JPH04128331A - Silver-tin oxide composite material and its production - Google Patents

Silver-tin oxide composite material and its production

Info

Publication number
JPH04128331A
JPH04128331A JP2414428A JP41442890A JPH04128331A JP H04128331 A JPH04128331 A JP H04128331A JP 2414428 A JP2414428 A JP 2414428A JP 41442890 A JP41442890 A JP 41442890A JP H04128331 A JPH04128331 A JP H04128331A
Authority
JP
Japan
Prior art keywords
silver
oxide
tin
weight
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2414428A
Other languages
Japanese (ja)
Other versions
JP2557143B2 (en
Inventor
Akira Shibata
昭 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKOU KEIEI KIKAKU KK
Original Assignee
SUMIKOU KEIEI KIKAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKOU KEIEI KIKAKU KK filed Critical SUMIKOU KEIEI KIKAKU KK
Priority to JP2414428A priority Critical patent/JP2557143B2/en
Publication of JPH04128331A publication Critical patent/JPH04128331A/en
Application granted granted Critical
Publication of JP2557143B2 publication Critical patent/JP2557143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To produce the silver-tin composite material in which the fine particles of the desired tin oxide are bonded in a good wetting state with a silver base substrate and are uniformly dispersed in the silver base substrate by putting a silver-tin system into the state where a liquid phase and a solid phase coexist at the time of executing the internal oxidation of the system, thereby increasing the diffusion rate of oxygen. CONSTITUTION:The silver-tin oxide composite material which consists of the silver base substrate, (a) 1 to 20wt.%, in terms of metal, tin oxide, and further, (b) 0.01 to 8wt.%, in terms of metal, the oxide of at least one kind of the elements selected from a group consisting of Mg, Zr, Ca, Al, Ce, Cr, Mn, and Ti, and/or (c) 0.01 to 15wt.%, in terms of metal, the oxide of at least one kind of the element selected from the group consisting of Cd, Sb, In, Bi, Zn, and iron-group metals, depending upon cases, and in which the tin oxides in (a) and the oxide of the elements of the above-mentioned (b) and/or the above-mentioned (c), depending upon cases, are dispersed uniformly in the above-mentioned silver base substrate in the fine particle state having the dense crystal structures and in the bond state having the good wettability with the silver base substrate from the surface to the deep part of the silver base substrate is produced with excellent productivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】[Industrial application field]

本発明は、銀−錫酸化物複合材料及びその製造方法に関
し、特に電気接点材料、溶接用電極材料等として好適な
銀−錫酸化物複合材料及びその製造方法に関する。 [0002]
The present invention relates to a silver-tin oxide composite material and a method for producing the same, and more particularly to a silver-tin oxide composite material suitable for use as an electrical contact material, a welding electrode material, etc., and a method for producing the same. [0002]

【従来の技術】[Conventional technology]

銀に酸化錫を添加した銀−錫酸化物複合材料は、強度が
大きく向上するため、大気中で使用される交流、直流用
リレー 開閉器、電流遮断器等の電気接点材料として使
用され、特に中負荷用開閉電気接点材料として適したも
のとして使用されている。 従来、銀−錫酸化物複合材料は、銀−錫合金を内部酸化
させる方法、銀粉末と錫酸化物粉末を粉末冶金法で焼結
させる方法によって製造されてきた。 [0003]
Silver-tin oxide composite materials, which are made by adding tin oxide to silver, have greatly improved strength and are used as electrical contact materials for AC and DC relays, switches, current circuit breakers, etc. used in the atmosphere. It is used as a suitable medium-load switching electrical contact material. Conventionally, silver-tin oxide composite materials have been manufactured by internally oxidizing a silver-tin alloy and by sintering silver powder and tin oxide powder using a powder metallurgy method. [0003]

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記の内部酸化法は、銀−錫の固溶合金をその融点以下
で加熱上、・酸素分圧を’lN開+4−IZ6.5t5
1 s&−ft高めることによって酸素を合金中に拡散
させ、酸素親和力が相対的に高X/)錫を酸化錫として
銀母基質中に微粒子として析出させるものである。しか
し、この内部酸化法によって製造することができる複合
材料は銀含有量的4重量%程度までが限界である上に、
酸素の固溶合金中への拡散速度が極めて小さU)ため製
造に長時間を要するという不利がある。酸化錫の含有量
を約4重量%より大きくしたり、酸化速度を高めるため
に、In、 Bi等の酸化を促進する元素を添加して内
部酸化に供することが行われている。しかし、この場合
でも例えば、約2mm厚の合金の酸化に約1カ月の長時
間が必要であった。 [0004] また、内部酸化によると、酸素の固溶合金中への拡散量
が表面から深さの二乗に反比例して減少するので、表面
に近いところほど酸化錫粒子が粗大となる反面深部には
微小な酸化錫粒子の少ない合金相が生じることは避けが
たり)。したがって、得られる銀−錫複合材料は、酸化
錫粒子の分布が不均一であるばかりでなく、その粒径も
不均一で深くなるほど小さくなる。このように酸化錫粒
子の粒径が不揃いでしかも偏析しているために、得られ
る複合材料の強度の向上には限界があり、−層の改良が
求められていた。 [0005] 粉末冶金法による銀−錫酸化物複合材料の製造は、耐熱
性の高いSnO3粉末と銀粉末を銀の同相温度で焼結す
るものであるため、銀相と錫酸化物粒子との間に強い結
合は得られないし、錫酸化物が有する結晶構造の欠陥も
改善されない。したがって、得られる焼結体は機械的強
度、特に高温での強度が低く、これは熱間押出、鍛造等
の後処理を施しても改良することができない。かかる粉
末焼結法による銀−錫酸化物複合材料の改良方法として
、低級酸化物を形成するW、 Mo等の添加が試みられ
ているが、逆に接点材料として用いたときに接触抵抗を
増し、又溶着し易くなるため殆ど改良は期待できない。 また、MnO,Cab、 ZrO等の耐熱性酸化物の添
加による改良が考えられるが、これらは焼結性を損なう
結果焼結体の機械的な強度はかえって低下する。 [0006] そこで、本発明の課題は、錫酸化物微粒子が銀行基質と
良好な1需れ状態で結合?さ開平4−128331 (
5) し、銀行基質中に均一に分散してなる銀−錫酸化物複合
材料及びそのような複合材料を比較的短時間で製造でき
る、生産性に侵れた製造方法を提供することになる。 [0007]
The above internal oxidation method involves heating a solid solution alloy of silver-tin below its melting point, and then increasing the oxygen partial pressure to 'lN+4-IZ6.5t5
1 s&-ft, oxygen is diffused into the alloy, and tin (X/) having a relatively high oxygen affinity is precipitated as tin oxide in the form of fine particles in the silver matrix. However, the composite material that can be produced by this internal oxidation method has a silver content of up to about 4% by weight.
Since the diffusion rate of oxygen into the solid solution alloy is extremely low, it has the disadvantage that it takes a long time to manufacture. In order to increase the content of tin oxide to more than about 4% by weight or to increase the oxidation rate, elements that promote oxidation such as In and Bi are added and subjected to internal oxidation. However, even in this case, for example, a long time of about one month was required to oxidize an alloy with a thickness of about 2 mm. [0004] Furthermore, according to internal oxidation, the amount of oxygen diffused into the solid solution alloy decreases in inverse proportion to the square of the depth from the surface, so tin oxide particles become coarser closer to the surface, but at deeper depths. (It is inevitable that an alloy phase with few tiny tin oxide particles will be formed). Therefore, the obtained silver-tin composite material not only has a non-uniform distribution of tin oxide particles, but also a non-uniform particle size, which becomes smaller as the depth increases. Since the particle sizes of the tin oxide particles are irregular and segregated as described above, there is a limit to the improvement in the strength of the resulting composite material, and there has been a demand for improvement of the negative layer. [0005] The production of silver-tin oxide composite materials by powder metallurgy involves sintering highly heat-resistant SnO3 powder and silver powder at the same phase temperature as silver, so the interaction between the silver phase and tin oxide particles is difficult. A strong bond cannot be obtained between them, and defects in the crystal structure of tin oxide cannot be improved. Therefore, the resulting sintered body has low mechanical strength, especially strength at high temperatures, and this cannot be improved even by post-processing such as hot extrusion or forging. As a method for improving silver-tin oxide composite materials produced by the powder sintering method, attempts have been made to add W, Mo, etc., which form lower oxides, but conversely, when used as contact materials, they increase contact resistance. Also, since it becomes easier to weld, little improvement can be expected. Further, although improvements may be made by adding heat-resistant oxides such as MnO, Cab, ZrO, etc., these impair sinterability and, as a result, the mechanical strength of the sintered body is reduced. [0006] Therefore, an object of the present invention is to combine tin oxide fine particles with a bank matrix in a good monolithic state. Sakaihei 4-128331 (
5) To provide a silver-tin oxide composite material uniformly dispersed in a bank matrix and a highly productive manufacturing method capable of manufacturing such a composite material in a relatively short time. . [0007]

