JPH0412751B2 - - Google Patents

Info

Publication number
JPH0412751B2
JPH0412751B2 JP60084624A JP8462485A JPH0412751B2 JP H0412751 B2 JPH0412751 B2 JP H0412751B2 JP 60084624 A JP60084624 A JP 60084624A JP 8462485 A JP8462485 A JP 8462485A JP H0412751 B2 JPH0412751 B2 JP H0412751B2
Authority
JP
Japan
Prior art keywords
phosphor
blue
minutes
green
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60084624A
Other languages
Japanese (ja)
Other versions
JPS61243884A (en
Inventor
Hideo Tono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP8462485A priority Critical patent/JPS61243884A/en
Publication of JPS61243884A publication Critical patent/JPS61243884A/en
Publication of JPH0412751B2 publication Critical patent/JPH0412751B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はテレビジヨンブラウン管の製作などに
好適に利用することのできる蛍光体に関する。 〔従来の技術〕 テレビジヨンブラウン管は、例えば第3図及び
第4図に示した構造を有しており、一般に蛍光面
の形成は、ブラツクマトリツクス13を設けたフ
エースプレート11の内面に三色蛍光体絵素R
(red)、G(green)、B(blue)を被着させ、次に
メタル・バツク12の反射効果を増すために、蛍
光体R,G,Bの表面を均一な平滑面とするフイ
ルミング処理を施した後、例えばアルミニウムを
蒸着してメタル・バツク12を設け、最後に蛍光
体部分以外のフイルミング材を燃焼させる一連の
操作により、行なわれる。 ところが、前述の様な蛍光面作成の一連の操作
において、例えばブルー絵素Bの一部(例えば第
4図中斜線を付した領域4)が極く微量のCuの
混入汚染により、元来のブルー発光から例えばグ
リーン発光へと色変化を起す。つまり、ブルー絵
素Bの部分に緑色の斑点を生じブルー絵素の色彩
不良を起すといつたトラブルが、ブラウン管製作
途中でしばしば起る。このブルー絵素のグリーン
変色は微量に混入したCuによりブルー蛍光体
ZnS:AgがZnS:CuあるいはZnS:Cu:Agに組
成変化するためと考えられている。 そこで、この様なCuの汚染の要因を調べてみ
ると、蛍光面形成操作の際に外部よりCu粉、Cu
化合物等が混入する外的要因と、蛍光体自体が
Cuの汚染源を運んでくる内的要因とが考えられ
る。ブルー蛍光体の汚染源を更に調べてみると、
ブルー絵素以外にもグリーン絵素やレツド絵素か
らの場合も結構多い。 このうち、緑色発光蛍光体は、例えばZnS:
Cu、Alの組成を有し、蛍光体表面にCu化合物が
付着する可能性がある。一方、赤色発光蛍光体は
例えばY2O2S:Euの組成を有し、組成上はCuを
含んでいないが、材料が高価なこともあつて、し
ばしば回収・再生して再利用されることがあり、
回収中に青色発光蛍光体、緑色発光蛍光体及びブ
ラウン管作製中に混入するCu等と混在して処理
を受け、特にCuは再生処理の仕様上、CuS等の
沈澱物となつて赤色発光蛍光体表面に付着して残
留する場合が多い。 実は、この様な内的・外的要因によるCuの汚
染のみではブルー絵素の色彩不良の発生率はさほ
ど大きくないが、蛍光面を形成する際のフイルミ
ング工程との関係で色彩不良の発生が増大する。
即ち、フイルミング液に例えばアクリル酸等の有
機酸を含むと、これら酸がCu粉やCu化合物をイ
オン化しCu++の拡散を促進する。このCu++が例
えばブルー絵素部へと浸透し、次の燃焼の工程で
ZnS:CuやZuC:Cu、Agの組成の緑色の斑点を
発生させる。 〔発明の解決すべき問題点〕 本発明は、従来より問題となつていた、蛍光体
の内的・外的要因による汚染、とりわけ蛍光体の
変色を誘起させるCuイオン等による汚染を解消
すべくなされたものである。 〔問題点を解決するための手段〕 前述した従来の問題点を解決する手段として見
出された本発明の蛍光体は、表面の陽イオン交換
体が付着していることを特徴とするものである。 更に詳しくは、本発明の蛍光体は銀及び銅の少
なくとも一方を付活剤として含む硫化亜鉛蛍光体
並びにユーロピウムを付活剤として含むイツトリ
ウムオキシサルフアイド蛍光体からなる群の少な
くとも1種である蛍光体の表面に陽イオン交換体
がバインダーを介して付着していることを特徴と
する表面処理蛍光体である。 〔構成及び作用の説明〕 本発明で使用する陽イオン交換体としては、例
えば構造中にカルボン酸基(−COOH)やスル
ホン酸基(−SO3H)等の陽イオン交換基を有す
る有機物質、構造中に陽イオンを交換吸着乃至は
吸収することのできる無機物質などがある。 有機質陽イオン交換体の具体例としては、ポリ
ビニルアルコール系、ポリアクリル系、ポリアミ
ド系、ポリフエノール系、ポリスチレン系、セル
ロース系の高分子母体にスルホン酸基(−
SO3H)やカルボン酸基(−COOH)などの陽イ
オン交換基を有する陽イオン交換樹脂;及び金属
イオンとのキレート形成能を有するキレート性イ
オン交換樹脂などがある。又このキレート樹脂の
場合は普通のイオン交換反応と異なり金属イオン
に対する選択吸着性が大きく、イミノジ酢酸型の
配位基を導入したものなどは銅イオン(Cu2+
を選択吸着し、本発明の目的により効果的なもの
もある。 また、無機質陽イオン交換体としては、ゼオラ
イト、沸石等陽イオン交換能を有する無機物質を
挙げることができる。 蛍光体表面に陽イオン交換体を付着させる具体
的方法としては、例えば第1図に示した様に蛍光
体1の表面に必要に応じてまずバインダー層2を
設け、このバインダー層2上に陽イオン交換体3
を望ましくは蛍光体表面の全域に亘つて均一且つ
一様に付着させるのがとりわけ有効である。例え
ば微細なイオン交換樹脂及びイオン交換繊維を作
成し、第1図の様にバインダーを介して蛍光体表
面に付着させるのも1つの方法であるが、平易な
方法としては、イオン交換基を内在する物質、例
えばカルボキシル基(−COOH)をもつアルギ
ン酸を使用する方法がある。具体的方法として
は、陽イオン交換体として水溶性のアルギン酸ナ
トリウムを使用する場合、溶液に蛍光体をデイツ
プ(浸漬)するだけでは安定な膜を形成すること
は出来ない。まず蛍光体表面の第一層目に、蛍光
体への付着性が有り、アルギン酸ナトリウムを不
溶化せしめる必要がある。この様なバインダーと
してはコロイダルアルミナAlOOHが好適であ
る。 上記の場合アルギン酸ナトリウム溶液の塗布層
においてコロイダルアルミナと接触する側の部分
は、カルボキシル基(−COOH)の水素原子が
Alイオンによつて置換され不溶化膜を形成する。
この場合過剰のAlと反応させると、アルギン酸
ナトリウム溶液塗布層の外側のCuイオン等の汚
染物質を交換すべきフリーのイオン交換基−
COOHがなくなるので、Alとの置換量は膜形成
必要量にとどめることが大事である。 又、膜形成反応後簡単にアルカリ処理してやれ
ば最外殻のカルボキシル基はAlを離脱させ、金
属吸着可能な状態とすることができる。 又、別の方法として、コロイダルアルミナの代
りにリン酸イオンを付着せしめ、次に金属陽イオ
ン(Mg++、Ca++、Zn++、Al++、Ba++etc)を添
加し、リン酸金属塩なるバインダー層形成を行な
い、これに例えば水溶性のアルギン酸ナトリウム
