JPH04127948A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH04127948A
JPH04127948A JP24977190A JP24977190A JPH04127948A JP H04127948 A JPH04127948 A JP H04127948A JP 24977190 A JP24977190 A JP 24977190A JP 24977190 A JP24977190 A JP 24977190A JP H04127948 A JPH04127948 A JP H04127948A
Authority
JP
Japan
Prior art keywords
powder
casting
speed
slab
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24977190A
Other languages
Japanese (ja)
Inventor
Takashi Kanazawa
敬 金沢
Takeshi Nakai
中井 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24977190A priority Critical patent/JPH04127948A/en
Publication of JPH04127948A publication Critical patent/JPH04127948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the development of trouble, such as breakout, in high velocity continuous casting for steel by prescribing consumption of powder added to a mold with the specific equation formulated with a casting velocity, m.p. and viscosity of the powder. CONSTITUTION:At the time of using Vc(m/sec) for the casting velocity of steel, Tm( deg.C) for the m.p. of powder and eta1300 (poise) for the viscosity of powder, the powder is added into the mold according to the casting velocity so that the powder consumption Q obtd. with the equation Q= K.Vc<-1.38>.(eta1300)<-0.58>.Tm<-1.58> (wherein, K: the fixed value decided with condition of oscillation of the mold) becomes >=0.3. Then, it is desirable that component composition of the powder is about 0.4-1.1 basicity and about 20-50wt.% SiO2 and about 10-40wt.% CaO as the essential component, and Tm is <= about 1200 deg.C and eta1300 is >= about 0.05 poise. By this method, in the high velocity of >=3m/min casting velocity, a sound cast slab having no surface defect can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鋼の連続鋳造方法に係わり、特に例えば3
 m/sin以上というような高速の連続鋳造でも、ブ
レークアウト等の障害なしに鋳造を行うための連続鋳造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for continuous casting of steel, particularly for example
The present invention relates to a continuous casting method for performing casting without problems such as breakout even in high-speed continuous casting such as m/sin or higher.

(従来の技術) 鋼の連続鋳造の生産性を高めるために、鋳片を高速で引
き抜く高速鋳造化が指向されている。特に近年、後続の
圧延工程の負荷を軽減するために最終製品に近い、いわ
ゆるニアネットシェイブの鋳片(Iスラブ)を連続鋳造
することが検討されているが、従来の速度で薄スラブを
鋳造すると時間当たりの鋳造量が少なくなり生産効率が
低下する。これを補うために、連続鋳造の一層の高速化
が要求されているが、現在の技術では2g+/5hin
を超えるような速度で安定して連続鋳造を行うのは困難
である。
(Prior Art) In order to improve the productivity of continuous steel casting, high-speed casting in which slabs are drawn at high speed is being sought. Particularly in recent years, continuous casting of so-called near-net shave slabs (I-slabs), which are close to the final product, has been considered in order to reduce the load on the subsequent rolling process, but thin slabs are cast at conventional speeds. This reduces the amount of casting per hour and reduces production efficiency. To compensate for this, even higher speeds of continuous casting are required, but with current technology, the speed of continuous casting is 2g+/5h.
It is difficult to stably perform continuous casting at speeds exceeding .

通常、鯛の連続鋳造においては、鋳型内の溶鋼表面にパ
ウダーを添加して溶融させる。このパウダーの機能は、
溶鋼表面を被覆することにより溶鋼の酸化や温度低下を
抑制するとともに、浮上介在物を捕捉することにある。
Usually, in continuous casting of sea bream, powder is added to the surface of the molten steel in the mold and melted. The function of this powder is
By coating the surface of molten steel, the purpose is to suppress oxidation and temperature drop of molten steel and to trap floating inclusions.

また、鋳型と鋳片の間に流入して鋳片引抜きの潤滑剤と
して働き、ブレークアウトや鋳片表面欠陥の発生を防止
するとともに、鋳片の凝固収縮により鋳片が型離れして
できる鋳型と鋳片の間隙に溶融スラグが流入して、鋳片
の冷却が促進される。このように、鋳造操業を安定化す
る上でパウダーの役割は極めて重要である。
In addition, it flows between the mold and the slab and acts as a lubricant for drawing the slab, preventing breakouts and surface defects on the slab. Molten slag flows into the gap between the slab and the slab, promoting cooling of the slab. In this way, the role of powder is extremely important in stabilizing casting operations.

