JPH04128570A - Ocean temperature difference power generator device - Google Patents

Ocean temperature difference power generator device

Info

Publication number
JPH04128570A
JPH04128570A JP2247857A JP24785790A JPH04128570A JP H04128570 A JPH04128570 A JP H04128570A JP 2247857 A JP2247857 A JP 2247857A JP 24785790 A JP24785790 A JP 24785790A JP H04128570 A JPH04128570 A JP H04128570A
Authority
JP
Japan
Prior art keywords
sea water
water
warm
ocean
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2247857A
Other languages
Japanese (ja)
Inventor
Sadayuki Jitsuhara
定幸 實原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2247857A priority Critical patent/JPH04128570A/en
Publication of JPH04128570A publication Critical patent/JPH04128570A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To effectively utilize the excessive energy stored at night when the electric power demand is little, in the daytime, by installing a storing device for the warm sea water having the higher water level than the sea water level, pump for pumping up the sea water into the storing device, and a water wheel driven by the stored warm sea water. CONSTITUTION:The heating medium such as ammonia is evaporated by the heat of the warm sea water in an evaporator 2. The warm sea water is pumped up from an ocean surface layer by a warm ocean water pump 3, and after the ammonia is temperature-raised and evaporated, it is returned into the ocean. After the gas/liquid separation by a separator 4, the ammonia vapor is supplied into a turbine 5, which is driven, and then the ammonia vapor is cooled by the cold sea water, and condensed. While, the sea water is pumped and stored in a storing device 13 by a water pump 12 driven by a motor 17 by utilizing the electric power which becomes excessive at night, etc., when the electric power demand is little. The warm sea water in a storing device 13 is introduced into a water wheel 14 in the daytime, etc., when the electric power demand is much, and the water wheel 14 is revolved to drive a cold sea water pump 8, and the cold sea water is allowed to circulate through the condenser 7.

Description

【発明の詳細な説明】 「産業上の利用分野コ この発明は、電力需要の少ない夜間に余剰電力で温海水
を揚水してニオ・ルギーとして貯え、電力需要の多い昼
間にその貯蔵したエネルギーを有効に利用する海洋温度
差発電装置に関するものである。
[Detailed description of the invention] ``Industrial Application Fields'' This invention uses surplus electricity to pump warm seawater at night when electricity demand is low, stores it as niobium, and uses the stored energy during the daytime when electricity demand is high. This invention relates to an ocean temperature difference power generation device that can be used effectively.

口従来の技術] 海洋表層の温海水と海洋深層の冷海水との温度差を利用
する発電装置が提案され、海洋表層の温海水の温度が高
く且つ冷海水の温度が低い深層海水が容易に得られる熱
帯並びに亜熱帯の島において、例えばハワイ、ナウル共
和国および日本の徳之島等に実際に発電所が建設されて
試験的に操業が行なわれた。
[Conventional technology] A power generation device has been proposed that utilizes the temperature difference between warm seawater on the surface of the ocean and cold seawater in the deep ocean, and it is easy to generate electricity in deep seawater, where the temperature of warm seawater on the surface of the ocean is high and the temperature of cold seawater is low. On the resulting tropical and subtropical islands, power plants were actually constructed and operated on a trial basis, for example, in Hawaii, the Republic of Nauru, and Tokunoshima in Japan.

第6図はこれらの海洋温度差発電装置の基本的な構成を
示した説明図である。熱媒体としては主としてアンモニ
ア又はフロン等が用いられる0図において2は蒸発器で
ある。熱媒体としてのアンモニアが蒸発器2において温
海水の熱によって蒸発する。温海水は温海水ポンプ3に
よって海洋表層から汲み上げられて、蒸発器2において
アンモニア等の熱媒体を昇温しで蒸発させガス化させた
後海洋に戻される。昇温しで蒸発させられたアンモニア
蒸気等の熱媒体はセパレーター4において気液分離され
る。蒸気状態の熱媒体はタービン5に入りタービン5を
駆動して後、凝縮器7において冷海水によって冷却され
て凝縮して液体となる。凝縮器7において熱媒体を冷却
する冷海水は深層海洋から冷海水ポ〉゛プ8によって汲
み上げられて、凝縮器7で熱交換した後海洋に戻される
FIG. 6 is an explanatory diagram showing the basic configuration of these ocean temperature difference power generation devices. Ammonia, fluorocarbon, etc. are mainly used as the heat medium. In Fig. 0, 2 is an evaporator. Ammonia as a heat medium is evaporated in the evaporator 2 by the heat of the warm seawater. Warm seawater is pumped up from the ocean surface layer by a warm seawater pump 3, heated in an evaporator 2 to evaporate and gasify a heat medium such as ammonia, and then returned to the ocean. The heat medium, such as ammonia vapor, evaporated by raising the temperature is separated into gas and liquid in the separator 4. The heat medium in a vapor state enters the turbine 5 and drives the turbine 5, and then is cooled by cold seawater in the condenser 7 and condensed to become a liquid. Cold seawater for cooling the heat medium in the condenser 7 is pumped up from the deep ocean by a cold seawater pump 8, exchanged with heat in the condenser 7, and then returned to the ocean.