塩の水溶液を添加すると蛍光体表面に付着してい
るAl等の二価乃至は三価の金属イオン乃至は蛍
光体中のCuイオン等の汚染物質と反応して不溶
性の安定したアルギン酸アルミニウム等のイオン
交換性保護膜を形成する。 かくして、蛍光体表面に陽イオン交換体を付着
させておくことにより、蛍光体汚染の内的要因の
場合を考えると、蛍光体製造工程(再生工程も含
む)中に除去困難な微量のCu金属、Cu化合物、
Cuイオンが存在している場合、これを交換吸着
して化学的に不活性化することができ、他の蛍光
体の汚染も併せて防止できる。 また、外的要因による汚染物質の場合も、同様
に交換吸着して化学的に不活性化して蛍光体内部
への拡散浸透を防止することができる。 汚染防止膜として単なるマイクロカプセルでは
Cu++イオンの拡散を抑えるほど緻密な膜は出来
ず大きな効果は得られない。 〔実施例〕 以下、具体的実施例を示して本発明を更に詳し
く説明する。 実施例 1 適当な条件で合成された緑色発光蛍光体
(ZnS:Cu、Al)にCu20ppmをCuSの形で添加し
強制汚染させて調製した蛍光体100gを純水400ml
に懸濁させ撹拌しながら、コロイダルアルミナを
蛍光体に対し50ppm添加し30分撹拌後、アルギン
酸ナトリウム水溶液をアルギン酸ナトリウムとし
て300ppm添加し、30分撹拌後、NH4OHにてPH
8〜9に調整し10分撹拌後、脱水し、乾燥する。 かくして処理された本発明の緑色発光蛍光体の
青色発光蛍光体への変色対抗性を、前述の処理を
受けていない未処理の緑色発光蛍光体との比較に
おいて次の様な方法にて調べた。 パネルに緑色のベタ膜を処理、未処理の両蛍光
体の各々を塗り、全面露光し、次に各々について
青色のベタ膜を上塗り全面露光し、さらにフイル
ミング液(アクリルエマルジヨン)を塗布する。
こうして出来た各々のパネルを450℃30分ベーキ
ングする。 変色評価は、上塗り青色面に発生した緑色発光
斑点の数をカウントし、2枚の塗布パネルの平均
個数を見た。結果を第1表に示した。
[Industrial Application Field] The present invention relates to a phosphor that can be suitably used in the production of television cathode ray tubes. [Prior Art] A television cathode ray tube has the structure shown in FIGS. 3 and 4, for example, and the phosphor screen is generally formed by forming three colors on the inner surface of a face plate 11 provided with a black matrix 13. Phosphor picture element R
(red), G (green), and B (blue), and then filming treatment to make the surfaces of the phosphors R, G, and B uniform and smooth in order to increase the reflective effect of the metal back 12. After that, for example, aluminum is vapor deposited to provide the metal back 12, and finally, the filming material other than the phosphor portion is burned. However, in the series of operations for creating the phosphor screen as described above, for example, a part of the blue picture element B (for example, the shaded area 4 in Fig. 4) was contaminated with a very small amount of Cu, and the original color was lost. A color change occurs, for example, from blue luminescence to green luminescence. In other words, troubles such as green spots appearing in the blue picture element B and poor coloring of the blue picture element often occur during the manufacture of cathode ray tubes. The green discoloration of this blue picture element is due to the trace amount of Cu mixed in with the blue phosphor.
This is thought to be due to a compositional change from ZnS:Ag to ZnS:Cu or ZnS:Cu:Ag. Therefore, when we investigated the causes of such Cu contamination, we found that Cu powder, Cu
External factors such as compounds, etc., and the phosphor itself
This is thought to be an internal factor that brings the source of Cu contamination. Further investigation into the source of contamination of blue phosphor reveals that
In addition to blue pixels, there are also quite a few cases of green pixels and red pixels. Among these, green-emitting phosphors include, for example, ZnS:
It has a composition of Cu and Al, and there is a possibility that Cu compounds may adhere to the surface of the phosphor. On the other hand, red-emitting phosphors have a composition of Y 2 O 2 S:Eu, for example, and do not contain Cu, but because the materials are expensive, they are often collected and recycled for reuse. Sometimes,
During recovery, the blue-emitting phosphor, green-emitting phosphor, and Cu mixed in during the manufacture of cathode ray tubes are mixed together and processed, and due to the specifications of the recycling process, Cu in particular becomes precipitates such as CuS and becomes the red-emitting phosphor. It often sticks to surfaces and remains. In fact, the incidence of color defects in blue picture elements is not very high due to Cu contamination alone due to internal and external factors, but color defects may occur due to the filming process when forming the phosphor screen. increase