連続鋳造の高速化を妨げる要因は種々あるが、パウダー
供給の問題がその最大の要因の一つである。即ち、上記
のごとく鋳造速度が大きくなると、鋳型と鋳片の間隙に
供給されるパウダーの鋳片単位表面積光たりの消費量(
kg/m″で表す)が減少するので鋳型と鋳片間の潤滑
が不良となり、特にパウダー消費量が0.3kg/m”
以下になると鋳片が鋳型に焼き付き易くなり、ブレーク
アウトの発生頻度が高くなることが知られている。そこ
で、高速鋳造に伴うパウダー消費量の減少に起因する鋳
片のブレークアウトあるいは表面欠陥の発生を防止する
ために、種々の提案がなされてきた。
There are various factors that hinder the speeding up of continuous casting, but one of the biggest is the problem of powder supply. In other words, as the casting speed increases as described above, the consumption of powder supplied to the gap between the mold and the slab per unit surface area of the slab (
kg/m'') decreases, resulting in poor lubrication between the mold and the slab, and powder consumption in particular decreases by 0.3 kg/m''.
It is known that when the temperature is below, the slab tends to seize into the mold and breakouts occur more frequently. Therefore, various proposals have been made to prevent breakout or surface defects in slabs caused by the reduction in powder consumption associated with high-speed casting.

例えば、特開昭60−33861号公報では、パウダー
消費量を増加させるために、パウダーの軟化点および粘
度を低くする提案がなされている。
For example, Japanese Patent Laid-Open No. 60-33861 proposes lowering the softening point and viscosity of powder in order to increase powder consumption.

しかしながら、パウダー消費量とパウダー粘度との明確
な関係は示されておらず、また鋳造速度も2.0m/w
in以下の実施例が示されているに過ぎずさらに高速化
した場合についての推定は不可能である。
However, a clear relationship between powder consumption and powder viscosity has not been shown, and the casting speed is 2.0 m/w.
Only an example below 1 is shown, and it is not possible to estimate the case where the speed is further increased.

また、特開昭57−177866号公報では、1300
℃おける粘度を鋳造速度に応して適正範囲に調整したパ
ウダーを用いる方法が開示されている。しかし、この方
法も上記特開昭60−33861号公報の方法と同じく
、鋳片引抜き速度が2.0m/win以下の実施例が示
されているだけで、2.0i/sin以上の高速鋳造は
なされていない、また、溶融パウダーの粘度の温度依存
性を考えると、パウダーの粘度特性は、特定温度におけ
る粘度とともにパウダーの融点または軟化点を指標値と
して示す必要があるが、この方法ではパウダーの融点ま
たは軟化点に関する記載がない。
In addition, in Japanese Patent Application Laid-open No. 177866/1986, 1300
A method using powder whose viscosity at °C is adjusted to an appropriate range depending on the casting speed is disclosed. However, like the method in JP-A No. 60-33861, this method only discloses an example in which the slab drawing speed is 2.0 m/win or less, but it cannot be used for high-speed casting of 2.0 i/sin or more. Furthermore, considering the temperature dependence of the viscosity of molten powder, it is necessary to indicate the viscosity characteristics of the powder as an index value, along with the viscosity at a specific temperature, as well as the melting point or softening point of the powder. There is no description regarding the melting point or softening point of

他方、鋳造速度を上げたときの凝固シェルの薄肉化に伴
う鋳片のバルジングあるいはブレークアウトを防止する
ため、鋳型内での凝固シェルの形成を促進する目的で、
ロングモールドの採用やモールドテーパの適正化等の手
段も講しられているが、例えば3.0m/win以上の
高速鋳造に通用できる設計値を提案するまでには至って
いない。
On the other hand, for the purpose of promoting the formation of a solidified shell in the mold, in order to prevent bulging or breakout of the slab due to thinning of the solidified shell when the casting speed is increased,
Although measures such as adopting a long mold and optimizing the mold taper have been taken, design values that can be applied to high-speed casting of, for example, 3.0 m/win or higher have not yet been proposed.