【課題を解決するための手段】[Means to solve the problem]

本発明は、銀−錫系の内部酸化を行う際に、系を液相と
固相の共存する状態におくことによって、酸素の拡散速
度を高めることができ、しかも目的とする錫酸化物微粒
子が韻母基質と良好な濡れ状態で結合し、銀行基質中に
均一に分散してなる銀−錫酸化物複合材料を得ることが
できることを見出した。 [0008] 、艮−夕酸ヒ 合1 すなわち、本発明は、韻母基質と、(a)金属換算で1
〜20重量%の錫酸化物と場合によっては存在する(b
)金属換算で0.01〜8重量%のMg、 Zr、 C
a、 Al、 Ce、Cr、 Mn及びTiからなる群
から選ばれる少なくとも1種の元素の酸化物及び/又は
(c)金属換算で0.01〜15重量%のCd、 Sb
、In、 Bi、 Zn及び鉄族金属からなる群、から
選ばれる少なくとも1種の元素の酸化物とからなり、(
a)の錫酸化物、及び場合によっては存在する前記(b
)及び/又は前記(c)の元素の酸化物が硬質で緻密な
結晶構造を有する微粒子状態で韻母基質の表面から深部
に到るまで該韻母基質と良好な濡れ性を有する結合状態
で該銀行基質中に均一に分散されている銀−錫酸化物複
合材料を提供する。 [0009] 本発明の複合材料が錫酸化物のほかに前記(b)の元素
の酸化物及び/又は前記(c)の元素の酸化物を含有す
る場合には、通常、これらの酸化物は共役酸化物(即ち
、複合酸化物)を形成して存在している。 [00103 本発明の複合材料は高温における強度が優れ、例えば大
気中で使用される交流直流用リレー 開閉器、電流遮断
器等の電気接点材料として有用である。特に上記(b)
の元素の酸化物は複合材料の耐熱性を高めるので、(b
)の金属酸化物を含むものは例えば電気溶接用電極材料
として適する。また、(e)の金属は後述する・ように
製造方法において錫などの酸化を促進させる作用を有す
るほか、この酸化物は錫などと兵役酸化物を形成して低
電流領域における接触抵抗の安定化に有効である。 [0011] 本発明の複合材料は、錫及び、場合によっては含む場合
には、(a)の元素及び(b)の元素の酸化物を合計で
約50重量%以下が実用的で、好ましくは約30重量%
以下である。約50重量%を超えると複合材料の導電性
が損なわれる。 [0012] 以下に説明するように、本発明の複合材料としては、種
々の態様があげられる。いずれの態様の場合も、(a)
錫酸化物、゛及び態様によって存在する前記(b)の元
素の酸化物及び/又は(c)の元素の酸化物は上述した
状態で均一に銀母基質中に分散している。 [0013] 本発明の複合材料の第一の態様では、該複合材料は、銀
母基質と、金属錫換算で1〜20重量%量の錫酸化物と
からなる。 [0014] 本発明の複合材料の第二の態様では、該複合材料は、銀
母基質と、(a)金属錫換算で1〜20重量%量の錫酸
化物と、(b)金属換算で0.01〜8重量%の、Mg
、 Zr、Ca、 Al、 Ce、 Cr、 Mn及び
Tiからなる群から選ばれる少なくとも1種の元素の酸
化物とからなり、これらの(a)及び(b)の酸化物が
共役酸化物を形成している。 [0015] 本発明の複合材料の第三の態様では、銀母基質と、(a
)金属錫換算で1〜20重量%量の錫酸化物と、(c)
金属換算で0.01〜15重量%のCd、 Sb、In
、 Bi、 Zn及び鉄族金属からなる群から選ばれる
少なくとも1種の元素の酸化物とからなり、これらの(
a)及び(c)の酸化物が共役酸化物を形成している。 [0016] 本発明の第四の態様では、銀母基質と、(a)金属錫換
算で1〜20重量%量の錫酸化物と、(b)金属換算で
0.01〜8重量%の、Mg、 Zr、 Ca、 Al
、 Ce、 Cr、 Mn及びTiからなる群から選ば
れる少なくとも1種の元素の酸化物と、(c)金属換算
でO001〜15重量%のCd、 Sb、In、 Bi
、 Zn及び鉄族金属からなる群から選ばれる少なくと
も1種の元素の酸化物とからなり、これらの(a)  
(b)及び(c)の酸化物が共役酸化物を形成している
。 [0017] 上記の第二〜第四の態様においては、通常、形成された
共役酸化物は、通常硬質で緻密な結晶構造を有し、粒径
0.1μm以下の微粒子状態で韻母基質の表面から深部
に到るまで該韻母基質と良好な濡れ性を有する結合状態
、即ち、空隙のない密着した結合状態で該銀行基質中に
均一に分散されている。 [0018] 酸   。  のゎ。 本発明の方法においては、銀及び錫を含む出発材料が液
相と固相が共存する状態に置かれる。この状態において
は系の一部が液相状態で存在しているが、この液相部が
酸素の良好な運搬経路の役割を演じるため、従来の内部
酸化法に比較して速やかな酸素の拡散が行われ、表面か
ら深部に到るまで比較的短時間で均一な酸化が進行する
。 [0019] (A)銀と、(a)金属換算で1〜20重量%の金属状
及び/又は酸化物状の錫と、並びに場合によってはさら
に(b)金属換算で0.01〜8重量%の金属状及び/
又は酸化物状のMg、 Zr、 Ca、 Al、 Ce
、 Cr、 Mn及びTiからなる群から選ばれる少な
くとも1種の元素及び/又は(c)金属換算で0.01
〜15重量%の金属状及び/又は酸化物状のCd、 S
b、In、 Bi、 Zn及び鉄族金属からなる群から
選ばれる少なくとも1種の元素とを含有する混−合物を
、加熱し、かつ酸素分圧を高めることにより液相と固相
が共存する状態に置き、これにより金属状のものが存在
する場合には錫、並びに場合によって存在する前記(b
)の元素及び/又は前記(c)の元素の金属状のものの
全量を酸化物として析出させる工程、及び(B)次にこ
のように処理された混合物を冷却しかつ酸素分圧を低下
させる工程を有する。 [0020] この方法において、(A)工程で出発材料として使用さ
れる混合物は、例えば銀、錫、並びに場合のよっては必
要に応じさらに添加される前記(b)の元素及び/又は
前記(c)の元素からなる合金の状態でもよいし、粉末
冶金法により作製された焼結体の状態でもよい。前記(
b)の元素は酸素との親和性が高く、析出する酸化物粒
子の微細化に有効であり、その結果得られる複合材料の
耐火性を向上させる働きがある。錫が比較的少なく、(
b)の元素の含有量が多い混合物は一般に酸化が困難で
あるが、本発明の方法によれば容易に酸化が進行し、耐
火性が高く、溶接用電極材料として好適な複合材料が得
られる。前記(c)の元素は酸化促進に有効である。複
合材料に含有せしめ得る酸化物の量にはほとんど制限は
ないが、前記のように通常50重量%以下である。 [0021] 出発混合物として使用する焼結体としては、例えば銀粉
末と、銀、錫、及び必要に応じてさらに前記(b)の元
素及び/又は前記(c)の元素からなる合金粉末とから
製造された焼結体が挙げられる。 [0022] また、出発混合物としての上記の焼結体としては、銀粉
末と、(a)錫、及び前[0023] 上記の方法を実施する際には、合金又は焼結体である混
合物の表面を銀又は銀を主体とする銀合金(他の成分金
属が1重量%以下の低濃度)で被覆するのが好ましい。 というのは、錫を5〜20重量96含有する銀混合物に
高酸素圧を適用すると表面にSnO3が集積し、酸素の
混合物内部への透過、侵入を妨げる恐れがある。これを
防止するためには酸素分圧を目標値まで徐々に高めてい
くことが必要で酸化処理に長時間を必要とすることにな
る。しかし、上記のような被覆を予め施しておくことに
より表面層でのSnO□の集積を防止することができる
ので、最初から必要な酸素圧で処理を開始することがで
き、酸化処理を短時間で終えることができる利点がある
。 [0024] 混合物を使用することにより、前記第一態様の複合材料
が得られる。 [0025] また、この方法において、出発混合物として、(a)錫
1〜20重量%、前記(b)の元素0.01〜8重量%
及び残部銀からなる銀混合物を使用することにより前記
第二の態様の複合材料が得られる。系が液相と固相が共
存する状態に置かれたとき、酸化の進行に伴い(a)及
び(b)の金属の全量が酸化物として析出する。 [0026] さらに、この方法において、出発混合物として、(a)
錫1〜15重量%、前記(c)の元素0.01〜15重
量%の酸化物及び残部銀からなる銀混合物を使用するこ
とにより前記第三の態様の複合材料が得られる。系が液
相と固相が共存する状態に置かれたとき、酸化の進行に
伴い(a)及び(c)の金属の全量が酸化物として析出
する。 [0027] さらにまた、この方法において、出発混合物として、 
(a)錫1〜20重量%、前記(b)の元素0.01〜
8重量%、前記(c)の元素0.01〜15重量%及び
残部銀からな・る銀混合物を使用することにより前記第
四の態様の複合材料が得られる。系が液相と固相が共存
する状態に置かれたとき、酸化の進行に伴い(a)  
(b)及び(c)の金属の全量が酸化物として析出する
。 [0028] 本発明の製造方法においては、(A)工程で使用される
出発混合物に使用される錫、前記(b)の元素及び前記
(c)の元素の各々は、その一部又は全部が粒径0.1
μm以下の酸化物として存在してもよい。 したがって、本発明の方法の別の態様として、(A)工
程で使用の前記混合物が銀粉末と、(a)粒径0.1μ
m以下の錫酸化物粉末、必要ならばさらに前記(b)の
元素の粒径0.1μm以下の酸化物粉末及び/又は前記
(c)の元素の粒径0.1μm以下の酸化物粉末とから
製造された焼結体である方法があげられる。 [0029] この態様の場合には、韻母基質中に分散される(a)の
酸化錫、及び場合により存在する(b)の元素及び/又
は(c)の元素の酸化物は予め粒径0.1μm以下の酸
化物粉末の状態で使用される。系が一部液相となる状態
に置かれると、出発材料である焼結体中に存在する銀粒
子や酸化物粒子の間や周囲に存在する微細な空隙が液相
で満たされるので、緻密な組織になり、得られる複合材
料の強度が向上する。 [0030] この態様において、前記の焼結体が、銀粉末と、金属換
算で1〜20重量%の錫酸化物粉末とから製造された焼
結体である場合には、前記第一の態様の複合材料が得ら
れる。 [0031] また、この態様において、前記の焼結体として、銀粉末
と、(a)金属換算で1〜20重量%の錫酸化物粉末と
、金属換算で0.01〜8重量%のMg等の(b)の元
素の酸化物粉末とから製造された焼結体を使用すると、
前記第二の態様の複合材料が得られる。 [0032] さらに、この態様において、前記の焼結体として、銀粉
末と、(a)金属換算で1〜20重量%の錫酸化物粉末
と、金属換算で0.01〜15重量%のCd等の(c)
の元素の酸化物とから製造された焼結体を使用すると、
前記第三の態様の複合材料が得られる。 [0033] さらにまた、前記の焼結体として、銀粉末と、(a)金
属換算で1〜20重量%の錫酸化物粉末と、金属換算で
0.01〜8重量%のKg等の(b)の元素の酸化物粉
末と金属換算で0.01〜15重量%のCd等の(c)
の元素の酸化物とから製造された焼結体を使用すると、
前記第四の態様の複合材料が得られる。 [0034]
The present invention makes it possible to increase the oxygen diffusion rate by placing the system in a state where a liquid phase and a solid phase coexist when carrying out internal oxidation of a silver-tin system, and furthermore, the target tin oxide fine particles can be produced. It has been found that it is possible to obtain a silver-tin oxide composite material in which the silver-tin oxide is bonded to the matrix substrate in a good wet state and uniformly dispersed in the bank matrix. [0008] In other words, the present invention provides a final substrate and (a) 1 in terms of metal.
~20% by weight of tin oxide and optionally present (b
) 0.01 to 8% by weight of Mg, Zr, C in terms of metal
a, an oxide of at least one element selected from the group consisting of Al, Ce, Cr, Mn, and Ti; and/or (c) 0.01 to 15% by weight of Cd, Sb in terms of metal.
, In, Bi, Zn, and an oxide of at least one element selected from the group consisting of iron group metals,