That is, when the filming liquid contains an organic acid such as acrylic acid, these acids ionize Cu powder or Cu compounds and promote the diffusion of Cu ++ . This Cu ++ penetrates into the blue pixel area, for example, and is removed in the next combustion process.
Generates green spots with compositions of ZnS:Cu and ZuC:Cu,Ag. [Problems to be Solved by the Invention] The present invention aims to eliminate contamination of phosphors caused by internal and external factors, which has been a problem in the past, and in particular contamination by Cu ions and the like that induce discoloration of phosphors. It has been done. [Means for Solving the Problems] The phosphor of the present invention, which was discovered as a means to solve the above-mentioned conventional problems, is characterized by having a cation exchanger attached to its surface. be. More specifically, the phosphor of the present invention is at least one member of the group consisting of a zinc sulfide phosphor containing at least one of silver and copper as an activator and a yttrium oxysulfide phosphor containing europium as an activator. This is a surface-treated phosphor characterized in that a cation exchanger is attached to the surface of the phosphor via a binder. [Description of structure and action] The cation exchanger used in the present invention is, for example, an organic substance having a cation exchange group such as a carboxylic acid group (-COOH) or a sulfonic acid group (-SO 3 H) in its structure. , inorganic substances that can exchange, adsorb, or absorb cations in their structures. Specific examples of organic cation exchangers include polyvinyl alcohol, polyacrylic, polyamide, polyphenol, polystyrene, and cellulose polymers with sulfonic acid groups (-
Examples include cation exchange resins having cation exchange groups such as SO 3 H) and carboxylic acid groups (-COOH); and chelating ion exchange resins having the ability to form chelates with metal ions. In addition, in the case of this chelate resin, unlike ordinary ion exchange reactions, it has a high selective adsorption property for metal ions, and those with iminodiacetic acid type coordination groups introduce copper ions (Cu 2+ ).
There are also some that selectively adsorb and are more effective for the purpose of the present invention. Examples of the inorganic cation exchanger include inorganic substances having cation exchange ability such as zeolite and zeolite. As a specific method for attaching a cation exchanger to the surface of a phosphor, for example, as shown in FIG. Ion exchanger 3
It is particularly effective to deposit the phosphor evenly and uniformly over the entire surface of the phosphor. For example, one method is to create fine ion-exchange resins and ion-exchange fibers and attach them to the surface of the phosphor via a binder as shown in Figure 1. There is a method using a substance that has a carboxyl group (-COOH), for example, alginic acid. Specifically, when water-soluble sodium alginate is used as the cation exchanger, it is not possible to form a stable film simply by dipping the phosphor in a solution. First, the first layer on the surface of the phosphor has adhesion to the phosphor, and it is necessary to make sodium alginate insoluble. Colloidal alumina AlOOH is suitable as such a binder. In the above case, in the coating layer of the sodium alginate solution, the hydrogen atoms of the carboxyl group (-COOH) are in contact with the colloidal alumina.
