡散面と上記視細胞アレイの視細胞素
子配列面との間隔を変化させる間隔調整手段と、 上記対象画像と視細胞素子アレイとを視細胞素子配列面
内で視細胞素子の配列ピッチ分だけ直交2方向へ相対的
に変位させる変位手段とを有することを特徴とするエッ
ジ抽出装置。 2、請求項1に於いて、 変位手段による対象画像と視細胞素子アレイとの相対的
な変位が振動的に行われることを特徴とするエッジ抽出
装置。 3、請求項1または2に於いて、 変位手段による対象画像と視細胞素子アレイとの相対的
な変位が、結像光学系を光軸に直交する方向へ変位させ
ることにより行われることを特徴とするエッジ抽出装置
。 4、請求項1または2に於いて、 変位手段による対象画像と視細胞素子アレイとの相対的
な変位が、視細胞素子アレイを視細胞素子配列面方向へ
変位させることにより行われることを特徴とするエッジ
抽出装置。 5、請求項1または2に於いて、 変位手段による対象画像と視細胞素子アレイとの相対的
な変位が、結像光学系と視細胞素子アレイとを一体とし
て、結像光学系光軸に直交する方向へ変位させることに
より行われることを特徴とするエッジ抽出装置。[Scope of Claims] 1. A device for extracting edges of a target image, which comprises a photoreceptor element composed of a center light receiving element and peripheral light receiving elements surrounding the central light receiving element, and the center and peripheral light receiving elements. One unit consists of a pair of amplifiers that amplify the output of the element to a predetermined amplification ratio, and an arithmetic unit that calculates and outputs the amplified output difference between the center light receiving element and the peripheral light receiving elements based on the respective outputs of these amplifiers. a photoreceptor cell element array formed by closely arranging cell elements in a two-dimensional manner; a diffusion surface member disposed with a diffusion surface closely facing the photoreceptor cell array surface of the photoreceptor cell element array; an imaging optical system that forms an image on the diffusing surface of the diffusing surface member as a target image; and an interval adjustment means that changes the distance between the diffusing surface of the diffusing surface member and the photoreceptor element arrangement surface of the photoreceptor array. and a displacement means for relatively displacing the target image and the photoreceptor cell element array in two orthogonal directions by the photoreceptor element array pitch within the photoreceptor cell element array plane. 2. The edge extraction device according to claim 1, wherein the relative displacement between the target image and the photoreceptor element array by the displacement means is performed in a vibrational manner. 3. According to claim 1 or 2, the relative displacement between the target image and the photoreceptor element array by the displacement means is performed by displacing the imaging optical system in a direction perpendicular to the optical axis. edge extraction device. 4. Claim 1 or 2, characterized in that the relative displacement between the target image and the photoreceptor element array by the displacement means is performed by displacing the photoreceptor element array in the direction of the photoreceptor element array plane. edge extraction device. 5. In claim 1 or 2, the relative displacement between the target image and the photoreceptor element array by the displacement means causes the imaging optical system and the photoreceptor element array to be integrated into an optical axis of the imaging optical system. An edge extraction device characterized in that the edge extraction is performed by displacement in orthogonal directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2249290A JP2863290B2 (en) | 1990-09-19 | 1990-09-19 | Edge extraction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2249290A JP2863290B2 (en) | 1990-09-19 | 1990-09-19 | Edge extraction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04128604A true JPH04128604A (en) | 1992-04-30 |
JP2863290B2 JP2863290B2 (en) | 1999-03-03 |
Family
ID=17190769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2249290A Expired - Fee Related JP2863290B2 (en) | 1990-09-19 | 1990-09-19 | Edge extraction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2863290B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000016259A1 (en) * | 1998-09-10 | 2000-03-23 | Ecchandes Inc. | Visual device |
AU2003204600B2 (en) * | 1998-09-10 | 2006-03-02 | Ecchandes Inc. | Visual device |
-
1990
- 1990-09-19 JP JP2249290A patent/JP2863290B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000016259A1 (en) * | 1998-09-10 | 2000-03-23 | Ecchandes Inc. | Visual device |
AU2003204600B2 (en) * | 1998-09-10 | 2006-03-02 | Ecchandes Inc. | Visual device |
Also Published As
Publication number | Publication date |
---|---|
JP2863290B2 (en) | 1999-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1319188C (en) | Three dimensional imaging device | |
JP2006108868A5 (en) | ||
US11662831B2 (en) | Image display apparatus and image display method | |
JP6191000B2 (en) | Laser Doppler flow velocity measuring method and apparatus | |
JPH04128604A (en) | Edge extracting apparatus | |
FR3092395B1 (en) | Wavefront analysis devices and microscopic imaging systems comprising such analysis devices | |
JP2008070629A (en) | Light detection device, camera, focus detection device, and optical characteristic measuring device | |
US3288018A (en) | Optical correlator having means to linearly distribute center of illumination | |
JP3007659B2 (en) | Edge extraction device | |
JP2915453B2 (en) | Image input device | |
JPH04263233A (en) | Image processor | |
JP2889659B2 (en) | Optical function element | |
JP2927437B2 (en) | Human body detection device | |
JP2000137065A (en) | Laser ray detecting device | |
JPH0415769A (en) | Edge extracting device | |
JP3256764B2 (en) | Wide range position detector | |
JPH01252946A (en) | Diaphragm device | |
JPS5833107A (en) | Device for measuring size of particle | |
JPS6093974A (en) | Posture detecting apparatus | |
WO2004092781A3 (en) | Auto focus for a flow imaging system | |
EP0529458A1 (en) | An automatic focusing system | |
JP3658068B2 (en) | Imaging device | |
JPS63151232A (en) | Optical receiver | |
KR100263925B1 (en) | Image acquiring system using optical system | |
JPS63159819A (en) | Space filtering optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071211 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081211 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |