JPH0412717B2 - - Google Patents

Info

Publication number
JPH0412717B2
JPH0412717B2 JP62255604A JP25560487A JPH0412717B2 JP H0412717 B2 JPH0412717 B2 JP H0412717B2 JP 62255604 A JP62255604 A JP 62255604A JP 25560487 A JP25560487 A JP 25560487A JP H0412717 B2 JPH0412717 B2 JP H0412717B2
Authority
JP
Japan
Prior art keywords
lipids
medium
culture
bacterial cells
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62255604A
Other languages
Japanese (ja)
Other versions
JPS63119687A (en
Inventor
Osamu Suzuki
Toshihiro Yokochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP25560487A priority Critical patent/JPS63119687A/en
Publication of JPS63119687A publication Critical patent/JPS63119687A/en
Publication of JPH0412717B2 publication Critical patent/JPH0412717B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明はモルテイエレラ属に属するイサベリ
ナ、ビナセア、ラマニア・アングリスポラ及びナ
ナの菌株を炭水化物を炭素源とする培地に培養す
ることにより脂質含量の高い菌体を培地中に生産
し、その菌体より脂質〔中性脂質(油脂など)、
極性脂質(リン脂質、糖脂椎)〕を採取する生産
性の高い脂質の製造方法に関するものである。現
在までに報告されている脂質(油脂)含量の高い
糸状菌(かび)としては、ヂオトリクム・カンデ
イダム、フザリウム・リニ、フザリウム・ブルビ
ゲナム、ペニシリウム・リラシナム、ペリシリウ
ム・ソピ、ペリシリウム・スピニユロサム、アス
ペリギルス・ニデユランス、ムコール・サシネロ
イデス(山田浩一著、食品工業微生物学63p)、
モルテイエレラ・ビナセア〔C.G.C.Chestes、J.
F.Pebssdy、J.gen.Microbial、41、127(1965)〕、
アスペリギルス・テレウス、アスペルギルス・オ
クラシウス、クラドスポリウム・フルゴム、クラ
ドスポリウム・ヘルバルム、ペニシリウム・クラ
ジオリ〔J.Singh、M.G.Seed、J.Sci.Fd.Agric、.
23、1113(1972)〕などがある。これらの菌はいず
れも菌体内の油脂含量が25〜65%であることは認
められているが、いずれの糸状菌もフラスコスケ
ールあるいは小型培養槽による菌体の増殖に際し
ては原料炭素源の炭水化物濃度は20〜60g/に
とどまつていた。しかも脂質(油脂)含量の高い
菌体を得る場合、一般に糸状菌菌体の増殖は悪
く、多くは原料炭素源が完全に消費されることな
く残つている程度の菌体増殖量しか認められてい
ない〔例えばモルテイエレラ・ビナセアの最高の
結果で、初期グルコース濃度21.2g/、10日間
20℃で培養、17gのグルコースを消費、菌体増殖
量(乾燥重量)4.7g/、生成脂質量3g/、
C.G.c.Clesler、J.F.Peberdy、J.gen.Microbirl.、
41、127(1965)〕。又、ペラシリウム・スピニユロ
サムでは原料炭素源である糖蜜の濃度を高くして
も、その割合では菌体の増殖量は増加せず、逆に
炭素源の消費割合が減少することを認めている。
その場合、最高の結果で糖蜜濃度164g/で出
発して30℃で6日間で糖蜜の消費量40%、菌体増
殖量(乾燥重量)22g/、油脂生成量25g/
にとどまつていた〔A.W.Klen、T.K.Walhss.
Can.J.Micsobial、、85(1961)〕。 本発明はモルテイエレラ属に属するイサベリ
ナ、ビナセア、ラマニアナ・アングリスポラ及び
ナナの糸状菌菌株が炭水化物を炭素源として35〜
70%の脂質含量を有することを見出し、しかも、
細菌や酵母と異なり菌糸で増殖する糸状菌は一般
に通気攪拌培養における菌体の高密度培養は困難
とされていたのに対してモルテイエレラ属に属す
る前記糸状菌が高密度培養が可能であることを見
出した。すなわち、モルテイエレラ属に属する特
定の糸状菌が高濃度の炭水化物を炭素源とする培
地を用いての、通気攪拌培養において攪拌速度を
早くすることにより、菌糸が伸ばさず小単位で増
殖し、脂質含量の高い状態で菌対の高密度培養が
可能であること、たとえば原料炭水化物(グルコ
ース270g/)が30℃、72時間の菌体培養によ
り完全に消費され、増殖菌体量(乾槽重量)100
g/以上、脂質生成量約50g/培地、脂質含
量約50%が得られることを見出し、本発明は完成
するに致つた。 すなわち、本発明はモルテイエレラ属に属する
イサベリナ、ビナセア、ラマニアナアングリスポ
ラ及びナナの菌株を炭水化物を炭素源とする培地
に培養することにより脂質含量の高い菌体を培地
中に高密度に製造する方法並びにその菌体より脂
質〔中性脂質(油脂など)、極性脂質(リン脂質、
糖脂質)〕を採取する生産性の高い脂質の製造方
法である。 本発明の使用菌はモルテイエレラ
(Mortierella)属のイサベリア(isabellina)
〔IFO7824、7873、7884、8183、8308〕、ビナセア
(Vinacea)〔IFO.6738〕ラマニアナ・アングリス
ポラ(ramanniana vas.anglispora)
〔IFO.8187〕、ナナ(nana)〔IFO.8794〕の各種菌
株である。 なお、上記した菌はいずれも財団法人発酵研究
所に保存され、IFOカタロク(菌株目録)に記載
されている糸状菌である。 上記の糸状菌を培養する培地の炭素源である炭
水化物としては、例えばグルコース、フラクトー
ス、サツカロース、糖蜜、デン粉、木材糖化液な
どが用いられる。炭水化物は培地1中に60〜
400g用いるのが好ましい。もと窒素源としては、
例えば硝酸アンモニウム、硫酸アンモニム、塩化
アンモニウム、リン酸アンモニウムなどの様な無
機窒素源、または尿素、ペプトン、酵母エキス、
コーン・スリー・リカーなど有機窒素源が用いら
れる。無機塩としては、例えばKH2、PO4、K2
HPO4、NaCl、F2SO4、7H2O、MgSO4・7H2O、
ZnSO4・7H2Oなどが用いられる。その他必要に
応じて微量要素、その他の栄養源を添加する。 上記の糸状菌の培養は通常液体培地で通気攪拌
培養などにより行われる。培地のPHは4.0〜6.0が
良く、攪拌速度300〜800prm、通気量0.5〜2vvm
2日〜15日培養が行われる。かくして脂質含量の
高い菌体が培地中に高密度で生産させるので、培
養物より菌体を分離し、脂質が糸状菌の菌体中に
含まれるので、この菌体より脂質を採取するのが
好適である。培養物より菌体の分離に当つては菌
体が菌糸があまりのびず極めて小単位(1〜10細
胞)で培養されており、従つて、例えば遠心脱水
器などにより極めて容易に分離され、乾燥度の高
い菌体(含水率約60%)になる利点を有すること
も明らかになつた。脂質の採取は常法に従つて例
えば溶媒抽出などによつて行われる。 かくして、本発明によれば高濃度の炭水化物を
炭素源として脂質含量の高い菌体を培地中に高濃
度に製造すること並びに培養された菌体より脂質
を採取することにより生産性の高い脂質の製造が
可能になる。このことは特に微生物による脂質の
生産を目的とした菌体培養に対する装置上の大き
な利点を有する。培地量に対する生産実績として
得られた菌体増殖量100g/、脂質生産量50
g/の場合で、生産に要する時間を考慮に入れ
た菌体の生産性は1.7g/・hrであり、1000m3
の培養液が年間稼動する培養槽の組合せ(例えば
800m3の培養槽3基)で菌体が14000t/年、その
内脂質が7000t/年にのぼる生産を確保できるも
のである。また、生産脂質は95%以上が脂質(ト
リグリセリド)であり、食料を始めとし、加工用
油脂原料などとして利用できるものであり、リン
脂質、糖脂質は医薬品界面活性剤などとして利用
することはもちろん、脂質抽出後の菌体は主成分
であるタンパク質、核酸はそれぞれ飼料、医薬品
などの用途に利用できるものであることは明らか
である。 次に本発明の実施例を示すが、本発明にこれに
より制限を受けるものではない。 実施例 1 グルコース60g、KH2PO42g、
MgSO47H20.03g、NeCl0.1g、マルト・エキス
0.2g、イースト・エキス0.2g、ペプトン0.1g、
FeSO4・7H2O10mg、CaCl2・2H2O10mg、