It is replaced by Al ions and forms an insolubilized film.
In this case, when reacted with excess Al, free ion exchange groups, which should exchange contaminants such as Cu ions on the outside of the sodium alginate solution coating layer, are released.
Since COOH is used up, it is important to limit the amount of Al replacement to the amount necessary for film formation. Furthermore, if the film is simply treated with alkali after the film forming reaction, the carboxyl groups in the outermost shell can release Al and become capable of adsorbing metals. Another method is to attach phosphate ions instead of colloidal alumina, then add metal cations (Mg ++ , Ca ++ , Zn ++ , Al ++ , Ba ++ etc.), A binder layer of metal phosphate is formed, and when an aqueous solution of water-soluble sodium alginate is added to this, divalent or trivalent metal ions such as Al attached to the surface of the phosphor or in the phosphor are added. reacts with contaminants such as Cu ions to form an insoluble and stable ion exchange protective film such as aluminum alginate. In this way, by attaching a cation exchanger to the surface of the phosphor, considering the case of internal factors of phosphor contamination, trace amounts of Cu metal that are difficult to remove during the phosphor manufacturing process (including the regeneration process) can be removed. , Cu compound,
If Cu ions are present, they can be exchange-adsorbed and chemically inactivated, and contamination of other phosphors can also be prevented. Furthermore, in the case of contaminants caused by external factors, they can be similarly exchanged and adsorbed to chemically inactivate them, thereby preventing them from diffusing into the interior of the phosphor. Simply using microcapsules as a pollution prevention membrane
A film that is dense enough to suppress the diffusion of Cu ++ ions cannot be created, and no significant effect can be obtained. [Example] Hereinafter, the present invention will be explained in more detail by showing specific examples. Example 1 100 g of a phosphor prepared by adding 20 ppm of Cu in the form of CuS to a green-emitting phosphor (ZnS: Cu, Al) synthesized under appropriate conditions and forcibly contaminating it was added to 400 ml of pure water.
While stirring, add 50 ppm of colloidal alumina to the phosphor, stir for 30 minutes, add 300 ppm of sodium alginate aqueous solution as sodium alginate, stir for 30 minutes, and PH with NH 4 OH.
After adjusting the temperature to 8 to 9 and stirring for 10 minutes, dehydrate and dry. The color change resistance of the thus treated green-emitting phosphor of the present invention to the blue-emitting phosphor was investigated in the following manner in comparison with the untreated green-emitting phosphor that had not undergone the above-mentioned treatment. . Each panel is coated with a green solid film and both untreated phosphors, exposed to light on the entire surface, then a blue solid film is overcoated on each panel and exposed on the entire surface, and then a filming liquid (acrylic emulsion) is applied.
Bake each panel thus made at 450°C for 30 minutes. For evaluation of discoloration, the number of green luminescent spots generated on the blue surface of the top coat was counted, and the average number of spots on the two coated panels was determined. The results are shown in Table 1.

【表】 尚変色斑点は0.2mm〜1mm程度の径であつた。 実施例 2 現像廃液等から回収された赤色発光蛍光体
(Y2O2S:Eu)を適当な条件で再生処理したもの
について実施例1と同様に処理し、その際アルギ
ン酸ナトリウムの添加量を変えて本発明の蛍光体
を作製し、また下塗りを赤色ベタ膜に変えた以外
は実施例1と同一のパネルを得、青色面の変色発
生個性を調べた。結果を第2図に示した。 実施例 3 適当な条件で合成された青色発光蛍光体ZuS:
Ag100gを純水400mlに懸濁させ撹拌しながら
H4P2O7の10wt%1mlを添加し、30分撹拌後に
Al2(SO43の10wt%水溶液を15ml加え30分間撹
拌、静置後上澄みを除去し純水にて洗浄し脱水し
た後、再度純水400mlに懸濁させ撹拌しながら、
アルギン酸ナトリウム300ppm添加し以後実施例
1同様に処理して処理蛍光体を得た。 この蛍光体の評価は、まずCu20ppmをCuSの
形で添加し強制汚染された赤色発光蛍光体をパネ
ル上に下塗りし、前述の処理蛍光体、あるいは前
述の処理を受けていない未処理の青色発光蛍光体
を上塗りし、実施例1と同様に行なつた。 その結果、本発明の蛍光体の場合、Cu++によ
り強制汚染された赤色発光蛍光体からの汚染に対
して高い対抗性を有していたが、陽イオン交換体
を付着していない未処理の蛍光体はCu++の汚染
を受けて変色の発生度合が高かつた。 実施例 4 適当な条件で合成された青色発光蛍光体ZuS:
Ag100gを純水400mlに懸濁させ撹拌しながらコ
ロイダルアルミナを蛍光体に対して100ppm添加、
30分撹拌後、アルギン酸ナトリウム水溶液をアル
ギン酸ナトリウムとして蛍光体重量に対し
400ppm添加し、30分撹拌後NH4OHにてPH8〜
9に調整し10分撹拌後、脱水し乾燥する。 かくして調整された本発明の蛍光体を下記の様
な方法で耐変色性の効果を調べた。強制汚染
(Cu20ppmをCuSの形で添加したもの)された赤
色発光蛍光体を下塗りし、本発明の青色発光蛍光
体を上塗りしたパネル及び比較のため未処理青色
発光蛍光体を用いたパネルについて、実施例1と
同一の方法で変色発生個数を調べた。結果を第2
表に示した。
[Table] The discolored spots had a diameter of about 0.2 mm to 1 mm. Example 2 A red light-emitting phosphor (Y 2 O 2 S: Eu) recovered from developer waste, etc. was regenerated under appropriate conditions and treated in the same manner as in Example 1, with the addition amount of sodium alginate being changed. The same panel as in Example 1 was obtained except that the phosphor of the present invention was changed and the undercoat was changed to a red solid film, and the characteristics of discoloration on the blue surface were investigated. The results are shown in Figure 2. Example 3 Blue-emitting phosphor ZuS synthesized under appropriate conditions:
Suspend 100g of Ag in 400ml of pure water and stir
Add 1 ml of 10wt% H 4 P 2 O 7 and stir for 30 minutes.
Add 15 ml of a 10 wt% aqueous solution of Al 2 (SO 4 ) 3 , stir for 30 minutes, leave to stand, remove the supernatant, wash with pure water, dehydrate, suspend in 400 ml of pure water again, and stir while stirring.
300 ppm of sodium alginate was added and the treatment was then carried out in the same manner as in Example 1 to obtain a treated phosphor. The evaluation of this phosphor was performed by first coating a panel with a red-emitting phosphor that was forcibly contaminated by adding 20 ppm of Cu in the form of CuS, and using either the previously mentioned treated phosphor or the untreated blue-emitting phosphor that had not undergone the above treatment. A phosphor was overcoated and the same procedure as in Example 1 was carried out. As a result, the phosphor of the present invention had high resistance to contamination from the red-emitting phosphor that was forcibly contaminated with Cu ++ , but the untreated phosphor without the cation exchanger attached The phosphors were contaminated with Cu ++ and had a high degree of discoloration. Example 4 Blue-emitting phosphor ZuS synthesized under appropriate conditions:
Suspend 100g of Ag in 400ml of pure water and add 100ppm of colloidal alumina to the phosphor while stirring.
After stirring for 30 minutes, convert the sodium alginate aqueous solution into sodium alginate based on the fluorescent weight.
After adding 400ppm and stirring for 30 minutes, adjust the pH to 8~ with NH 4 OH.
After adjusting the temperature to 9 and stirring for 10 minutes, dehydrate and dry. The effect of color fastness of the thus prepared phosphor of the present invention was examined in the following manner. For panels primed with a red-emitting phosphor that has been forcibly contaminated (addition of 20 ppm Cu in the form of CuS) and overcoated with a blue-emitting phosphor of the present invention, and for comparison with an untreated blue-emitting phosphor, The number of discolored samples was examined in the same manner as in Example 1. Second result
Shown in the table.

【表】 実施例 5 公知の条件で合成された青色発光螢光体
(ZuS:Ag)100gを純水400mlに懸濁させ、撹拌
しながらピロリン酸(H4P2O7)の10wt%水溶液
1mlを添加し、30分間撹拌後に硫酸アルミニウム
〔Al2(SO43〕の10wt%溶液15mlを加え、30分間
撹拌する。次に30分間静置後に上澄み液を除去
し、残部を純水で洗浄後に濾過及び脱水する。 濾過脱水ケーキを純水400mlに再度懸濁させ、
撹拌しながらPVA(ポリビニルアルコール)溶解
液(5%溶液)1.6mlを添加し、螢光体に対して
800ppmの量で添加後に30分間撹拌する。 次にアミノアセトアルデヒド400mlを添加して
30分間撹拌し、PVAをアミノアセタール化して
螢光体表面に変性PVA被膜を硬化固着させる。 更に、タンニン酸200ppmを添加して20分間撹
拌後に硫酸亜鉛溶液を亜鉛重量として亜鉛
1000ppm相当量添加し、20分間撹拌後に静置する
ことによつて、螢光体表面被膜である変性PVA
膜表層にタンニン酸金属キレートが生成する。 上澄み液除去後に水洗、濾過及び脱水を行なつ
て得られる脱水ケーキを110℃で乾燥し、更に300
メツシユのナイロン篩で分級することにより、通
過分として、表面にPVAを基層とし、その表層
にタンニン酸金属(Zn)キレートが結合したイ
オン交換体を設けた螢光体を得た。 この螢光体の変色対抗性を前記実施例3の方法
で評価した処、下記の第3表の結果を得た。該表
から、未処理螢光体及びPVA被層固着用下地処
理(リン酸アルミニウム付着処理)螢光体に比し
て、本願発明の螢光体においては、変色発生個数
が明らかに少いことが判る。
[Table] Example 5 100 g of a blue-emitting phosphor (ZuS:Ag) synthesized under known conditions was suspended in 400 ml of pure water, and a 10 wt% aqueous solution of pyrophosphoric acid (H 4 P 2 O 7 ) was added while stirring. After stirring for 30 minutes, add 15 ml of a 10 wt% solution of aluminum sulfate [Al 2 (SO 4 ) 3 ] and stir for 30 minutes. Next, after standing for 30 minutes, the supernatant liquid is removed, and the remainder is washed with pure water, filtered, and dehydrated. Resuspend the filtered and dehydrated cake in 400ml of pure water,
While stirring, add 1.6 ml of PVA (polyvinyl alcohol) solution (5% solution) and apply it to the phosphor.
Stir for 30 minutes after addition in an amount of 800 ppm. Next, add 400ml of aminoacetaldehyde.
Stir for 30 minutes to convert PVA into aminoacetal and harden and fix the modified PVA film on the surface of the phosphor. Furthermore, after adding 200 ppm of tannic acid and stirring for 20 minutes, the zinc sulfate solution was converted to zinc by weight.
By adding an amount equivalent to 1000 ppm and leaving it to stand after stirring for 20 minutes, the modified PVA, which is a phosphor surface coating, is formed.
Tannic acid metal chelate is generated on the membrane surface layer. After removing the supernatant liquid, the dehydrated cake obtained by washing with water, filtration and dehydration was dried at 110°C, and further dried at 300°C.
By classifying with a mesh nylon sieve, a phosphor having a PVA base layer on the surface and an ion exchanger bonded to metal tannate (Zn) chelate was obtained as a passed through material. The resistance to discoloration of this phosphor was evaluated using the method described in Example 3, and the results shown in Table 3 below were obtained. From the table, it is clear that the number of discolourations occurring in the phosphor of the present invention is clearly smaller than that of the untreated phosphor and the phosphor treated with a base treatment for fixing the PVA layer (aluminum phosphate adhesion treatment). I understand.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、Cu++
等の汚染物質による蛍光体の汚染絵を防止するこ
とができ、例えば従来ブラウン管製造工程でしば
しば発生していたブルー絵素の変化不良を抑制
し、変色発生率を減少させることが出来る。
As explained above, according to the present invention, Cu ++
It is possible to prevent the phosphor from being contaminated by contaminants such as, for example, to suppress the defective changes in blue picture elements that often occur in the conventional cathode ray tube manufacturing process, and to reduce the incidence of discoloration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の蛍光体の1構成例を説明す
るための横断面図である。第2図は、実施例で作
製した本発明の蛍光体の変色防止効果を示した曲
線図である。第3図は、テレビジヨンブラウン管
蛍光面の横断面図である。第4図は、テレビジヨ
ンブラウン管蛍光面をフエースプレート側から透
視した透視図である。 1……蛍光体、2……バインダー層、3……陽
イオン交換体層、11……フエースプレート、1
2……メタルバツク、R……レツド絵素、G……
グリーン絵素、B……ブルー絵素。
FIG. 1 is a cross-sectional view for explaining one configuration example of the phosphor of the present invention. FIG. 2 is a curve diagram showing the discoloration prevention effect of the phosphor of the present invention produced in Examples. FIG. 3 is a cross-sectional view of a television cathode ray tube fluorescent screen. FIG. 4 is a perspective view of the television cathode ray tube fluorescent screen seen from the face plate side. DESCRIPTION OF SYMBOLS 1... Phosphor, 2... Binder layer, 3... Cation exchanger layer, 11... Face plate, 1
2...Metal back, R...Red picture element, G...
Green picture element, B... Blue picture element.