(発明が解決しようとする課I!I) 本発明は、鋳造速度の如何にかかわらず安定して良好な
鋳片を製造する連続鋳造方法を開発することを課題とし
てなされたものである。特に、本発明の目的は、鋳造の
高速化に伴うパウダー消費量の減少に起因する鋳片の潤
滑不良およびブレークアウトの発生を防止して、表面欠
陥のない健全な鋳片を製造する方法を提供することにあ
る。
(Issue I!I to be Solved by the Invention) The present invention has been made with the object of developing a continuous casting method that can stably produce good slabs regardless of the casting speed. In particular, an object of the present invention is to provide a method for producing sound slabs without surface defects by preventing poor lubrication and breakout of slabs caused by reduced powder consumption due to faster casting. It is about providing.

(課題を解決するための手段) 本発明者は、連続鋳造の高速化には、鋳造中におけるパ
ウダーの消費量を適正に保つことが最も重要であると考
え、パウダーの特性と挙動を詳細に究明した結果、下記
の事実を確認した。
(Means for Solving the Problem) The present inventor believes that maintaining an appropriate amount of powder consumption during casting is most important for increasing the speed of continuous casting, and has investigated the characteristics and behavior of powder in detail. As a result of the investigation, the following facts were confirmed.

(a)  操業中の溶融パウダーの粘度特性を、パウダ
ーの溶融点(以下T−と略記する)および1300°C
における粘度(以下η10゜と略記する)で表すと、そ
の特性値および鋳造速度とパウダー消費量との間には一
定の関係が成立する。
(a) The viscosity characteristics of the molten powder during operation are determined by the melting point of the powder (hereinafter abbreviated as T-) and 1300°C.
When expressed in terms of viscosity (hereinafter abbreviated as η10°), a certain relationship is established between the characteristic value, casting speed, and powder consumption.

(ロ)上記の関係に基づいて、融点および1300°C
における粘度を適正に調整したパウダーを使用すると、
高速鋳造に伴うパウダー消費量の減少を回避することが
でき、鋳片のブレークアウトや表面たて割れ疵の発生を
防止できる。
(b) Based on the above relationship, the melting point and 1300°C
If you use a powder whose viscosity is properly adjusted,
It is possible to avoid the reduction in powder consumption associated with high-speed casting, and prevent the occurrence of slab breakouts and surface cracks.

本発明は、上記の知見に基づいてなされたものであり、
その要旨は[鯛の連続鋳造に際し、下記の0式で求めら
れるパウダー消費量Q (kg/m”)が0.3以上と
なるよう、鋳造速度νc(s/sec)に応じて選ばれ
た、融点Ts(℃)および1300℃における粘度η(
ポアズ)を有するパウダーを、鋳型に添加することを特
徴とする鋼の連続鋳造方法」にある。
The present invention was made based on the above findings,
The gist is that [when continuously casting sea bream, the powder consumption amount Q (kg/m'') calculated using the following formula 0 is selected according to the casting speed νc (s/sec) so that it is 0.3 or more. , melting point Ts (°C) and viscosity η at 1300°C (
"Continuous casting method for steel, characterized in that a powder having pores) is added to the mold."

Q =に−Vc−58−(771306)−58・Te
1−58−■ただし、■式〇にはオシレーションの条件
で決まる定数である。
Q = ni-Vc-58-(771306)-58・Te
1-58-■ However, ■Equation 〇 is a constant determined by the oscillation conditions.

上記本発明の連続鋳造方法は、鋳造速度の如何にかかわ
らず適用できる方法であるが、特に、これまで実操業上
不可能であった3 m/sin以上の高速鋳造を可能に
するという点で特筆すべきものである。
The above continuous casting method of the present invention is a method that can be applied regardless of the casting speed, but it is particularly advantageous in that it enables high-speed casting of 3 m/sin or more, which was previously impossible in actual operation. This is noteworthy.

本発明方法の実施に用いるパウダーの成分組成は、特に
限定されるものではなく、塩基度0.4〜1.1で、S
ing 20〜50重量%、CaO10〜40重量%を
主成分とし、A l toy、Na 10、Fo、Mg
O1BaO2LitOおよび炭素等を適量配合して、T
mおよびη1300が前述の0式で決められる値になる
ように調整されたものを用いればよい。
The component composition of the powder used for carrying out the method of the present invention is not particularly limited, and the basicity is 0.4 to 1.1, S
ing 20-50% by weight, CaO 10-40% by weight as main components, Al toy, Na 10, Fo, Mg
By blending appropriate amounts of O1BaO2LitO and carbon, etc., T
It is sufficient to use one in which m and η1300 are adjusted to values determined by the above-mentioned formula 0.

本発明方法におけるパウダーのTmおよびη1300は
、前述の0式で選定されるのであるが、特に3m/s+
in以上のような高速鋳造に際して、溶融パウダーが鋳
型と鋳片の間隙に均一に流入して、鋳片の引抜き時の潤
滑作用を十分に発揮するように、T−は1200°C以
下、η1300は0.05ポアズ以上とするのが望まし
い。
The Tm and η1300 of the powder in the method of the present invention are selected using the above-mentioned formula, and in particular, 3 m/s+
During high-speed casting such as in or above, T- is 1200°C or less and η1300 so that the molten powder flows uniformly into the gap between the mold and the slab and provides sufficient lubrication during drawing of the slab. is preferably 0.05 poise or more.

本発明のパウダー消費量に関する前記0式中の比例定数
には、鋳型のサインカーブ方式オツシレーションの振動
数によって定まる定数である。鋳造速度が3 m/wi
n以上というような高速鋳造では、オツシレーションの
サイクル数は150〜300c/餉inの範囲となり、
この時にの値は180〜130となる。
The proportionality constant in the equation 0 regarding the powder consumption of the present invention is a constant determined by the frequency of the sine curve oscillation of the mold. Casting speed is 3 m/wi
In high-speed casting such as n or more, the number of oscillation cycles is in the range of 150 to 300 c/in.
The value at this time is 180-130.

また、パウダーのTs+はブリッジ回路に組み込んだ2
つのサーミスタの一方の上に微小試料を置き、温度を上
げていったときの融解にともなう温度の不平衡を検出す
る自動融点測定装置の測定値であり、η1□。は回転体
の受ける粘性抵抗を測定する回転粘度計を用いて測定し
た値である。
In addition, the powder Ts+ is 2 built into the bridge circuit.
This is the value measured by an automatic melting point measuring device that detects temperature imbalance due to melting when a microsample is placed on one of two thermistors and the temperature is increased, and η1□. is a value measured using a rotational viscometer that measures the viscous resistance experienced by a rotating body.

(作用) 前述のように、鋳造速度が増加するとパウダー消費量が
減少するので、高速鋳造では鋳片のブレークアウトある
いは鋳片表面のたて割れ疵の発生が問題となる。
(Function) As mentioned above, as the casting speed increases, the amount of powder consumed decreases, so high-speed casting poses a problem of breakout of the slab or the occurrence of vertical cracks on the surface of the slab.

本発明方法では、この問題を解決するため、パウダー物
性を選定して、溶融パウダーが鋳型と鋳片との間隙へ流
入する速度を変化させることにより、鋳造速度に応じた
適正なバうダー消費量を確保するのである。
In order to solve this problem, the method of the present invention selects the powder physical properties and changes the speed at which the molten powder flows into the gap between the mold and the slab, thereby achieving appropriate powder consumption according to the casting speed. The goal is to secure the quantity.

本発明者は、種々の物性を持つパウダーを用いて、鋳造
速度5.4園/■inまでの連続鋳造試験を実施し、パ
ウダー消費量および鋳片のブレークアウト発生状況を調
査した。
The present inventor conducted continuous casting tests using powders having various physical properties at casting speeds of up to 5.4 mm/inch, and investigated the amount of powder consumed and the occurrence of breakout in slabs.

下記の第1表に示す物性を持つパウダーを用いて連続鋳
造を実施した時の試験結果の一例を第1図に示す。
FIG. 1 shows an example of test results when continuous casting was carried out using powder having the physical properties shown in Table 1 below.

第1図に示すように、いずれのパウダーでもその消費量
は鋳造速度の増加とともに減少し、パウダー消費量が0
.3 kg’s”以下になると、鋳片にブレークアウト
が発生したり、鋳造中にブレークアウト発生の予知警報
が出るため、鋳造速度を下げなければならない事態が起
こる。このブレークアウト発生限界パウダー消費量に到
達する鋳造速度は、T−= 828°C177+5oo
=0.20ポアズのパウダーAが、4.8 m/win
であるのに対し、Tm=1120°c177 +5oo
=0.70ポアズのパウダーEは2.1m/s+inで
ある。このように、パウダーのT−およびη3.。。を
選定すると、鋳造速度に応じてパウダー消費量をブレー
クアウト発生限界値である0、3 kg/■2以上とす
ることができ、従来実施されていない3 m/sin以
上の高速u1造でも鋳片のブレークアウトの発生なしに
、安定した鋳造を行えることが明らかになった。
As shown in Figure 1, the consumption of all powders decreases as the casting speed increases, and powder consumption reaches 0.
.. If the weight falls below 3 kg's, breakout may occur in the slab, or a breakout warning will be issued during casting, resulting in a situation where the casting speed must be reduced.This breakout limit powder consumption The casting speed to reach the quantity is T-=828°C177+5oo
=0.20 poise powder A is 4.8 m/win
Whereas, Tm=1120°c177 +5oo
=0.70 poise powder E is 2.1 m/s+in. In this way, the powder's T- and η3. . . By selecting , the powder consumption can be set to 0.3 kg/sin2 or more, which is the limit value for breakout occurrence, depending on the casting speed, and it is possible to cast even at high speeds of 3 m/sin or more, which have not been done in the past. It has become clear that stable casting can be performed without the occurrence of piece breakout.

パウダーのTmおよびη1300を選定する手段として
、本発明方法では、第1図に例示したパウダー消費量と
鋳造速度との関係を、種々のTIlおよびη1.■を持
つ多数のパウダーについて調査して得た実験式である前
記■の式を用いるのである。
As a means of selecting the Tm and η1300 of the powder, in the method of the present invention, the relationship between powder consumption and casting speed illustrated in FIG. The above-mentioned formula (1) is used, which is an experimental formula obtained by investigating a large number of powders having (1).

なお、0式中のKは、サインカーブ方式鋳型オツシレー
ションの振動数が150サイクル/sinおよび300
サイクル/sinで、それぞれ180および130であ
った。
In addition, K in formula 0 indicates that the frequency of the sine curve mold oscillation is 150 cycles/sin and 300 cycles/sin.
cycles/sin were 180 and 130, respectively.

第2図は、鋳造速度の増減に応じてプレークアウド発生
限界値である0、3kg/a”のパウダー消費量を確保
できるパウダーのTmおよびη1300の相互関係を前
記0式から求めたものである。
FIG. 2 shows the interrelationship between Tm and η1300 of the powder that can ensure powder consumption of 0.3 kg/a'', which is the limit value for occurrence of plaquaud, according to the increase or decrease of the casting speed, determined from the above equation 0.

図示のとおり、例えば鋳造速度が3蒙/sinの場合、
η5.。。が0.4ポアズのパウダーではT−を100
0℃以下にすると、パウダー消費量をブレークアウト発
生限界消費量以上とすることができる。またT−が80
0°Cのパウダーならば、η、。。を0.75ポアズ以
下にすればよい、さらに高速鋳造の4.8s/sinの
場合、η1300が0.2ポアズのパウダーではTsを
775℃以下にすると、限界値以上のパウダー消費量を
確保することができる。またT−が1000°Cのパウ
ダーでは、η1300を0.10ポアズ以下とすれば同
様の効果が得られる。
As shown in the figure, for example, when the casting speed is 3 mo/sin,
η5. . . For powder with 0.4 poise, T-100
When the temperature is 0° C. or lower, the amount of powder consumed can be made equal to or higher than the limit consumption amount for breakout occurrence. Also, T- is 80
If it is powder at 0°C, η. . Furthermore, in the case of high-speed casting of 4.8 s/sin, for powder with η1300 of 0.2 poise, set Ts to 775°C or less to ensure powder consumption above the limit value. be able to. Further, for powder with T- of 1000°C, the same effect can be obtained by setting η1300 to 0.10 poise or less.

以下、実施例によって本発明の効果を具体的に説明する
Hereinafter, the effects of the present invention will be specifically explained using Examples.

(実施例) 湾曲半径10mの1点矯正型連続鋳造機を使用して、サ
イズが2001厚X1B00m−幅の鋳片を4.0−/
■inの鋳造速度で高速鋳造した。鋳型のオンシレージ
ョンはサインカーブ方式で、振動数は300サイクル/
winとした。
(Example) Using a one-point straightening type continuous casting machine with a bending radius of 10 m, a slab of size 2001 thickness
■ High-speed casting was performed at a casting speed of 1.5 in. The mold oncillation is a sine curve method, and the vibration frequency is 300 cycles/
It was a win.

実施例1は、本発明方法で選定されたTmおよびη3.
。。を有する前述の第1表に示すパウダーAを用いて、
Nα1ストランドで連続鋳造を行い、比較例1は、鋳造
速度約2 m/sin以上ではパウダー消費量がブレー
クアウト発生限界値以下になると予測される第1表に示
すパウダーEを用いて、Nα2ストランドで連続鋳造を
行った。
Example 1 shows that Tm and η3. selected by the method of the present invention.
. . Using powder A shown in Table 1 above having
Continuous casting was carried out with Nα1 strands, and in Comparative Example 1, Nα2 strands were cast using Powder E shown in Table 1, which is predicted to have powder consumption below the breakout generation limit at casting speeds of about 2 m/sin or higher. Continuous casting was performed.

第3図(a)に実施例1の鋳片引抜きの際の鋳型と鋳片
間の摩擦力を示す引抜力と鋳造速度の推移を示し、第3
図(b)に比較例1の場合を示す。
FIG. 3(a) shows the transition of the drawing force and casting speed, which indicate the frictional force between the mold and the slab during slab drawing in Example 1, and
Figure (b) shows the case of Comparative Example 1.

本発明に従って、前述の0式を満足する物性のパウダー
を用いた実施例1では摩擦力の変化は少なく、安定して
4.0+w/winの高速鋳造を実施することができた
。またパウダー消費量も0.40kg/m”でブレーク
アウト発生限界値の0.30kg/m”より十分高い値
であった。鋳片の表面欠陥を調査した結果、表面疵のな
い良好な鋳片であった。
According to the present invention, in Example 1 using powder with physical properties satisfying the above-mentioned formula 0, there was little change in frictional force, and high-speed casting of 4.0+w/win could be stably performed. Further, the powder consumption was 0.40 kg/m'', which was sufficiently higher than the breakout occurrence limit of 0.30 kg/m''. As a result of investigating the surface defects of the slab, it was found that the slab was in good condition with no surface flaws.

一方、比較例1では摩擦力の増大が頻発し、その都度、
鋳造速度を2m/sin以下に低下させて鋳造を継続し
たが、最終的には鋳造速度2.4s/sinの鋳造中に
ブレークアウトが発生した。比較例1のパウダー消費量
は、鋳造速度4.0および2.4s/sinの場合それ
ぞれ約0.10および0.25kg/m”であり、いず
れの場合も鋳型と鋳片との間隙への溶融パウダーの流入
が不十分となり、摩擦力が増大したものと考えられる。
On the other hand, in Comparative Example 1, the frictional force frequently increased, and each time,
Although casting was continued by lowering the casting speed to 2 m/sin or less, breakout finally occurred during casting at a casting speed of 2.4 s/sin. The powder consumption in Comparative Example 1 was approximately 0.10 and 0.25 kg/m'' at casting speeds of 4.0 and 2.4 s/sin, respectively, and in both cases, the amount of powder consumed in the gap between the mold and the slab was It is thought that the inflow of molten powder was insufficient and the frictional force increased.

また鋳造速度4.抛/sinであった鋳込長40mまで
の鋳片表面の一部に縦割れ疵が発生した。
Also, casting speed 4. Vertical cracks occurred on a part of the slab surface up to a casting length of 40 m.

比較例2として、鋳造速度4.0s/sinで安定鋳造
を実施することができた実施例1のパウダーAを用いて
、鋳造速度を5.4 m/sinに増加させた鋳造を試
みた。この場合、前述の第1図に示すように、パウダー
消費量が0.26kg/■2となり、ブレークアウト発
生限界値以下になるため比較例1と同様、摩擦力の増大
が認められ、ブレークアウトの危険性が増し安定鋳造が
不可能となった。ただし、鋳造速度を4.13s/si
nまで下げると鋳片の引抜力は一定となり、鋳造は安定
化した。
As Comparative Example 2, using Powder A of Example 1, in which stable casting could be performed at a casting speed of 4.0 s/sin, casting was attempted at an increased casting speed of 5.4 m/sin. In this case, as shown in Figure 1 above, the powder consumption amount is 0.26 kg/■2, which is below the breakout occurrence limit value, so as in Comparative Example 1, an increase in frictional force is observed, and breakout occurs. The danger of this increased and stable casting became impossible. However, the casting speed is 4.13s/si.
When it was lowered to n, the drawing force of the slab became constant and the casting became stable.

(発明の効果) 本発明方法によれば、鋳造速度に応じて、パウダー消費
量を常にブレークアウト発生限界値である0、3kg/
m”以上にすることができる。その結果、高速鋳造にお
いても、鋳片のブレークアウトや鋳片表面のたて割れ疵
の発生を防止することが可能となり、表面性状の健全な
鋳片を安定して製造することができる。特に最近のニア
ネットシェイプの連続鋳造においても、従来実施されて
いない3s/sin以上の高速鋳造によって、生産性を
大幅に向上させることができる。
(Effects of the Invention) According to the method of the present invention, powder consumption can be constantly reduced to 0.3 kg/kg, which is the limit value for breakout occurrence, depending on the casting speed.
m" or more. As a result, even during high-speed casting, it is possible to prevent slab breakouts and the occurrence of vertical cracks on the slab surface, and it is possible to stably produce slabs with a sound surface condition. Particularly in recent near-net-shape continuous casting, productivity can be greatly improved by high-speed casting of 3 s/sin or higher, which has not been practiced in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、物性の異なるパウダーを鋳型に添加した時の
鋳造速度と、パウダー消費量および鋳片ブレークアウト
発生状況との関係を示す図である。 第2図は、鋳造速度の増減に応じてブレークアウト発生
限界値である0、3kg/−2のパウダー消費量を確保
できるパウダーの融点と、1300°Cにおける粘度と
の相互関係を示す図である。 第3図(a)は、本発明の実施例における鋳造速度と鋳
片引抜力の推移を示す図であり、第3図(b)は、比較
例における第3図(a)と同様の図である。
FIG. 1 is a diagram showing the relationship between casting speed, powder consumption, and slab breakout occurrence when powders with different physical properties are added to the mold. Figure 2 is a diagram showing the correlation between the melting point of the powder and the viscosity at 1300°C, which can ensure powder consumption of 0.3 kg/-2, which is the limit value for breakout occurrence, as the casting speed increases or decreases. be. FIG. 3(a) is a diagram showing the transition of casting speed and slab pulling force in an example of the present invention, and FIG. 3(b) is a diagram similar to FIG. 3(a) in a comparative example. It is.