冷却されて凝縮して液体となった熱媒体は熱媒体タンク
9に貯えられて熱媒体ポンプ10によって再び蒸発器2
に戻され蒸発しタービン5を駆動して発電する。タービ
ン5は発電機6に軸が直結しており、熱媒体によってタ
ービン5が駆動されると発電fi6が回転して発電する
事となる。
The cooled and condensed heat medium is stored in a heat medium tank 9 and sent to the evaporator 2 again by a heat medium pump 10.
It is evaporated and drives the turbine 5 to generate electricity. The shaft of the turbine 5 is directly connected to the generator 6, and when the turbine 5 is driven by the heat medium, the power generation fi6 rotates and generates electricity.

海洋温度差発電装置の特徴は2!海水と冷海水との僅か
な温度差を利用して動力を取り出す事にあるので、温海
水ボ2ブ3及び冷海水ポンプ8に要する動力の割合が大
きく、この動力を少なくする事又は、余剰動力を活用す
る事が海洋温度差発電装置の効率を向上する重要な事項
である。
There are 2 features of the ocean temperature difference power generation device! Since the power is extracted by using the slight temperature difference between seawater and cold seawater, a large proportion of the power required for the warm seawater pump 2 and the cold seawater pump 8 is required. Utilizing power is an important matter to improve the efficiency of ocean thermal power generation devices.

ここに上記の課題に応じる技術に係る提案が特開昭62
〜93486号公報によってなされている。即ち外形が
横動錐形をなし、横動錐形の先頭端に温水取水口を開口
し該尾端に排水口を設けるとともに外周部にカイトヘー
〉を備え海中に配設され、温海水エネルギーを利用し、
潮流により渣される事を防ぐ推進力をもつ事を特徴とす
る温度差発電装置である。第7図はこの提案の海洋温度
差発電装置の構成の概要を示した説明図である。
Here, a proposal related to technology that meets the above issues is published in JP-A-62
-93486. That is, the external shape is a transverse conical shape, a hot water intake is opened at the leading end of the transverse conical shape, a drainage port is provided at the tail end of the conical shape, and a kite is provided on the outer periphery. use,
This is a temperature difference power generation device characterized by having a propulsive force that prevents it from being washed away by tidal currents. FIG. 7 is an explanatory diagram showing an outline of the configuration of the proposed ocean temperature difference power generation device.

図において71は洋上プラントである。72は温度差発
電装置である。73は温海水取水口であり、74は排水
口である。75は冷海水取水口である。76はガイドベ
ーンである。77はffi流を示し、78は海面である
。79はスラスタ−である。
In the figure, 71 is an offshore plant. 72 is a temperature difference power generation device. 73 is a warm seawater intake port, and 74 is a drainage port. 75 is a cold seawater intake. 76 is a guide vane. 77 indicates the ffi current, and 78 indicates the sea level. 79 is a thruster.

洋上プラント71の海面78下部に設けられた飛行船の
形をした紡錘形の温度着発を装置72は、ガイドベージ
76によって潮流77に対しその先頭端の温海水取水ロ
ア3を直面させて温海水の取水を極めて少ない動力をス
ラスタ−79に加える事で可能とした。
A spindle-shaped temperature control device 72 in the shape of an airship installed below the sea surface 78 of the offshore plant 71 directs the warm seawater intake lower 3 at its leading end to face the tidal current 77 using a guide page 76 to collect warm seawater. Water intake was made possible by applying extremely little power to the thruster 79.