Claims (1)

【特許請求の範囲】 1 銀及び銅の少なくとも一方を付活剤として含
む硫化亜鉛蛍光体並びにユーロピウムを付活剤と
して含むイツトリウムオキシサルフアイド蛍光体
からなる群の少なくとも1種である蛍光体の表面
に陽イオン交換体がバインダーを介して付着して
いることを特徴とする表面処理蛍光体。 2 上記バインダーがコロイダルアルミナ及びリ
ン酸金属塩の少なくとも1種であることを特徴と
する特許請求の範囲第1項記載の表面処理蛍光
体。
[Scope of Claims] 1. A phosphor that is at least one member of the group consisting of a zinc sulfide phosphor containing at least one of silver and copper as an activator and a yttrium oxysulfide phosphor containing europium as an activator. A surface-treated phosphor characterized by having a cation exchanger attached to the surface via a binder. 2. The surface-treated phosphor according to claim 1, wherein the binder is at least one of colloidal alumina and metal phosphate.
JP8462485A 1985-04-22 1985-04-22 Phosphor Granted JPS61243884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8462485A JPS61243884A (en) 1985-04-22 1985-04-22 Phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8462485A JPS61243884A (en) 1985-04-22 1985-04-22 Phosphor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5041737A Division JP2739720B2 (en) 1993-02-08 1993-02-08 Method for producing surface-treated phosphor

Publications (2)

Publication Number Publication Date
JPS61243884A JPS61243884A (en) 1986-10-30
JPH0412751B2 true JPH0412751B2 (en) 1992-03-05

Family

ID=13835828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8462485A Granted JPS61243884A (en) 1985-04-22 1985-04-22 Phosphor

Country Status (1)