Claims (2)

【特許請求の範囲】[Claims] (1)下記の[1]式で求められるパウダー消費量Q(
kg/m^2)が0.3以上となるように鋳造速度Vc
(m/sec)に応じて選ばれた、融点Tm(℃)と1
300℃おける粘度η_1_3_0_0(ポアズ)とを
有するパウダーを鋳型に添加することを特徴とする鋼の
連続鋳造方法。 Q=K・V_c^−^1^.^3^8・(η_1_3_
0_0)^−^0^.^5^8・Tm^−^1^.^5
^8・・・・・[1]・・・1ただし、Kは鋳型のオシ
レーションの条件で決まる定数である。
(1) Powder consumption Q(
Casting speed Vc so that kg/m^2) is 0.3 or more
(m/sec), melting point Tm (°C) and 1
A method for continuous casting of steel, characterized in that a powder having a viscosity of η_1_3_0_0 (poise) at 300° C. is added to a mold. Q=K・V_c^−^1^. ^3^8・(η_1_3_
0_0) ^-^0^. ^5^8・Tm^-^1^. ^5
^8...[1]...1 However, K is a constant determined by the oscillation conditions of the template.
(2)鋳造速度を3m/min以上とする請求項(1)
記載の鋼の連続鋳造方法。
(2) Claim (1) that the casting speed is 3 m/min or more
Continuous casting method of steel as described.
JP24977190A 1990-09-18 1990-09-18 Method for continuously casting steel Pending JPH04127948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24977190A JPH04127948A (en) 1990-09-18 1990-09-18 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24977190A JPH04127948A (en) 1990-09-18 1990-09-18 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH04127948A true JPH04127948A (en) 1992-04-28

Family

ID=17197986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24977190A Pending JPH04127948A (en) 1990-09-18 1990-09-18 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH04127948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685280A1 (en) * 1994-05-30 1995-12-06 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Method for the continuous casting of high-carbon steels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647244A (en) * 1979-09-25 1981-04-28 Nippon Kokan Kk <Nkk> Continuous casting method
JPS646859A (en) * 1987-06-30 1989-01-11 Yokogawa Medical Syst Ultrasonic probe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647244A (en) * 1979-09-25 1981-04-28 Nippon Kokan Kk <Nkk> Continuous casting method
JPS646859A (en) * 1987-06-30 1989-01-11 Yokogawa Medical Syst Ultrasonic probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685280A1 (en) * 1994-05-30 1995-12-06 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Method for the continuous casting of high-carbon steels
US5598885A (en) * 1994-05-30 1997-02-04 Danieli & C. Officine Meccaniche Spa Method for the continuous casting of high-carbon steels

Similar Documents

Publication Publication Date Title
JP2000351049A (en) Continuous casting method
JPH10263767A (en) Method for continuously casting extra-low carbon steel and mold powder for continuous casting
JPH08197214A (en) Powder for continuously casting steel
JP5136994B2 (en) Continuous casting method of steel using mold flux
JP4010929B2 (en) Mold additive for continuous casting of steel
JPH04127948A (en) Method for continuously casting steel
JP5835153B2 (en) Mold flux for continuous casting of steel and continuous casting method
JP3141187B2 (en) Powder for continuous casting of steel
JP3891078B2 (en) Continuous casting method of molten perovskite carbon steel
JP2675376B2 (en) High speed continuous casting of steel
JPH0225254A (en) Continuous casting method of steel
JP4773225B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel using the same
JP2006231399A (en) Mold powder for continuous casting of medium carbon steel, and continuous casting method
JP6743850B2 (en) Continuous casting method for round slabs
JP2001191153A (en) Powder for continuously casting b-containing steel and continuous casting method
JP3319404B2 (en) Steel continuous casting method
JPH04224063A (en) Mold powder for continuous casting
JPH11170007A (en) Method for evaluating continuous casting mold powder of steel for sheet, its mold powder, and continuous casting method of aluminum-killed steel for sheet using it
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
JPH01299742A (en) Method for continuously casting bloom or billet by calcium treatment
JP2005152973A (en) HIGH SPEED CASTING METHOD FOR HIGH Al STEEL
JP3570088B2 (en) Flux for continuous casting of steel
JPH07276019A (en) Continuous casting powder of cu-containing sn steel
JPH10249500A (en) Powder for continuously casting steel and method for continuously casting steel using the powder
JPH0985403A (en) Molding powder for starting continuous casting