CuSO4・5H2O0.2mg、MnSO4・4H2O1.0mgと窒素
源として(NH42SO43g〔C/N比(炭素源中
の炭素原子重量/窒素源中の窒素原子重量比は
40)を脱イオン水1000mlに混合した培地を基準と
して炭素源である炭水化物(グルコース、類な
ど)の濃度を増加させた場合、その濃度に応じて
培地成分を増加して、又窒素源を尿素などに変え
た場合は同じC/N比になるように培地を調整し
た。 この培地を10の培養槽で培養する場合には6
、30の培養槽では20仕込み、それぞれ菌株
を接種し、30℃の培養温度で所定の時間、通気量
0.5〜20vvmで300〜700rpmで攪拌して培養を行
つた。培養後遠心分離法で菌体を集めた。又、菌
体の増殖量、脂質生成量及び培地中の炭水化物濃
度の測定を行うため、培養の中間段階において所
定の時間毎に100mlずつ試料の採取を行い、濾過
法により菌体と培地の分離を行つた。分離された
菌体はその一部を含水率の定量のため、精秤し恒
温槽中120℃で一昼夜乾燥し、含水率を求め、残
りの菌体について脂質の油出を行つた。菌体から
の脂質の抽出は、残りの湿菌体にクロロホルム−
メタノール(2:1V/V)混液を加え、ガラス
ビーズ存在下にホモジナイズすることにより菌体
の破砕と脂質の抽出を同時に行つた。なお、抽出
を完全に行うため、これを5回繰返し、全抽出液
を集めた。上記抽出液をFlochの分配洗浄法によ
り精製した後、溶媒を減圧留去し、重量法で全脂
肪量を測定した。菌体を除いた培地については高
速液体クロマトグラフイー(HPLC)により炭水
化物(グルコース、フラクトース、サツカロー
ス)の濃度を測定し、濃度が0になつた時点で培
養を終了した。 菌株モルテイエレラ・イサベリナIFO7884につ
いて、グルコースあるいは糖蜜の炭素源として各
種の初期炭素源濃度における窒素源及び窒素源濃
度を変えて10及び30培養槽により培養して得
られた菌体増殖量(乾燥重量g/)、脂質生成
量(g/)、脂質含量(%)、脂質係数(消費さ
れた炭水化物100gに対する脂質g数)、菌体係数
(消費された炭水化物100gに対する生成菌体g
数)を表−1にまとめて示した。 なお培養時間として示した時間は炭素源である
グルコースあるいは糖蜜が完全に消費され、培地
中になくなつた時間であり、その時間で培養を停
止した。 表−1では炭素源として用いたグルコース及び
糖蜜がそれぞれ濃度250g/以上と高くても菌
体の増殖は早く、菌体濃度として約100g/脂
質生成量として約50g/脂質含量45%以上の生
産性を示した。 最後にグルコース濃度390g/の実験例を示
したが、この場合最終濃度としては156g/の
達する値が得られ、生成脂質量としても83g/
であつた。しかし、菌体の増殖速度は基質阻害の
ためか、特に初期において炭水化物濃度300g/
以下の場合と異なり遅くなつており、増殖終了
にかかる時間を考慮した場合、実用的とは言いが
たいが、菌体濃度としての到達点として極めて高
い値が得られることを示した。 【表】 【表】 実施例 2 炭素源としてグルコースを濃度200g/とし、
窒素源として尿素を用いて濃度6.5g/とし、
その他の組成分としては実施例1に示した基準で
調整した培地を用いて各種モルテイエレラ属糸状
菌を10培養槽において培養して得られた結果を
表2に示した。 表2では10培養槽の場合、幾分DO(溶存酸
素濃度)が装置上の問題点として、増殖速度に対
して律速に働くため、30培養槽を使用する場合
程グルコース濃度を上げられないため、200g/
の濃度で行つたが完全にグルコースは消費さ
れ、それぞれ70g/以上の菌対増殖量と30g/
以上の生成脂質量が得られたことが分る。 【表】
Detailed Description of the Invention The present invention produces microbial cells with high lipid content in a medium by culturing strains of Isabelina, Vinacea, Lamania angrispora and Nana belonging to the genus Morteierella in a medium containing carbohydrates as a carbon source. , lipids [neutral lipids (oil, etc.),
The present invention relates to a highly productive method for producing lipids by collecting polar lipids (phospholipids, glycolipids). Filamentous fungi (molds) with high lipid (oil) content that have been reported to date include Diotrichum candidum, Fusarium lini, Fusarium burbigenum, Penicillium lilacinum, Pericillium sopi, Pericillium spinyulosum, and Asperigillus nidulans. , Mucor sacinelloides (Koichi Yamada, Food Industrial Microbiology 63p),
Morteierella vinacea [CGC Chestes, J.
F. Pebssdy, J. gen. Microbial, 41 , 127 (1965)],
Aspergillus terreus, Aspergillus ochrasius, Cladosporium fulgum, Cladosporium herbalum, Penicillium cladioli [J.Singh, MGSeed, J.Sci.Fd.Agric, .
23, 1113 (1972)]. It is recognized that all of these bacteria have an oil content of 25 to 65% within their cells, but when growing the cells in flask-scale or small culture tanks, the carbohydrate concentration of the raw carbon source is important for all filamentous bacteria. The amount remained at 20-60g/. Moreover, when obtaining microbial cells with a high lipid (oil) content, the growth of filamentous fungal cells is generally slow, and in many cases, the growth of microbial cells is only to the extent that the raw carbon source remains without being completely consumed. No [For example, the best results for Morteierella vinacea, initial glucose concentration 21.2 g / 10 days
Cultivated at 20℃, consumed 17g of glucose, amount of bacterial cell growth (dry weight) 4.7g/, amount of lipid produced 3g/,
CGcClesler, JFPeberdy, J.gen.Microbill.,
41, 127 (1965)]. In addition, for Peracillium spinyulosum, it has been observed that even if the concentration of molasses, which is a raw material carbon source, is increased, the amount of bacterial growth does not increase at that rate, and on the contrary, the consumption rate of the carbon source decreases.
In that case, the best result is starting with a molasses concentration of 164g/, and in 6 days at 30℃, molasses consumption is 40%, bacterial cell growth (dry weight) is 22g/, oil production is 25g/
[AWKlen, TKWalhss.
Can.J.Micsobial, 7 , 85 (1961)]. The present invention utilizes filamentous fungal strains of Isabelina, Vinacea, Lamaniana angrispora and Nana belonging to the genus Morteierella using carbohydrates as carbon sources.
It was found to have a lipid content of 70%, and
Unlike bacteria and yeast, filamentous fungi that proliferate in hyphae are generally considered difficult to culture at high density in aerated agitation culture. I found it. In other words, when a specific filamentous fungus belonging to the genus Morteierella grows in small units without elongation by increasing the agitation speed in an aerated agitation culture using a medium containing a high concentration of carbohydrates as a carbon source, the hyphae grow in small units without elongating, and the lipid content decreases. For example, raw carbohydrates (glucose 270g/) can be completely consumed by culturing cells at 30°C for 72 hours, and the amount of proliferating bacteria (dry tank weight) can be 100.
The present invention has been completed based on the discovery that a lipid production amount of about 50 g/medium and a lipid content of about 50% can be obtained. That is, the present invention produces microbial cells with high lipid content at high density in a medium by culturing strains of Isabelina, Vinacea, Lamaniana anglispora and Nana belonging to the genus Morteierella in a medium using carbohydrates as a carbon source. Method and lipids [neutral lipids (oil etc.), polar lipids (phospholipids, etc.)
This is a highly productive lipid production method that collects glycolipids)]. The fungus used in the present invention is isabellina of the genus Mortierella.
[IFO7824, 7873, 7884, 8183, 8308], Vinacea [IFO.6738] Ramanniana vas.anglispora
[IFO.8187] and various strains of nana [IFO.8794]. All of the above-mentioned bacteria are filamentous bacteria that are preserved at the Fermentation Research Institute and are listed in the IFO Catalog (Bacterial Strain Catalog). Examples of carbohydrates used as carbon sources for the medium for culturing the above-mentioned filamentous fungi include glucose, fructose, succalose, molasses, starch, and wood saccharification liquor. Carbohydrates range from 60 to 60 in medium 1
Preferably, 400g is used. As a source of nitrogen,
Inorganic nitrogen sources such as ammonium nitrate, ammonium sulfate, ammonium chloride, ammonium phosphate, etc., or urea, peptone, yeast extract,
Organic nitrogen sources such as corn 3 liquor are used. Examples of inorganic salts include KH 2 , PO 4 , K 2 ,
HPO4 , NaCl, F2SO4 , 7H2O , MgSO47H2O ,
ZnSO 4 .7H 2 O etc. are used. Add trace elements and other nutritional sources as necessary. The above-mentioned filamentous fungi are usually cultured in a liquid medium by aeration and agitation. The pH of the medium should be 4.0 to 6.0, stirring speed 300 to 800prm, and aeration rate 0.5 to 2vvm.
Culture is carried out for 2 to 15 days. In this way, bacterial cells with high lipid content are produced at high density in the medium, so it is necessary to separate the bacterial cells from the culture and collect lipids from the bacterial cells since lipids are contained in the bacterial cells of filamentous fungi. suitable. When separating bacterial cells from a culture, the bacterial cells are cultured in extremely small units (1 to 10 cells) without much hyphae, and therefore can be separated very easily using, for example, a centrifugal dehydrator and dried. It has also become clear that this method has the advantage of forming highly concentrated bacterial cells (water content of approximately 60%). The lipids are collected according to conventional methods, such as by solvent extraction. Thus, according to the present invention, it is possible to produce highly concentrated lipid-rich microbial cells in a medium using highly concentrated carbohydrates as a carbon source, and to obtain highly productive lipids by collecting lipids from the cultured microbial cells. manufacturing becomes possible. This has a great advantage in terms of equipment, especially for microbial cell culture for the purpose of producing lipids using microorganisms. Bacterial cell growth amount 100g/, lipid production amount 50% obtained as production results for medium amount
g/hr, the productivity of bacterial cells taking into account the time required for production is 1.7 g/hr, which is 1000 m 3
A combination of culture tanks that can operate a culture solution for a year (e.g.
Three 800 m 3 culture tanks) can produce 14,000 tons of bacterial cells per year, including 7,000 tons of lipids per year. In addition, more than 95% of the produced lipids are lipids (triglycerides), which can be used for foods and as raw materials for processing oils and fats, while phospholipids and glycolipids can of course be used as pharmaceutical surfactants, etc. It is clear that the main components of the bacterial cells after lipid extraction, proteins and nucleic acids, can be used for purposes such as feed and medicine. Next, examples of the present invention will be shown, but the present invention is not limited thereto. Example 1 Glucose 60g, KH 2 PO 4 2g,
MgSO 4 7H 2 0.03g, NeCl0.1g, malt extract
0.2g, yeast extract 0.2g, peptone 0.1g,
FeSO47H2O10mg , CaCl22H2O10mg ,
CuSO 4・5H 2 O 0.2 mg, MnSO 4・4H 2 O 1.0 mg and as a nitrogen source (NH 4 ) 2 SO 4 3 g [C/N ratio (weight of carbon atoms in carbon source/weight of nitrogen atoms in nitrogen source) The ratio is
40) mixed with 1000 ml of deionized water, if the concentration of carbohydrates (glucose, etc.) which is a carbon source is increased, the medium components are increased according to the concentration, and the nitrogen source is changed to urea. etc., the medium was adjusted so that the C/N ratio remained the same. If this medium is cultivated in 10 culture tanks, 6
, 30 culture tanks were prepared with 20 strains, inoculated with each strain, and incubated at a culture temperature of 30°C for a specified period of time with aeration volume.
Culture was performed at 0.5-20 vvm with stirring at 300-700 rpm. After culturing, the bacterial cells were collected by centrifugation. In addition, in order to measure the growth rate of bacterial cells, the amount of lipid production, and the carbohydrate concentration in the medium, 100 ml samples were collected at predetermined intervals during the intermediate stage of culture, and the bacterial cells and medium were separated by filtration. I went there. A portion of the isolated bacterial cells was accurately weighed and dried overnight at 120°C in a constant temperature bath to determine the moisture content, and lipids were extracted from the remaining bacterial cells. To extract lipids from the bacterial cells, the remaining wet bacterial cells are immersed in chloroform.
A methanol (2:1 V/V) mixture was added and homogenized in the presence of glass beads to simultaneously disrupt the bacterial cells and extract the lipids. In order to perform the extraction completely, this was repeated five times and all the extracts were collected. After the above-mentioned extract was purified by Floch's partition washing method, the solvent was distilled off under reduced pressure, and the total fat content was measured gravimetrically. The concentration of carbohydrates (glucose, fructose, sutucarose) in the medium from which the bacterial cells were removed was measured by high performance liquid chromatography (HPLC), and the culture was terminated when the concentration reached 0. The bacterial cell growth amount (dry weight g /), lipid production amount (g/), lipid content (%), lipid coefficient (number of grams of lipid per 100 g of carbohydrates consumed), bacterial cell coefficient (g of bacterial cells produced per 100 g of carbohydrates consumed)
number) are summarized in Table 1. The time shown as the culture time is the time when the carbon source glucose or molasses was completely consumed and disappeared from the medium, and the culture was stopped at that time. Table 1 shows that even if the concentrations of glucose and molasses used as carbon sources are as high as 250 g or more, the bacterial cells grow rapidly and produce a cell concentration of approximately 100 g/lipid production of approximately 50 g/lipid content of 45% or more. showed his sexuality. Finally, we showed an experimental example with a glucose concentration of 390g/; in this case, the final concentration reached a value of 156g/, and the amount of lipid produced was 83g/.
It was hot. However, the growth rate of bacterial cells may be due to substrate inhibition, especially in the early stage when the carbohydrate concentration is 30g/kg.
Unlike the case below, it is slow, and when considering the time required for the completion of proliferation, it is difficult to say that it is practical, but it was shown that an extremely high value can be obtained as a target point for the bacterial cell concentration. [Table] [Table] Example 2 Using glucose as a carbon source at a concentration of 200g/
Using urea as a nitrogen source, the concentration was 6.5 g/
Table 2 shows the results obtained by culturing various types of Morteierella filamentous fungi in 10 culture tanks using a medium prepared according to the standards shown in Example 1 for other compositions. Table 2 shows that in the case of 10 culture tanks, the glucose concentration cannot be raised as much as when using 30 culture tanks because the DO (dissolved oxygen concentration) acts as a rate-limiting factor on the growth rate due to equipment problems. , 200g/
However, the glucose was completely consumed, and the bacterial growth amount was over 70g/30g/.
It can be seen that the above amount of produced lipids was obtained. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 モルテイエレラ属に属するイサベリナ、ビナ
セア、ラマニアナ・アングリスポラ及びナナの菌
株を炭水化物を炭素源とする培地に培養された菌
体より脂質を採取することを特徴とする脂質の製
造方法。
1. A method for producing lipids, which comprises collecting lipids from bacterial cells of strains of Isabelina, Vinacea, Lamaniana angrispora, and Nana belonging to the genus Morteierella that have been cultured in a medium containing carbohydrates as a carbon source.
JP25560487A 1987-10-09 1987-10-09 Production of lipid Granted JPS63119687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25560487A JPS63119687A (en) 1987-10-09 1987-10-09 Production of lipid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25560487A JPS63119687A (en) 1987-10-09 1987-10-09 Production of lipid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58082349A Division JPS59205979A (en) 1983-05-11 1983-05-11 Preparation of mold of microorganism and lipid

Publications (2)

Publication Number Publication Date
JPS63119687A JPS63119687A (en) 1988-05-24
JPH0412717B2 true JPH0412717B2 (en) 1992-03-05

Family

ID=17281037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25560487A Granted JPS63119687A (en) 1987-10-09 1987-10-09 Production of lipid

Country Status (1)

Country Link
JP (1) JPS63119687A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205979A (en) * 1983-05-11 1984-11-21 Agency Of Ind Science & Technol Preparation of mold of microorganism and lipid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205979A (en) * 1983-05-11 1984-11-21 Agency Of Ind Science & Technol Preparation of mold of microorganism and lipid

Also Published As

Publication number Publication date
JPS63119687A (en) 1988-05-24

Similar Documents

Publication Publication Date Title
US4783408A (en) Method for the preparation of a fungal body and a lipid rich in Y-linolenic acid therefrom
Starkey Lipid production by a soil yeast
US5882703A (en) Product containing Mortierella sect. schmuckeri lipids
US3957578A (en) Method for manufacture of α-galactosidase by microorganism
EP0005277B1 (en) Process for the microbiological production of oil
JPS6350993B2 (en)
US3713976A (en) Cultivation of micro-organisms on hydrocarbons
US4032405A (en) Method for producing cacao butter substitute
JPH0418838B2 (en)
JPS5822199B2 (en) Method for producing lipid with high γ-linolenic acid content
JPH0412717B2 (en)
JPS6131084A (en) Novel microorganism
CN116162554B (en) Interval type mai cell strain and application thereof in replacement of protein
JPS6320518B2 (en)
Mohamed et al. Fungal Lipids
Utami et al. The effect of time cultivation in production of AA and EPA from Aspergillus oryzae with three-stage fermentation strategy
JPS6251110B2 (en)
KR910000453B1 (en) Novel microorganism streptomyces sp kccb2
AU740811B2 (en) Media for culturing microorganisms and process for producing unsaturated fatty acids or lipids containing the same
US3853704A (en) Cultivation of micro-organisms on a feedstock consisting at least in part of straight chain hydrocarbons
US4189538A (en) Method for growing pseudomycelial yeasts and reducing bacterial contamination in a yeast fermentation process
Naguib et al. Fat synthesis from supplemented beet molasses by penicillium soppi zaleski in still and shaken cultures
Moon CONVERSION OF CHEESE WHEY TO YEAST LIPID AND SINGLE CELL PROTEIN.
JPS6075292A (en) Production of oil or fat resembling cacao butter
Zaitseva et al. Change in chemical composition of triacrylglycerols of Rhodotorula gracilis as a function of specific growth rate