a) tin oxide and optionally present said (b)
) and/or the oxide of the element (c) is in a fine particle state having a hard and dense crystal structure, and is bonded to the base matrix from the surface of the base matrix to the deep part thereof, and has good wettability with the base matrix. A silver-tin oxide composite material is provided that is uniformly dispersed in a matrix. [0009] When the composite material of the present invention contains an oxide of the element (b) and/or an oxide of the element (c) in addition to the tin oxide, these oxides are usually It exists in the form of a conjugated oxide (that is, a composite oxide). [00103] The composite material of the present invention has excellent strength at high temperatures and is useful, for example, as an electrical contact material for AC/DC relay switches, current circuit breakers, etc. used in the atmosphere. Especially (b) above
Since the oxide of the element increases the heat resistance of the composite material, (b
) is suitable as an electrode material for electric welding, for example. In addition, the metal (e) has the effect of promoting the oxidation of tin etc. in the manufacturing method as described below, and this oxide forms a military oxide with tin etc. to stabilize the contact resistance in the low current region. It is effective for [0011] The composite material of the present invention preferably contains tin and, if it contains, oxides of the elements (a) and (b) in a total amount of about 50% by weight or less, preferably Approximately 30% by weight
It is as follows. If it exceeds about 50% by weight, the electrical conductivity of the composite material will be impaired. [0012] As explained below, the composite material of the present invention includes various embodiments. In either embodiment, (a)
The tin oxide, the oxide of the element (b) and/or the oxide of the element (c) present depending on the embodiment are uniformly dispersed in the silver matrix in the above-mentioned state. [0013] In a first embodiment of the composite material of the present invention, the composite material comprises a silver mother matrix and tin oxide in an amount of 1 to 20% by weight, calculated as tin metal. [0014] In a second embodiment of the composite material of the present invention, the composite material comprises a silver matrix, (a) tin oxide in an amount of 1 to 20% by weight, calculated as metal tin, and (b) tin oxide, calculated as metal tin. 0.01-8% by weight of Mg
, Zr, Ca, Al, Ce, Cr, Mn, and an oxide of at least one element selected from the group consisting of Ti, and these oxides (a) and (b) form a conjugated oxide. are doing. [0015] In a third embodiment of the composite material of the present invention, a silver mother matrix and (a
) tin oxide in an amount of 1 to 20% by weight calculated as metallic tin, and (c)
0.01 to 15% by weight of Cd, Sb, In in terms of metal
, Bi, Zn, and an oxide of at least one element selected from the group consisting of iron group metals, and these (
The oxides a) and (c) form a conjugated oxide. [0016] In a fourth aspect of the present invention, a silver mother substrate, (a) tin oxide in an amount of 1 to 20% by weight calculated as metal tin, and (b) tin oxide in an amount of 0.01 to 8% by weight calculated as metal tin. , Mg, Zr, Ca, Al
, Ce, Cr, Mn, and Ti, and (c) O001 to 15% by weight of Cd, Sb, In, and Bi in terms of metal.
, an oxide of at least one element selected from the group consisting of Zn and iron group metals, and these (a)
The oxides (b) and (c) form a conjugated oxide. [0017] In the second to fourth embodiments above, the formed conjugated oxide usually has a hard and dense crystal structure and is in the form of fine particles with a particle size of 0.1 μm or less on the surface of the base substrate. It is uniformly dispersed in the bank matrix in a bonded state with good wettability, that is, in a tightly bonded state with no voids, from the beginning to the deepest part of the base matrix. [0018] Acid. Nowa. In the method of the invention, starting materials containing silver and tin are placed in a coexistence of liquid and solid phases. In this state, a part of the system exists in a liquid phase, but this liquid phase plays the role of a good transport route for oxygen, so oxygen can diffuse more quickly than in conventional internal oxidation methods. oxidation progresses uniformly from the surface to the deep part in a relatively short period of time. [0019] (A) silver; and (a) 1 to 20% by weight of metallic and/or oxide tin, and optionally further (b) 0.01 to 8% by weight of metallic equivalent. % metallic and/or
Or oxide Mg, Zr, Ca, Al, Ce
, Cr, Mn, and at least one element selected from the group consisting of Ti and/or (c) 0.01 in terms of metal
~15% by weight of metallic and/or oxidic Cd, S
By heating a mixture containing at least one element selected from the group consisting of B, In, Bi, Zn, and iron group metals and increasing the oxygen partial pressure, a liquid phase and a solid phase coexist. This removes tin, if metallic, and optionally the (b)
) and/or the entire amount of the metallic form of the element (c) to be precipitated as oxides, and (B) then cooling the mixture thus treated and lowering the oxygen partial pressure. has. [0020] In this method, the mixture used as a starting material in step (A) contains, for example, silver, tin, and in some cases, the element (b) and/or the element (c) which is further added as necessary. ) may be in the state of an alloy consisting of the elements, or may be in the state of a sintered body produced by a powder metallurgy method. Said (
Element b) has a high affinity for oxygen and is effective in making precipitated oxide particles finer, thereby improving the fire resistance of the resulting composite material. There is relatively little tin, (
Mixtures with a high content of element b) are generally difficult to oxidize, but according to the method of the present invention, oxidation progresses easily, and a composite material with high fire resistance and suitable as a welding electrode material can be obtained. . The above element (c) is effective in promoting oxidation. There is almost no limit to the amount of oxide that can be included in the composite material, but as mentioned above, it is usually 50% by weight or less. [0021] The sintered body used as the starting mixture may be made of, for example, silver powder and an alloy powder consisting of silver, tin, and, if necessary, the element (b) and/or the element (c). Examples include manufactured sintered bodies. [0022] In addition, the above-mentioned sintered body as a starting mixture includes silver powder, (a) tin, and [0023] When carrying out the above method, a mixture of an alloy or a sintered body may be used. It is preferable to coat the surface with silver or a silver alloy mainly composed of silver (low concentration of other component metals of 1% by weight or less). This is because when high oxygen pressure is applied to a silver mixture containing 5 to 20% tin by weight, SnO3 accumulates on the surface, which may prevent oxygen from permeating or penetrating into the mixture. In order to prevent this, it is necessary to gradually increase the oxygen partial pressure to the target value, which requires a long time for the oxidation treatment. However, by applying the above-mentioned coating in advance, it is possible to prevent the accumulation of SnO□ on the surface layer, so the treatment can be started at the required oxygen pressure from the beginning, and the oxidation treatment can be completed in a short time. It has the advantage of being able to finish with [0024] By using the mixture, the composite material of the first aspect is obtained. [0025] Further, in this method, as a starting mixture, (a) 1 to 20% by weight of tin, and 0.01 to 8% by weight of the element (b) above.
The composite material of the second aspect can be obtained by using a silver mixture consisting of silver and silver. When the system is placed in a state where a liquid phase and a solid phase coexist, all of the metals (a) and (b) are precipitated as oxides as oxidation progresses. [0026] Further, in this method, as a starting mixture (a)
The composite material of the third embodiment is obtained by using a silver mixture consisting of 1 to 15% by weight of tin, 0.01 to 15% by weight of the element (c) above, and the balance silver. When the system is placed in a state where a liquid phase and a solid phase coexist, all of the metals (a) and (c) are precipitated as oxides as oxidation progresses. [0027] Furthermore, in this method, as the starting mixture,
(a) 1-20% by weight of tin, 0.01-20% of the above element (b)
The composite material of the fourth aspect is obtained by using a silver mixture consisting of 8% by weight, 0.01-15% by weight of element (c) above and the balance silver. When the system is placed in a state where liquid and solid phases coexist, as oxidation progresses (a)
All of the metals (b) and (c) are precipitated as oxides. [0028] In the production method of the present invention, each of tin, the element (b), and the element (c) used in the starting mixture used in step (A) is partially or completely Particle size 0.1
It may exist as an oxide with a size of μm or less. Therefore, in another embodiment of the method of the invention, the mixture used in step (A) comprises silver powder and (a) a particle size of 0.1 μm.
m or less, and if necessary, further oxide powder of the element (b) with a particle size of 0.1 μm or less and/or oxide powder of the element (c) with a particle size of 0.1 μm or less. One example is a method in which a sintered body manufactured from [0029] In the case of this embodiment, the tin oxide (a) dispersed in the final matrix and the optionally present oxide of the element (b) and/or the element (c) have a particle size of 0 in advance. It is used in the form of oxide powder of .1 μm or less. When the system is placed in a state where it partially becomes a liquid phase, the fine voids between and around the silver particles and oxide particles present in the sintered body, which is the starting material, are filled with the liquid phase, resulting in a dense structure. structure, and the strength of the resulting composite material is improved. [0030] In this aspect, when the sintered body is a sintered body manufactured from silver powder and 1 to 20% by weight tin oxide powder in terms of metal, the sintered body according to the first aspect A composite material is obtained. [0031] In addition, in this embodiment, the sintered body contains silver powder, (a) tin oxide powder of 1 to 20% by weight in terms of metal, and Mg of 0.01 to 8% by weight in terms of metal. When using a sintered body manufactured from an oxide powder of element (b) such as
A composite material according to the second aspect is obtained. [0032] Furthermore, in this embodiment, the sintered body contains silver powder, (a) 1 to 20% by weight of tin oxide powder in terms of metal, and 0.01 to 15% by weight of Cd in terms of metal. etc. (c)
When using a sintered body made from oxides of elements,
A composite material according to the third aspect is obtained. [0033] Furthermore, the sintered body may include silver powder, (a) tin oxide powder of 1 to 20% by weight in terms of metal, and 0.01 to 8% by weight in terms of metal (Kg, etc.). oxide powder of element b) and 0.01 to 15% by weight of Cd etc. in terms of metal (c)
When using a sintered body made from oxides of elements,
A composite material according to the fourth aspect is obtained. [0034]

【作用】[Effect]

図1に、銀−酸素系の温度対圧力状態図を示す。本発明
の方法において、出発混合物が錫、(b)及び/又は(
c)の元素を金属状態で含む場合は、ある程度具なった
状態図になる。しかし、図1の状態図は、本発明の方法
を理解するのに役立つ。系が、液相と同相が共存する状
態(図1においてα十りと示された領域)に置かれると
、銀相が部分的に液相化しているので、外側の酸素圧に
よって酸素が系の中に浸透、拡散を起こしやすい。この
酸素拡散速度は、従来の内部酸化法で固溶体に酸素を拡
散する速度にに比し著しく大きい。酸素は液相を通って
運搬される。もし、系中に錫、(b)の元素及び/又は
(c)の元素が金属状態で存在すると、これらは酸化さ
れることになる。酸化は系の表面から進行する。例えば
、系中に錫が存在すると、酸化の進行に伴い、液相化し
た銀−錫の溶体から錫が酸化されてSnO3微粒子とし
て析出して純銀相が生成する。このプロセスが順次表面
から深部へ向かって進行し、終には系全体が銀行基質中
に錫酸化物微粒子が均一に分散した状態になると考えら
れる。 [0035] 温度対圧力状態図は、錫、前記(b)の元素及び/又は
前記(c)の元素の存在又は不存在、並びに含有量によ
って異なるので、液相が現れる温度及び圧力は一部には
言えない。しかし、一定の出発混合物について温度及び
圧力を高めて行くことによって固相のみの状態から固相
と液相とが共存する状態へ移行するので、かかる状態は
いずれの系についても当業者は容易に見出すことができ
る。系のごく一部でも液相化すれば酸素の拡散速度は飛
躍的に増大する。したがって、液相が存在する限り、低
い圧力、温度でよい。このような条件が、エネルギー消
費が小さく有利である。固相と液相は広範囲の状態(特
に一定の温度範囲においては圧力の上限はない)におい
て共存するが、温度350〜830℃、圧力100〜4
50気圧の範囲で、共存状態を見出して本発明の方法を
行うのが実際的である。 [0036] 出発混合物を目的とする温度及び酸素分圧の状態に持っ
ていく方法は何ら限定されないが、例えばまず温度を必
要な温度に調節し、次にα領域がらα十り領域の方へ酸
素分圧を所要値に制御する方法でもよい。又、酸素分圧
をある目標まで高めた後にα+Ag2O領域がらα+L
領域の方へ温度を徐々に上げる方法でもよい。 [0037]
FIG. 1 shows a temperature versus pressure phase diagram of the silver-oxygen system. In the method of the invention, the starting mixture is tin, (b) and/or (
When the element c) is contained in a metallic state, the phase diagram becomes more or less specific. However, the state diagram of FIG. 1 is helpful in understanding the method of the present invention. When the system is placed in a state where the liquid phase and the same phase coexist (the region shown as α in Figure 1), the silver phase is partially in the liquid phase, so oxygen is removed from the system by the oxygen pressure outside. It is easy to penetrate and diffuse into the body. This oxygen diffusion rate is significantly higher than the rate at which oxygen is diffused into the solid solution in conventional internal oxidation methods. Oxygen is transported through the liquid phase. If tin, element (b) and/or element (c) are present in the system in a metallic state, they will be oxidized. Oxidation proceeds from the surface of the system. For example, if tin is present in the system, as oxidation progresses, tin is oxidized from the silver-tin solution that has become a liquid phase and precipitated as SnO3 particles to form a pure silver phase. It is thought that this process progresses sequentially from the surface to the depths, and eventually the entire system becomes a state in which tin oxide fine particles are uniformly dispersed in the bank matrix. [0035] Since the temperature versus pressure phase diagram differs depending on the presence or absence and content of tin, the element (b) and/or the element (c), the temperature and pressure at which the liquid phase appears may vary in part. I can't say it. However, by increasing the temperature and pressure of a given starting mixture, the state changes from a state where only a solid phase is present to a state where a solid phase and a liquid phase coexist. can be found. If even a small portion of the system becomes liquid, the oxygen diffusion rate increases dramatically. Therefore, as long as a liquid phase exists, low pressure and temperature may be used. Such conditions are advantageous in that energy consumption is small. The solid phase and liquid phase coexist in a wide range of conditions (especially in a certain temperature range, there is no upper limit to the pressure);
It is practical to find coexistence conditions and carry out the method of the present invention in the range of 50 atmospheres. [0036] The method of bringing the starting mixture to the target temperature and oxygen partial pressure state is not limited at all, but for example, first the temperature is adjusted to the required temperature, and then the temperature is adjusted from the α region to the α-plus region. A method of controlling the oxygen partial pressure to a required value may also be used. Also, after increasing the oxygen partial pressure to a certain target, α + L from the α + Ag2O region
A method of gradually increasing the temperature toward the region may also be used. [0037]

【実施例】【Example】

実施例1〜10 ()量子4−1どF5t5t5jL (1t)各実施例
の試料を下記の方法A−Eのいずれかの方法で作製した
。各実施例の試料の組成及び製造方法を表2に示す。 方法A:所定の割合で錫を含有する銀−錫合金を、厚さ
1/10の純銀層を裏張した状態で、通常の熱間圧延法
で厚さ1mmに圧延し、得られた板から寸法4.5mm
φX1mmのディスクを打抜きする。このディスクの全
表面にバレル銀メツキ法で厚さ3ミクロンに銀メツキを
施し、試料を調製する。 方法B : Mg、 Zr、 Cd、 Sb等の前1i
12(a)群及び/又は(b)群の少なくとも1種を含
む銀−錫合金の溶解湯を、炭素板鋳型に設けられた直径
4.5mm、深さ1.0mmの穴で鋳造した後、金型で
息冷し、寸法4.5mmφ×1mmのディスクを作る。 得られたディスクの全表面にバレル銀メツキ法で厚さ5
ミクロンに銀メツキを施し、試料を調製する。 方法C:錫30重量%を含有する銀−錫合金の溶湯を窒
素ガス中に噴射して粉末状にした。得られた銀−合金粉
末と銀粉末を、錫の割合が所定値になるように混合した
のち、振動ミルで粉砕する。得られた混合粉末を、1ト
ンの加圧下で寸法4.5mm tl X 1.1mmの
ディスクの成形する。得られた圧粉成形体を窒素雰囲気
中、750℃に1時間保持して仮焼結後、再成形して寸
法を4.5mmφX 1.Ommに調整し、試料とする
。 方法D:錫75重量%と残部Mg、 Zr、 Ca、 
Al、Ce、 Cr、 Mn及びTiの少なくともとか
らなる金属間化合物の溶湯を窒素ガス中に噴射して粉末
状にした。得られた錫合金粉末と銀粉末を、錫及びLl
g等の量が所定値になるように混合したのち、振動ミル
で粉砕する。得られた混合粉末を方法E: 銀粉末、酸化錫粉末及び必要に応じて使用される他の金
属酸化物の粉末を各成分が金属換算で所定量になるよう
に混合したのち、振動ミルで粉砕する。得られた混合粉
末を方法Cと同様にして圧粉成形、仮焼結、再成形に供
し、試料とする。 実施例1〜10の試料を耐熱性ステンレス鋼製の耐熱容
器に入れ、密閉し、酸素気流中で510℃まで昇温後、
徐々に酸素分圧を414気圧まで上げ、8時間保持した
。その後、500℃、500気圧の条件で10分間保持
した。その後、減圧し、除々に冷却した。 上記実施例で得られた複合体を切断し、切断面を検査し
たところ、粒径0.1μm以下の酸化物粒子が均一に分
散し、韻母基質と密着して空隙がないことがわかった。 [0038] 実施例11及び12 実施例11及び12の試料を前記の方法Aで作製した。 試料の組成は表1に示す。 この試料を700℃、酸素分圧200気圧の条件に5時
間保持した。次に、該圧力を350気圧まで高め、該気
圧に10分間保持した後、1気圧まで減圧後冷却した。 [0039] 比較例1及び2 表1に示す組成を有する銀合金を700℃、酸素分圧1
0気圧の条件で内部酸化に供した。 [0040] 比較例3及び4 それぞれ、実施例11及び12と同様に作製した比較例
3.4の試料を700℃、酸素分圧30気圧の条件に5
時間保持した。酸化は表面から1mm以下の深さで停止
しており、酸化不可能の判定した。 [0041] 上記実施例及び比較例で処理済の試料の硬度、電導度を
測定した。結果を表1に示す。 [0042] さらに、試料を接点支持合金に、Ag−In 15%−
3n 13%(重量)の組成である銀ローで溶着し、下
記の電気的状、験を行った。 [0043] 1)開閉試、験 [0045] 表1 No。 方法 鎖中に含まれる他の金属の量 tZ 硬 度1 電導度 H,R,F、  1.A、C,S7: 実施例I A 実施例21A 1実施例3B 実施例41B 実施例5C 実施例6C 実施例7D 実施例8D 実施例9E 実施例10  E Sn 67; Sn l0Z Sn 7.57.、 Ca 2.5X Sn 9Z   Mg 1°/。 Sn 13’4 、 Cr O,17:Sn 8’l、
    N石 1.0zSn 7.5’14.  Ca
 2.57:Sn 8’1.  、 Mg IZ Sn 8Z   Zr 17: Sn 87;   Cd 4X 表1 (続き) No。 1方法1銀中に含まれる他の金属の量 tX 1硬 度1 電導度 lH,R,F、 l  1.A、C,SZ比較例1 1 Sn 87: n 4Z 比較例21 Cd la: Sn1.5Z 1実施例11 l Sn 9’!。 Zr0.3X Ni0.1°/。 1実施例12 l Sn 9Z Cd 3Z Mg 0.15Z [0046] 表2 No。 IAsTM消耗量 mgr。 溶着試、験 mP 接点の表面状態 実施例1 実施例2 1実施例3 実施例4 実施例5 実施例6 1実施例71 実施例8 )実施例9 実施例10 9、000 11.000 13、500 14、000 18、000 8、000 10、500 11.000 9、500 9、000 1平滑な面 1平滑な面 j若干、面の凹凸はある 若干、面の凹凸はある 平滑で、全面銀色少ない 1平滑で、全面銀色少ない 灰色の平滑面 灰色の平滑面 灰色の平滑面 平滑面 H 表2 (続き) No。 ASTM消耗量I溶着試、験 mgr、     AmP 接点の表面状態 比較例1 比較例2 実施例11 1実施例121 6、500 4、500 13、000 io、 oo。 白色の粗い凹凸面 銀色熔融置火 1白色で平滑面 1平滑な灰色面 [0047] (注)本発明の実施例の複合材料を使用した接点では、
従来のものに比較してアーク量が少なく、遮断時間が短
縮されていた。 [0048]
Examples 1 to 10 () Quantum 4-1 etc. F5t5t5jL (1t) Samples of each example were prepared by any of the following methods A to E. Table 2 shows the composition and manufacturing method of the samples of each example. Method A: A plate obtained by rolling a silver-tin alloy containing tin in a predetermined proportion to a thickness of 1 mm using a normal hot rolling method with a layer of pure silver 1/10 thick as the lining. Dimensions from 4.5mm
Punch out a disk with a diameter of 1 mm. A sample is prepared by silver plating the entire surface of this disk to a thickness of 3 microns using the barrel silver plating method. Method B: 1i before Mg, Zr, Cd, Sb, etc.
After casting a molten silver-tin alloy containing at least one of Group 12 (a) and/or Group (b) in a hole with a diameter of 4.5 mm and a depth of 1.0 mm provided in a carbon plate mold. , cool in a mold and make a disk with dimensions of 4.5 mmφ x 1 mm. The entire surface of the obtained disk was coated with a thickness of 5 mm using the barrel silver plating method.
Prepare the sample by silver plating the micron. Method C: A molten silver-tin alloy containing 30% by weight of tin was injected into nitrogen gas to form a powder. The obtained silver-alloy powder and silver powder are mixed so that the proportion of tin becomes a predetermined value, and then pulverized with a vibrating mill. The resulting mixed powder is molded into disks with dimensions 4.5 mm tl x 1.1 mm under a pressure of 1 ton. The obtained green compact was held at 750° C. for 1 hour in a nitrogen atmosphere for temporary sintering, and then remolded to a size of 4.5 mmφX 1. Adjust to 0mm and use as a sample. Method D: 75% by weight of tin and the balance Mg, Zr, Ca,
A molten metal of an intermetallic compound consisting of at least Al, Ce, Cr, Mn, and Ti was injected into nitrogen gas to form a powder. The obtained tin alloy powder and silver powder were mixed with tin and Ll.
After mixing so that the amount of g, etc. becomes a predetermined value, the mixture is pulverized using a vibrating mill. Method E: The obtained mixed powder is mixed with silver powder, tin oxide powder, and powder of other metal oxides used as necessary so that each component has a predetermined amount in terms of metal, and then processed with a vibrating mill. Smash. The obtained mixed powder is subjected to powder compaction, temporary sintering, and remolding in the same manner as Method C, and is used as a sample. The samples of Examples 1 to 10 were placed in a heat-resistant container made of heat-resistant stainless steel, sealed, and heated to 510 ° C. in an oxygen stream.
The oxygen partial pressure was gradually increased to 414 atm and maintained for 8 hours. Thereafter, the temperature was maintained at 500° C. and 500 atm for 10 minutes. Thereafter, the pressure was reduced and the mixture was gradually cooled. When the composite obtained in the above example was cut and the cut surface was inspected, it was found that the oxide particles with a particle size of 0.1 μm or less were uniformly dispersed and were in close contact with the final matrix without voids. [0038] Examples 11 and 12 Samples of Examples 11 and 12 were prepared by Method A described above. The composition of the sample is shown in Table 1. This sample was maintained at 700° C. and oxygen partial pressure of 200 atmospheres for 5 hours. Next, the pressure was increased to 350 atm, maintained at this atmospheric pressure for 10 minutes, and then reduced to 1 atm and cooled. [0039] Comparative Examples 1 and 2 A silver alloy having the composition shown in Table 1 was heated at 700° C. and at an oxygen partial pressure of 1.
It was subjected to internal oxidation under conditions of 0 atm. [0040] Comparative Examples 3 and 4 Samples of Comparative Example 3.4 prepared in the same manner as Examples 11 and 12, respectively, were heated at 700°C and an oxygen partial pressure of 30 atm for 5 minutes.
Holds time. Oxidation stopped at a depth of 1 mm or less from the surface, and it was determined that oxidation was not possible. [0041] The hardness and electrical conductivity of the samples treated in the above Examples and Comparative Examples were measured. The results are shown in Table 1. [0042] Furthermore, the sample was made into a contact support alloy with Ag-In 15%-
It was welded with a silver solder having a composition of 13% (by weight) of 3n, and the following electrical conditions and tests were conducted. [0043] 1) Opening/closing test, test [0045] Table 1 No. Amount of other metals included in the method chain tZ Hardness 1 Conductivity H, R, F, 1. A, C, S7: Example I A Example 21A 1 Example 3B Example 41B Example 5C Example 6C Example 7D Example 8D Example 9E Example 10 E Sn 67; Sn 10Z Sn 7.57. , Ca 2.5X Sn 9Z Mg 1°/. Sn 13'4, CrO, 17:Sn 8'l,
N stone 1.0zSn 7.5'14. Ca
2.57: Sn 8'1. , Mg IZ Sn 8Z Zr 17: Sn 87; Cd 4X Table 1 (continued) No. 1 Method 1 Amount of other metals contained in silver tX 1 Hardness 1 Electrical conductivity lH, R, F, l 1. A, C, SZ Comparative Example 1 1 Sn 87: n 4Z Comparative Example 21 Cd la: Sn1.5Z 1 Example 11 l Sn 9'! . Zr0.3X Ni0.1°/. 1 Example 12 l Sn 9Z Cd 3Z Mg 0.15Z [0046] Table 2 No. IAsTM consumption mgr. Welding test, test mP Contact surface condition Example 1 Example 2 1 Example 3 Example 4 Example 5 Example 6 1 Example 71 Example 8 ) Example 9 Example 10 9,000 11.000 13, 500 14,000 18,000 8,000 10,500 11.000 9,500 9,000 1 Smooth surface 1 Smooth surface less 1 smooth, less silver all over gray smooth surface gray smooth surface gray smooth surface smooth surface H Table 2 (Continued) No. ASTM wear amount I welding test, test mgr, AmP Contact surface condition Comparative example 1 Comparative example 2 Example 11 1 Example 121 6,500 4,500 13,000 io, oo. White rough uneven surface Silver melting flame 1 White smooth surface 1 Smooth gray surface [0047] (Note) In the contact using the composite material of the embodiment of the present invention,
Compared to conventional products, the amount of arc was smaller and the interruption time was shorter. [0048]

【発明の効果】【Effect of the invention】

本発明により提供される、銀−錫酸化物複合材料は、従
来の内部酸化法によって製造されたものとは異なり、酸
化錫等が硬質で緻密な結晶構造を有する微粒子状態で銀
行基質の表面から深部に到るまで該銀行基質と良好な濡
れ性を有する結合状態で該銀母基質中に均一に分散して
いるので、物理的、化学的に強度が侵れている。また、
従来の内部酸化法では約4重量%程度の酸化錫の添加し
かできなかったが、本発明の複合材料は1〜15重量%
の酸化錫を含有せしめることができさらに強度の向上が
可能である。 [0049] また、従来の内部酸化法では錫などの酸化に長時間を必
要としていた。特に、肉厚材料の製造は困難であった。 しかし、これに比較して本発明の複合材料を製造する方
法によれば、著しく短時間で製造を行うことができ、生
産性が大きく改善され、しかも肉厚の複合材料も容易に
製造できる。
The silver-tin oxide composite material provided by the present invention differs from those produced by conventional internal oxidation methods, in that tin oxide is produced from the surface of a bank matrix in the form of fine particles with a hard and dense crystal structure. Since it is uniformly dispersed in the silver matrix in a bonded state with good wettability to the bank matrix, its strength is physically and chemically degraded. Also,
The conventional internal oxidation method could only add about 4% by weight of tin oxide, but the composite material of the present invention can add 1 to 15% by weight.
It is possible to further improve the strength by incorporating tin oxide. [0049] Furthermore, in the conventional internal oxidation method, it took a long time to oxidize tin and the like. In particular, it has been difficult to manufacture thick-walled materials. However, compared to this, according to the method of manufacturing a composite material of the present invention, manufacturing can be carried out in a significantly shorter time, productivity is greatly improved, and even thick composite materials can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】 銀−酸素系の温度対圧力状態図である。[Figure 1] FIG. 2 is a temperature versus pressure phase diagram of a silver-oxygen system.

【書類芯】[Document core]

【図1】 図面 手続補正書 平成3年3月26日[Figure 1] drawing Procedural amendment March 26, 1991

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】銀母基質と、(a)金属換算で1〜20重
量%の錫酸化物と、場合によっては存在する(b)金属
換算で0.01〜8重量%のMg、Zr、Ca、Al、
Ce、Cr、Mn及びTiからなる群から選ばれる少な
くとも1種の元素の酸化物及び/又は(c)金属換算で
0.01〜15重量%のCd、Sb、In、Bi、Zn
及び鉄族金属からなる群から選ばれる少なくとも1種の
元素の酸化物とからなり、(a)の錫酸化物、及び場合
によっては存在する(b)及び/又は(c)の金属の酸
化物が粒径0.1μm以下の微粒子状態で銀母基質の表
面から深部に到るまで該銀母基質と良好な濡れ性を有す
る結合状態で該銀母基質中に均一に分散されてなる銀−
錫酸化物複合材料。
Claim 1: A silver mother matrix, (a) 1 to 20% by weight of tin oxide in terms of metal, and (b) 0.01 to 8% by weight of Mg, Zr, in terms of metal, optionally present. Ca, Al,
An oxide of at least one element selected from the group consisting of Ce, Cr, Mn, and Ti and/or (c) 0.01 to 15% by weight of Cd, Sb, In, Bi, and Zn in terms of metal.
and an oxide of at least one element selected from the group consisting of iron group metals, the tin oxide of (a) and the oxide of the metal of (b) and/or (c) present in some cases. Silver is uniformly dispersed in the silver mother matrix in the form of fine particles with a particle size of 0.1 μm or less in a bonded state with good wettability from the surface to the deep part of the silver mother matrix.
Tin oxide composite material.
【請求項2】請求項1記載の複合材料であって、前記(
a)の錫酸化物と、(b)の元素の酸化物及び/又は(
c)の元素の酸化物が共役酸化物を形成して分散してい
る複合材料。
2. The composite material according to claim 1, comprising:
a) tin oxide and (b) element oxide and/or (
A composite material in which the oxide of the element c) is dispersed to form a conjugated oxide.
【請求項3】(A)銀と、(a)金属換算で1〜20重
量%の金属状及び/又は酸化物状の錫と、並びに場合に
よってはさらに(b)金属換算で0.01〜8重量%の
金属状及び/又は酸化物状のMg、Zr、Ca、Al、
Ce、Cr、Mn及びTiからなる群から選ばれる少な
くとも1種の元素及び/又は(c)金属換算で0.01
〜15重量%の金属状及び/又は酸化物状のCd、Sb
、In、Bi、Zn及び鉄族金属からなる群から選ばれ
る少なくとも1種の元素とを含有する混合物を、加熱し
、かつ酸素分圧を高めることにより液相と固相が共存す
る状態に置き、これにより金属状のものが存在する場合
には錫、並びに場合によって存在する前記(b)の元素
及び/又は前記(c)の元素の金属状のものの全量を酸
化物として析出させる工程、及び(B)次にこのように
処理された混合物を冷却しかつ酸素分圧を低下させる工
程を有する請求項1記載の銀−錫酸化物複合材料の製造
方法。
3. (A) silver; (a) 1 to 20% by weight of tin in metal and/or oxide form, and optionally further (b) 0.01 to 20% by weight of tin in metal terms 8% by weight of metallic and/or oxidic Mg, Zr, Ca, Al,
At least one element selected from the group consisting of Ce, Cr, Mn and Ti and/or (c) 0.01 in terms of metal
~15% by weight of metallic and/or oxidic Cd, Sb
, In, Bi, Zn, and at least one element selected from the group consisting of iron group metals is heated and the partial pressure of oxygen is increased to bring the mixture into a state where a liquid phase and a solid phase coexist. , thereby precipitating the entire amount of tin as an oxide, as well as the optionally present metallic material of the element (b) and/or the element (c); 2. The method for producing a silver-tin oxide composite material according to claim 1, further comprising the step of (B) cooling the thus treated mixture and lowering the oxygen partial pressure.
【請求項4】請求項3の方法であって、(A)工程で使
用の前記混合物が、銀、錫、並びに場合のよっては存在
する前記(b)の元素及び/又は前記(c)の元素から
なる合金である方法。
4. The method of claim 3, wherein the mixture used in step (A) contains silver, tin, and optionally the elements of (b) and/or the elements of (c). A method that is an alloy of elements.
【請求項5】請求項3の方法であって、(A)工程で使
用の前記混合物が、銀、錫、及び場合のよっては存在す
る前記(b)の元素及び/又は前記(c)の元素からな
る焼結体である方法。
5. The method of claim 3, wherein the mixture used in step (A) contains silver, tin, and optionally the elements of (b) and/or the elements of (c). A method in which the sintered body is made of elements.
【請求項6】請求項5の方法であって、前記焼結体が、
銀粉末と、銀、錫、並びに必要ならばさらに前記(b)
の元素及び/又は前記(c)の元素からなる合金粉末と
から製造された焼結体である方法。
6. The method according to claim 5, wherein the sintered body comprises:
silver powder, silver, tin, and if necessary further the above (b)
and/or an alloy powder consisting of the element (c).
【請求項7】請求項5の方法であって、前記焼結体が、
銀粉末と、(a)錫、並びに前記(b)の元素及び/又
は(c)の元素からなる合金粉末とから製造された焼結
体である方法。
7. The method of claim 5, wherein the sintered body comprises:
A method in which a sintered body is produced from a silver powder and an alloy powder consisting of (a) tin, and the element (b) and/or the element (c).
【請求項8】請求項3の方法であって、(A)工程で使
用の前記混合物が、銀粉末と、(a)粒径0.1μm以
下の錫酸化物粉末、必要ならばさらに前記(b)の元素
の粒径0.1μm以下の酸化物粉末及び/又は前記(c
)の元素の粒径0.1μm以下の酸化物粉末とから製造
された焼結体である方法。
8. The method of claim 3, wherein the mixture used in step (A) comprises silver powder, (a) tin oxide powder with a particle size of 0.1 μm or less, and if necessary, the mixture further comprises ( The oxide powder of the element b) with a particle size of 0.1 μm or less and/or the element (c
) and an oxide powder having a particle size of 0.1 μm or less.
JP2414428A 1989-12-26 1990-12-26 Method for producing silver-tin oxide composite material Expired - Lifetime JP2557143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2414428A JP2557143B2 (en) 1989-12-26 1990-12-26 Method for producing silver-tin oxide composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-338005 1989-12-26
JP33800589 1989-12-26
JP2414428A JP2557143B2 (en) 1989-12-26 1990-12-26 Method for producing silver-tin oxide composite material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8073257A Division JPH08239725A (en) 1989-12-26 1996-03-04 Silver-tin oxide compound material

Publications (2)

Publication Number Publication Date
JPH04128331A true JPH04128331A (en) 1992-04-28
JP2557143B2 JP2557143B2 (en) 1996-11-27

Family

ID=26575976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2414428A Expired - Lifetime JP2557143B2 (en) 1989-12-26 1990-12-26 Method for producing silver-tin oxide composite material

Country Status (1)

Country Link
JP (1) JP2557143B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593104A (en) * 2019-10-01 2021-04-02 Abb瑞士股份有限公司 Method for manufacturing Ag-based electrical contact material, electrical contact material and electrical contact obtained thereby
CN115725871A (en) * 2022-11-08 2023-03-03 浙江福达合金材料科技有限公司 Preparation method of silver tin oxide electrical contact material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920445A (en) * 1982-07-08 1984-02-02 Chugai Electric Ind Co Ltd Electrical contact material made of silver-tin oxide type composite sintered alloy containing dispersed tin oxide particle and solidified from liquid phase and its manufacture
JPS63250431A (en) * 1987-04-08 1988-10-18 Tokuriki Honten Co Ltd Material for silver-metal oxide base contact and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920445A (en) * 1982-07-08 1984-02-02 Chugai Electric Ind Co Ltd Electrical contact material made of silver-tin oxide type composite sintered alloy containing dispersed tin oxide particle and solidified from liquid phase and its manufacture
JPS63250431A (en) * 1987-04-08 1988-10-18 Tokuriki Honten Co Ltd Material for silver-metal oxide base contact and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593104A (en) * 2019-10-01 2021-04-02 Abb瑞士股份有限公司 Method for manufacturing Ag-based electrical contact material, electrical contact material and electrical contact obtained thereby
US11923153B2 (en) 2019-10-01 2024-03-05 Abb Schweiz Ag Method for manufacturing an Ag-based electrical contact material, an electrical contact material and an electrical contact obtained therewith
CN115725871A (en) * 2022-11-08 2023-03-03 浙江福达合金材料科技有限公司 Preparation method of silver tin oxide electrical contact material

Also Published As

Publication number Publication date
JP2557143B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
KR100194504B1 (en) Manufacturing Method of Silver-Metal Oxide Composite
US5236523A (en) Silver- or silver-copper alloy-metal oxide composite material
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
US5286441A (en) Silver-metal oxide composite material and process for producing the same
EP0067252B1 (en) Metal, carbon, carbide and other compositions thereof, alloys and methods for preparing same
JPH04128331A (en) Silver-tin oxide composite material and its production
EP1380660B1 (en) Method for preparing reinforced platinum material
JPS62130235A (en) Production of target material
JPH08239725A (en) Silver-tin oxide compound material
JP2973390B2 (en) Method for producing metal in which fine particles of metal or metal oxide are dispersed
TW496905B (en) Molded ceramic articles and production method thereof
JPS633012B2 (en)
JPS63149341A (en) Production of silver-base metal oxide contact material
JPH0466641A (en) Silver-oxide dispersion strengthened alloy and its manufacture
JPH0142321B2 (en)
JPS6342340A (en) Electric contact material and its production
JP2533410B2 (en) Electrode material and method of manufacturing electrode material
JPS6354770B2 (en)
JPH03207831A (en) Silver-oxide contact material and its manufacture
JPH059623A (en) Production of silver-metal oxide composite material
JPH058083A (en) Silver-or silver copper alloy-metal oxide composite material and production thereof
JPH03271339A (en) Ceramic-copper composite body and its manufacture
JPH055139A (en) Production of silver or silver-copper alloy-metal oxide composite material
JPH059622A (en) Production of silver-metal oxide composite material
JPH05298957A (en) Manufacture of vacuum interrupter electrode