[発明が解決しようとする課題] 然し従来の提案によると、洋上プラントでの必要電力の
供給以外には5利用できない、又、11!l流の速度が
早い陸地がら遠く離れた海上でのみ発電が可能である。
[Problem to be solved by the invention] However, according to the conventional proposals, it cannot be used for anything other than supplying the necessary power in offshore plants, and 11! Power generation is only possible at sea, which is far away from land where the current is fast.

陸地から遠く醍れた海上から大需要地への送電は、極め
て困難である。ここに、陸地に固着した海洋温度差発電
装置の提供が希望されていた。
Transmitting electricity from the ocean, which is far from land, to areas of high demand is extremely difficult. Therefore, there was a desire to provide an ocean temperature difference power generation device that is firmly attached to land.

又、昼間と夜間で電力需要が異なる状況において、需要
の少ない夜間において余剰となるエネルギーを貯蔵して
、昼間にその貯蔵したエネルギを有効に利用することが
できる海洋温度差発電装置の提供が希望されていた。
In addition, in a situation where power demand differs between daytime and nighttime, it is desired to provide an ocean temperature difference power generation device that can store surplus energy during the nighttime when demand is low and effectively utilize the stored energy during the daytime. It had been.

[1!題を解決するための手段口 この発明に係る、海洋温度差発電装置は、海洋表層の温
海水と海洋深層の冷海水との温度差を利用する発電装置
において、海水面より高い水位を有する温海水の貯蔵装
置と海水を訊貯蔵装置に揚水するポンプと該貯蔵装置に
貯蔵された温海水によって駆動される水車とを具備した
ことを特徴とする。
[1! Means for Solving the Problem The ocean temperature difference power generation device according to the present invention is a power generation device that utilizes the temperature difference between warm seawater on the surface of the ocean and cold seawater in the deep ocean. It is characterized by comprising a seawater storage device, a pump for pumping seawater to the storage device, and a water wheel driven by the warm seawater stored in the storage device.

[作用] この発明における海洋温度差発電装置は、海水面より高
い水位を有する温海水の貯蔵装置と海水を該貯蔵装置に
揚水するポンプとを具備し電力需要が少ない夜間におい
て余剰となる電力によって海水を該貯蔵装置に揚水し、
昼間に発電する際に貯蔵された温海水によって駆動され
る水車によって冷海水ポンプを駆動するので、夜間の余
剰電力を有効に活用し且つ効率良く海洋温度差発電が行
われる。
[Function] The ocean temperature difference power generation device according to the present invention is equipped with a storage device for warm seawater having a water level higher than the sea level and a pump for pumping seawater into the storage device, and uses surplus electricity at night when electricity demand is low. pumping seawater into the storage device;
Since the cold seawater pump is driven by a water wheel driven by stored warm seawater during daytime power generation, surplus power at night is effectively utilized and ocean temperature difference power generation is performed efficiently.

[実施例コ 以下にこの発明を図によって説明する。第1図は、この
発明が実施される海洋温度差発電装置の基本的な構成を
示した説明図である、図において2.3.4.5.6.
7,8.9、及び10は第6図において説明した通りで
ある。
[Example] The present invention will be explained below with reference to the drawings. FIG. 1 is an explanatory diagram showing the basic configuration of an ocean temperature difference power generation device in which the present invention is implemented.
7, 8, 9, and 10 are as explained in FIG.

ここに一実施例としてアンモニアを使用する場合を説明
する。アンモニアからなる熱媒体は蒸発器2において温
海水の熱によって蒸発する。温海水は温海水ポンプ3に
よって海洋表層がら汲み上げられて、蒸発器2において
アンモニアを昇温して蒸発させた後海洋に戻される。昇
温しで蒸発させられたアンモニアは七ツクドーター4に
おいて気液分離される。気体のアンモニアはタービン5
に入りタービン5を駆動して後、凝縮器7において冷海
水によ−)で冷却され、凝縮して液体となる。
Here, a case where ammonia is used will be described as an example. The heat medium made of ammonia is evaporated in the evaporator 2 by the heat of the warm seawater. Warm seawater is pumped up from the ocean surface layer by a warm seawater pump 3, and ammonia is heated and evaporated in an evaporator 2 before being returned to the ocean. The ammonia evaporated by raising the temperature is separated into gas and liquid in the seven daughters 4. Gaseous ammonia is produced by turbine 5.
After entering the water and driving the turbine 5, it is cooled by cold seawater in the condenser 7 and condensed to become a liquid.

電力需要が少ない夜間笠において余剰となる電力によ−
)で海水を該貯蔵装置に貯水ポンプ12をモーター17
によって駆動して揚水し温海水を貯′i&装置F13に
貯える。貯蔵装213の最高水位は、海水面上20Mで
あり、貯蔵装置〕3の水面は一辺100Mの正方形て゛
ある。モーター17の容量は200KWて゛ある。電力
需要が多い昼間等には貯蔵装[13に貯えられた温海水
を水車14に導き、水車14を駆動して後蒸発器2に供
給する。電力需要が多い昼間等には温海水ポンプ3は停
止するか或いは負荷を下げた状態で運転する。
Using surplus electricity at nighttime when electricity demand is low -
), the seawater is transferred to the storage device by a water storage pump 12 and a motor 17.
The warm seawater is pumped up and stored in the storage device F13. The highest water level of the storage device 213 is 20M above sea level, and the water surface of the storage device 3 is a square with sides of 100M. The capacity of motor 17 is 200KW. During the daytime when the demand for electricity is high, warm seawater stored in the storage device [13] is guided to the water wheel 14, which is driven to supply the water to the post-evaporator 2. During the daytime when the demand for electricity is high, the warm seawater pump 3 is stopped or operated with a reduced load.

この温海水で水車14を駆動している場合は、冷海水ポ
ンプ8のモーター15はモーター側のクラッチ1(、を
切−って水j4j 14によって冷海水ポンプ8を駆動
する。温海水の温度は25〜33℃、冷海水の温度は4
〜7”Cであり、温海水の使用量は5000 T/Hで
あり冷海水の使用量は4000T/Hである。蒸発器2
内のアンモニアガスの熱媒体は25℃で10Kg/c謙
2であり凝縮器7内のアンモニアは10℃で6゜OK1
7cm”である、アンモニアは熱媒体ポンプ10によっ
て循環する。アンモニアの循環量は60 T/Hである
。熱媒体によってタービン5が駆動されてタービン5に
軸が直結している発tfi6によって発電する0発電機
6の発電容量は500Xlllである。
When the water turbine 14 is driven by this warm seawater, the motor 15 of the cold seawater pump 8 disengages the clutch 1 (on the motor side) and the cold seawater pump 8 is driven by the water 14. is 25-33℃, and the temperature of cold seawater is 4
~7"C, the amount of warm seawater used is 5000 T/H, and the amount of cold seawater used is 4000 T/H. Evaporator 2
The heat medium of ammonia gas in the condenser 7 is 10Kg/c at 25℃, and the ammonia in the condenser 7 is 6℃ at 10℃.
7 cm" is circulated by the heat medium pump 10. The amount of ammonia circulated is 60 T/H. The heat medium drives the turbine 5, and the generator TFI 6 whose shaft is directly connected to the turbine 5 generates electricity. The power generation capacity of the 0 generator 6 is 500Xlll.

更に第2図は、この発明の他の実施例の温海水に関する
部分を示す、ここでは余剰となる電力によって温海水を
貯蔵装W、13に貯水ボ〉プ12で貯える際に、予備温
海水ポンプ19を運転して2台の温海水ポンプによって
温海水を汲み揚げ、汲み揚げられた温海水を一部は蒸発
器2に供給し、残りは貯水ポンプ12で再加圧されて貯
蔵装置13に貯える。更に第3図は、この発明の更に他
の実施例の温海水に関する部分を示す5ここでは貯水ポ
ンプと水車とが共用される場合を示している0図におい
て18はボンブー水車共用機である。ボンブー水車共用
機〕8を取水ポンプとして使用する時はモーター側のク
ラッチ16を接続し2、反対側のクラッチを開放する。
Furthermore, FIG. 2 shows a part related to warm seawater in another embodiment of the present invention. The pump 19 is operated to pump up warm seawater by two warm seawater pumps, and a portion of the pumped warm seawater is supplied to the evaporator 2, and the rest is repressurized by the water storage pump 12 and stored in the storage device 13. Store in. Furthermore, FIG. 3 shows a portion relating to warm seawater in still another embodiment of the present invention.5 Here, a case where a water storage pump and a water wheel are used in common is shown.In FIG. 3, 18 is a bombu water wheel shared machine. When using the Bombu water turbine shared machine] 8 as a water intake pump, connect the clutch 16 on the motor side and release the clutch on the opposite side.

又水車として使用する時はその逆の接続となる8以上の
実施例は共に2夜間の余剰電力を有効に活用し、且つ効
率良く昼間に海洋温度差発電を行ない得る。従来は第5
図に示す様に発を装置の定格出力は最大の電力需要の値
に熱媒体ポンプ、温海水ポンプ及び冷海水ポンプの動力
の和即ち所内動力の和を加えた値が必要であった。それ
で夜間に電力需要が減少すると、図において斜線で示す
部分が活用できなか−っなが、この発明に係る海洋温度
差発電によれば、第4区に示す様に発電装置の定格出力
は最大の電力需要の値に熱媒体ポンプの動力の値を加え
た値が必要であるに過ぎず、発電装置の定格出力が大幅
に節約て′きる事が判る。更にこの発明に係る海洋温度
差発電によれば、第4図において斜線で示す部分が夜間
に温海水の位置エネルギーとして貯えられてIt、間に
有効に電力として活用でき「発明の効果〕 本発明は以上のように構成したので、夜間に貯えたエネ
ルギーを昼間に有効に活用でき、設備費が安価で且つ低
い発電原価の海洋温度差発電電力が得られた。
In addition, in all of the above eight embodiments, in which the connection is reversed when used as a water turbine, surplus power during two nights can be effectively utilized, and ocean temperature difference power generation can be efficiently performed during the day. Previously the fifth
As shown in the figure, the rated output of the generator was required to be the value of the maximum power demand plus the sum of the power of the heat medium pump, warm seawater pump, and cold seawater pump, that is, the sum of the power within the station. Therefore, when the demand for electricity decreases at night, the shaded area in the figure cannot be utilized. However, according to the ocean temperature difference power generation according to this invention, the rated output of the power generation device is the maximum as shown in section 4. It can be seen that the rated output of the power generation device can be significantly reduced because only the power demand of the heat medium pump is added to the power demand of . Furthermore, according to the ocean temperature difference power generation according to the present invention, the shaded area in FIG. With the above configuration, energy stored during the night can be effectively used during the day, and ocean temperature difference power generation with low equipment costs and low power generation costs can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明が実施される海洋温度差発電装置の構
成を示した説明図、第2図はこの発明の他の実施例の温
海水に関する部分を示した説明図、第3図はこの発明の
更に他の実施例の温海水に間する部分を示した説明図、
第4図はこの発明の詳細な説明する説明図、第5図は従
来の海洋温度着発を装置の定格出力等に関する説明図2
第6図は従来の海洋温度差発電装置の構成を示した説明
図、第7図は従来の提案の海洋温度差発電装置の構成を
示した説明図である。 2・・蒸発器、3−温海水ポンプ、4 ・セパレター、
5・・タービン、6・・発電機、7・凝縮器、8・−冷
海水ポンプ、9・・・熱媒体タンク、10・熱媒体ポン
プ、12−・貯水ポンプ、13・貯蔵装置、14・水車
、15 モーター、16 ・クラッチ、17・モーター
、18・・ポンプ−水車共用機、19・予備温海水ポン
プ6
FIG. 1 is an explanatory diagram showing the configuration of an ocean temperature difference power generation device in which this invention is implemented, FIG. 2 is an explanatory diagram showing a part related to warm seawater of another embodiment of this invention, and FIG. An explanatory diagram showing a part between warm seawater of still another embodiment of the invention,
Fig. 4 is an explanatory diagram explaining the details of this invention, and Fig. 5 is an explanatory diagram 2 regarding the rated output, etc. of the conventional ocean temperature landing device.
FIG. 6 is an explanatory diagram showing the configuration of a conventional ocean temperature difference power generation device, and FIG. 7 is an explanatory diagram showing the configuration of a conventional proposed ocean temperature difference power generation device. 2. Evaporator, 3- Warm seawater pump, 4. Separator,
5. Turbine, 6. Generator, 7. Condenser, 8. Cold seawater pump, 9. Heat medium tank, 10. Heat medium pump, 12. Water storage pump, 13. Storage device, 14. Water turbine, 15 Motor, 16 ・Clutch, 17・Motor, 18...Pump-water turbine shared machine, 19・Pre-warmed seawater pump 6

Claims (1)

【特許請求の範囲】[Claims] 海洋表層の温海水と海洋深層の冷海水との温度差を利用
する発電装置において、海水面より高い水位を有する温
海水の貯蔵装置と海水を該貯蔵装置に揚水するポンプと
該貯蔵装置に貯蔵された温海水によって駆動される水車
とを具備したことを特徴とする海洋温度差発電装置。
A power generation device that utilizes the temperature difference between warm seawater on the surface of the ocean and cold seawater in the deep ocean, which includes a storage device for warm seawater with a water level higher than the seawater level, a pump for pumping seawater to the storage device, and storage in the storage device. An ocean temperature difference power generation device comprising: a water wheel driven by heated seawater.
JP2247857A 1990-09-18 1990-09-18 Ocean temperature difference power generator device Pending JPH04128570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2247857A JPH04128570A (en) 1990-09-18 1990-09-18 Ocean temperature difference power generator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2247857A JPH04128570A (en) 1990-09-18 1990-09-18 Ocean temperature difference power generator device

Publications (1)

Publication Number Publication Date
JPH04128570A true JPH04128570A (en) 1992-04-30

Family

ID=17169680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2247857A Pending JPH04128570A (en) 1990-09-18 1990-09-18 Ocean temperature difference power generator device

Country Status (1)

Country Link
JP (1) JPH04128570A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512298A (en) * 2013-03-13 2016-04-25 ロッキード マーティン コーポレーション System and method for cooling an OTEC working fluid pump motor
CN110905865A (en) * 2019-11-01 2020-03-24 浙江大学 Section motion platform based on ocean temperature difference energy driving and power generation control method thereof
CN110905864A (en) * 2019-11-01 2020-03-24 浙江大学 Ocean profile motion platform based on ocean temperature difference energy drive and depth control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512298A (en) * 2013-03-13 2016-04-25 ロッキード マーティン コーポレーション System and method for cooling an OTEC working fluid pump motor
CN110905865A (en) * 2019-11-01 2020-03-24 浙江大学 Section motion platform based on ocean temperature difference energy driving and power generation control method thereof
CN110905864A (en) * 2019-11-01 2020-03-24 浙江大学 Ocean profile motion platform based on ocean temperature difference energy drive and depth control

Similar Documents

Publication Publication Date Title
US4873828A (en) Energy storage for off peak electricity
CN101737282B (en) High-efficiency hybrid ocean temperature difference power generating system
CN113454313B (en) Energy storage device and method
CN102563987A (en) Vapor-compression refrigerating plant driven by organic Rankine cycle and method
CN103047085A (en) Comprehensive deep sea energy utilizing system
JP2895937B2 (en) Air storage power plant
JP5747309B2 (en) CAES system and power plant having the same
US4030301A (en) Pump starting system for sea thermal power plant
JPH02271080A (en) Ocean/waste heat temperature difference generating system
CN101392729B (en) Wind power generator cooled by solar injection
JPH04128570A (en) Ocean temperature difference power generator device
US20020129811A1 (en) Solar-based power generating system
JP5312644B1 (en) Air conditioning power generation system
CN202501677U (en) Steam compression refrigeration device driven by organic Rankine cycle
CN105986954A (en) Power and refrigeration cogeneration system
CN204646526U (en) A kind of power and refrigeration cogeneration system
JP3520927B2 (en) Power generator
JPH1182284A (en) Wind power utilizing energy system
CA1171670A (en) Method of storing energy and system for carrying out this method
CN105863877A (en) Novel river regulation ship
JPS59107144A (en) Solar energy utilizing plant
CN206290298U (en) The low temperature organic Rankine cycle power generation system of indirect utilization wind energy
JP2005171861A (en) Rankine cycle power generation system
CN205477784U (en) Cogeneration of heat and power device
CN218033315U (en) Fused salt heat storage heating device