Country Link
JP (1) JPS61243884A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033976B2 (en) * 1990-05-18 2000-04-17 化成オプトニクス株式会社 Phosphor and manufacturing method thereof
JP3774046B2 (en) * 1997-10-15 2006-05-10 大日本印刷株式会社 Phosphor composition, phosphor paste and photosensitive dry film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943076A (en) * 1972-08-30 1974-04-23
JPS4943075A (en) * 1972-08-29 1974-04-23
JPS5437081A (en) * 1977-08-29 1979-03-19 Hitachi Ltd Method of producing pigment-attached fluorescent substance
JPS5889680A (en) * 1981-11-20 1983-05-28 Kasei Optonix Co Ltd Fluorescent substance of calcium sulfide having improved water vapor resistance and water resistance and its preparation
JPS5889681A (en) * 1981-11-20 1983-05-28 Kasei Optonix Co Ltd Fluorescent substance of calcium sulfide having improved water vapor resistance and water resistance and its preparation
JPS5917753A (en) * 1982-07-20 1984-01-30 Nippon Telegr & Teleph Corp <Ntt> Connecting system of bus cable
JPS5925874A (en) * 1982-08-03 1984-02-09 Toshiba Corp Preparation of fluorescent substance containing pigment
JPS6021632A (en) * 1983-07-18 1985-02-04 Yaesu Musen Co Ltd Noise blanker
JPS6366876A (en) * 1986-07-17 1988-03-25 チヤ−ルス イ−. シ−ルズ Connector applicator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943075A (en) * 1972-08-29 1974-04-23
JPS4943076A (en) * 1972-08-30 1974-04-23
JPS5437081A (en) * 1977-08-29 1979-03-19 Hitachi Ltd Method of producing pigment-attached fluorescent substance
JPS5889680A (en) * 1981-11-20 1983-05-28 Kasei Optonix Co Ltd Fluorescent substance of calcium sulfide having improved water vapor resistance and water resistance and its preparation
JPS5889681A (en) * 1981-11-20 1983-05-28 Kasei Optonix Co Ltd Fluorescent substance of calcium sulfide having improved water vapor resistance and water resistance and its preparation
JPS5917753A (en) * 1982-07-20 1984-01-30 Nippon Telegr & Teleph Corp <Ntt> Connecting system of bus cable
JPS5925874A (en) * 1982-08-03 1984-02-09 Toshiba Corp Preparation of fluorescent substance containing pigment
JPS6021632A (en) * 1983-07-18 1985-02-04 Yaesu Musen Co Ltd Noise blanker
JPS6366876A (en) * 1986-07-17 1988-03-25 チヤ−ルス イ−. シ−ルズ Connector applicator

Also Published As

Publication number Publication date
JPS61243884A (en) 1986-10-30

Similar Documents

Publication Publication Date Title
JPS5910709B2 (en) Fluorescent material with filter
US4473634A (en) Coated phosphors, method for producing same and articles employing same
EP0019710B1 (en) Filter-coated phosphor
JPH0412751B2 (en)
US5336080A (en) Cathode-ray tube phosphor
JP2739720B2 (en) Method for producing surface-treated phosphor
JPH03217483A (en) Treatment of fluorescent substance
US3927240A (en) Haze resistant cathode luminescent sulfide phosphors and method of preparing same
US5368886A (en) Method for producing surface treated phosphor particles
US4407916A (en) Process for forming fluorescent screen
JPH02209989A (en) Production of fluorescent substance having ultramicrospherical silicon dioxide applied thereto
JPS598378B2 (en) Pigmented phosphor and its slurry
JPH02504162A (en) “Non-crushing” method for regenerating phosphors used in three-color television picture tubes
KR100189803B1 (en) Surface processing method of fluorescent substance
JPH0559357A (en) Fluorescent substance having surface treated with boron nitride
JPS5914074B2 (en) How to treat phosphors
JPS6123836B2 (en)
JPH0420587A (en) Fluophor and el element
JP3491448B2 (en) Phosphors and phosphor slurries for cathode ray tubes
JPS5944328B2 (en) Method for purifying green-emitting phosphor
KR950013864B1 (en) Screen manufacture method of crt
KR950006095B1 (en) Re-treating method of re-collected fluorescent material
KR860000434B1 (en) Process for forming fluorescent screen
KR930007462B1 (en) Method of making a fluoresent screen of color braun tube
JPS5981832A (en) Pattern forming method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees