JPH04126862A - High-tenacity nonwoven fabric partially thermally bonded under pressure - Google Patents

High-tenacity nonwoven fabric partially thermally bonded under pressure

Info

Publication number
JPH04126862A
JPH04126862A JP24608690A JP24608690A JPH04126862A JP H04126862 A JPH04126862 A JP H04126862A JP 24608690 A JP24608690 A JP 24608690A JP 24608690 A JP24608690 A JP 24608690A JP H04126862 A JPH04126862 A JP H04126862A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
melting point
fiber
strength
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24608690A
Other languages
Japanese (ja)
Other versions
JP2989238B2 (en
Inventor
Tetsuya Araki
哲也 荒木
Akihiko Yamamoto
明彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24608690A priority Critical patent/JP2989238B2/en
Publication of JPH04126862A publication Critical patent/JPH04126862A/en
Application granted granted Critical
Publication of JP2989238B2 publication Critical patent/JP2989238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the title nonwoven fabric having excellent tensile strength and tear strength by combining a low-melting component comprising a polyamide-based thermoplastic resin composition with a high-melting component comprising a polyester-based thermoplastic resin composition a specific state and fusing. CONSTITUTION:The objective nonwoven fabric which is nonwoven fabric comprising two kinds of filaments of (A) a low-melting component composed of a polyamide-based thermoplastic resin composition and (B) a high-melting component comprising a polyester-based thermoplastic resin composition, wherein the component B is wholly covered with the component A in <=2.1 thickness, partially having linked parts thermally bonded under pressure, wherein the linked parts have 30-100% fiber volume and unlinked parts have <=50% fiber volume, having >=3g/denier single fiber denier of conjugated yarn after thermal bonding under pressure and satisfying correlation shown by the formula (y is tensile strength per g weight of 1m<2> nonwoven fabric; x is tear strength per g weight of 1m<2> nonwoven fabric).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高強力な不織布に関するものである。[Detailed description of the invention] [Industrial application field] TECHNICAL FIELD The present invention relates to highly tenacious nonwoven fabrics.

より詳しくは引張強力と引裂強力とが共に優れた部分的
に熱圧着された高強力な不織布に関するものである。
More specifically, it relates to a partially thermocompression-bonded, high-strength nonwoven fabric with excellent tensile strength and tear strength.

〔従来の技術〕[Conventional technology]

従来から繊維表面の一部、又は全部を低軟化点重合体で
覆うことによりその繊維に接着性をもたせ、その繊維か
らウェブを形成し加熱等の手段により接着性を顕在化さ
せた不織布が知られている(特公昭42−21318号
公報、特公昭43−1776号公報)。
Conventionally, nonwoven fabrics have been known in which a part or all of the fiber surface is covered with a low softening point polymer to give the fibers adhesive properties, a web is formed from the fibers, and the adhesive property is made apparent by heating or other means. (Japanese Patent Publication No. 42-21318, Japanese Patent Publication No. 43-1776).

また、自己融着させて袋状等に加工して使用するのに適
した二成分芯鞘構造をもった長繊維から成る部分的に熱
圧着された不織シートが知られている(特開昭63−1
65564号公報)。
In addition, a partially heat-bonded nonwoven sheet made of long fibers with a two-component core-sheath structure that is suitable for self-fusion and processing into a bag shape or the like is known (Unexamined Japanese Patent Publication No. 1986-1
65564).

また、鞘成分に線状低密度ポリエチレンと結晶性ポリプ
ロピレンとのブレンl°物を用いて、低目付ながら高強
力で風合いの良いオムツ内張等に適する部分的に熱圧着
された熱接着性不織布が特開昭63−165564号公
報と同一出願人により提案されている(特開昭63−2
27814号公報)。
In addition, we use a blend of linear low-density polyethylene and crystalline polypropylene as the sheath component, and use a partially heat-adhesive nonwoven fabric with low basis weight, high strength, and good texture that is suitable for diaper lining, etc. has been proposed by the same applicant as JP-A-63-165564 (JP-A-63-2
27814).

また、快い感触と外観並びに高い耐摩耗性、良好な引張
強度及び引裂強度とを発現させるため、−成分が、他の
成分が実質的に影響されない条件下で粘着化する多成分
系連続フィラメントから成り、その構造体が粘着化し得
る成分により多数の結合点において結合されている軽量
不織布並びにその製造法が提案されている(特開昭49
−47676号公報)。
In addition, in order to develop a pleasant feel and appearance as well as high abrasion resistance and good tensile strength and tear strength, the - component is made from a multi-component continuous filament that becomes tacky under conditions where other components are not substantially affected. A lightweight nonwoven fabric whose structure is bonded at a large number of bonding points by a component capable of becoming adhesive, and a method for producing the same have been proposed (Japanese Patent Application Laid-Open No. 49-1971).
-47676).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように従来から、高融点成分を低融点成分で覆っ
た複合長繊維から成り、部分的に熱圧着された不織布は
知られており、その効果として■自己融着性の向上■ソ
フトな風合の不織布■高い引張・引裂強力が挙げられて
いる。
As mentioned above, nonwoven fabrics made of composite filaments in which a high-melting point component is covered with a low-melting point component and partially bonded by thermocompression have been known. Non-woven fabric with good texture ■ High tensile and tear strength.

しかしながら、これらの公報中の実施例では引張強力に
関しては150g/ 3 cm中/ g/m2程度(特
開昭63−227814号公報)であり引裂強力に関し
ては何ら記載がない。
However, in the examples in these publications, the tensile strength is about 150 g/g/m2 in 3 cm (Japanese Patent Application Laid-Open No. 63-227814), and there is no description about the tearing strength.

一方、近年、不織布の用途の多様化に伴ない、不織布に
要求される性能も高度化している。特に土木関係例えば
水平・垂直ドレーン、法面保護材、道路工事用マット、
植生マント、コンクリート養生マット等、建設関係例え
ば防水・防音材、保温用家屋被覆材等では引張強力と引
裂強力とが共に優れた不織布が要求されるようになって
きている。
On the other hand, in recent years, as the uses of nonwoven fabrics have diversified, the performance required of nonwoven fabrics has also become more sophisticated. Especially related to civil engineering, such as horizontal and vertical drains, slope protection materials, road construction mats, etc.
Nonwoven fabrics with excellent tensile strength and tear strength are increasingly required for construction-related applications such as vegetation cloaks, concrete curing mats, waterproofing/soundproofing materials, and heat-insulating house covering materials.

しかし、従来技術の不織布では第1図の○印に示す通り
引張強力が高いものは引裂強力が低く、反対に引裂強力
が高いものは引張強力が低く芯鞘複合繊維からなる不織
布を含めどのような繊維の接合方法においても引張強力
をyg/3cm中/g/ffl、引裂強力をx g/g
/+1?とするとy5・x <2.0X10”の領域に
位置し、高引張強力と高引裂強力とを同時に満たす不織
布は未だ得られておらず、このような不織布を得ること
は当業界では焦眉の課題であった。
However, as shown by the circle in Figure 1, in conventional nonwoven fabrics, those with high tensile strength have low tearing strength, and conversely, those with high tearing strength have low tensile strength. Even in the method of joining fibers, the tensile strength is yg/3cm/g/ffl, and the tearing strength is x g/g.
/+1? Therefore, a nonwoven fabric that satisfies both high tensile strength and high tearing strength at the same time has not yet been obtained, and obtaining such a nonwoven fabric is a pressing issue in the industry. Met.

本発明の課題は引張強力と引裂強力とが共に高く特に土
木資材、建設資材等の工業資材としてきわめて有用な、
言い換えれば、第1図に示す、y5・X≧2.OXIO
”にある不織布を提供することにある。
The object of the present invention is to provide a material that has both high tensile strength and tear strength and is extremely useful as an industrial material such as civil engineering materials and construction materials.
In other words, as shown in FIG. 1, y5·X≧2. OXIO
Our goal is to provide nonwoven fabrics that are

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、芯鞘型複合長繊維不織布において特定の
要件を満たすことによって高い引張強力と高い引裂強力
とが同時に満足できるという驚くべき事実を見い出した
The present inventors have discovered the surprising fact that high tensile strength and high tear strength can be simultaneously satisfied by satisfying specific requirements in a core-sheath type composite long fiber nonwoven fabric.

本願発明者と同一発明者による特願平01−’1431
23号では、高融点熱可塑性樹脂組成物を芯成分とし、
これより50°C以上低い融点を有する熱可塑性樹脂組
成物を鞘成分とする芯鞘型複合繊維を用いて部分的に熱
圧着された高強力不織布を提案している。ここでは、不
織布の接合方法として鞘成分の軟化点以上、融点未満の
温度で圧力をかけて接合する際、鞘成分と芯成分の物性
低下が生じないように芯成分と鞘成分との融点差を50
°C以上とすることが不可欠であるとしていたが鋭意研
究を続けた結果、高融点成分にポリエステル系熱可塑性
樹脂組成物を用い、低融点成分にポリアミド系熱可塑性
樹脂組成物を用いると、ポリアミド系熱可塑性樹脂組成
物は強靭で接着力の強い樹脂であるため鞘成分と芯成分
の融点差が50゛C未満であっても高引張強力、高引裂
強力が発現することを見い出し本発明に至ったものであ
る。
Patent application 01-'1431 by the same inventor as the inventor of the present application
In No. 23, a high melting point thermoplastic resin composition is used as a core component,
We have proposed a high-strength nonwoven fabric partially bonded by thermocompression using a core-sheath type composite fiber whose sheath component is a thermoplastic resin composition having a melting point 50°C or more lower than this. Here, as a joining method for nonwoven fabrics, when joining by applying pressure at a temperature above the softening point of the sheath component and below the melting point, the difference in melting point between the core component and the sheath component is 50
°C or higher, but as a result of intensive research, we found that if a polyester thermoplastic resin composition is used as the high melting point component and a polyamide thermoplastic resin composition is used as the low melting point component, polyamide The present invention was based on the discovery that the thermoplastic resin composition exhibits high tensile strength and high tearing strength even when the melting point difference between the sheath component and the core component is less than 50°C because it is a tough and adhesive resin. This is what we have come to.

すなわち本発明は、長繊維不織布から成る不織布で、そ
の不織布を構成する長繊維が融点を異にする2種類の熱
可塑性樹脂組成物からなり、その低融点成分がポリアミ
ド系熱可塑性樹脂組成物から成り、高融点成分がポリエ
ステル系熱可塑性樹脂組成物から成り、その低融点成分
が2.1μm以下の厚みをもって、高融点成分の表面を
全面的に覆う複合繊維であり、かつその不織布は部分的
に熱圧着された接合部とその接合部間に延びる非接合部
とを有し、接合部での繊維体積占有率が30%以上10
0%未満であり、非接合部での繊維体積占有率が50%
以下であり、かつ接合部の繊維体積占有率の方が非接合
部の繊維体積占有率より大きく、しかも熱圧着させて不
織布としたあとの複合繊維の単糸強度が3グラム/デニ
ール以上であり、かつ不織布の引張強度と引裂強度とが
次式を満たすことを特徴とする部分的に熱圧着された高
強力な不織布。
That is, the present invention provides a nonwoven fabric made of a long fiber nonwoven fabric, in which the long fibers constituting the nonwoven fabric are made of two types of thermoplastic resin compositions having different melting points, and the low melting point component is made of a polyamide thermoplastic resin composition. It is a composite fiber in which the high melting point component is made of a polyester thermoplastic resin composition, the low melting point component has a thickness of 2.1 μm or less and completely covers the surface of the high melting point component, and the nonwoven fabric partially covers the surface of the high melting point component. It has a bonded part thermo-compressed and a non-bonded part extending between the bonded parts, and the fiber volume occupation rate at the bonded part is 30% or more.10
less than 0%, and the fiber volume occupancy in the non-bonded part is 50%
or less, and the fiber volume occupancy in the bonded portion is greater than the fiber volume occupancy in the non-bonded portion, and the single fiber strength of the composite fiber after heat-compression bonding to form a nonwoven fabric is 3 g/denier or more. , and the tensile strength and tear strength of the nonwoven fabric satisfy the following formula: A highly strong nonwoven fabric partially bonded by thermocompression.

y5・X≧2X10” y:1rrf不織布重量1グラムあたりの引張強力x:
1m2不織布重量1グラムあたりの引裂強力である。
y5・X≧2X10” y: 1rrf Tensile strength per gram of nonwoven fabric weight x:
The tear strength is per 1 m2 of nonwoven fabric and 1 gram of weight.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明の基本的思想は、不織布を構成する長繊維の鞘成
分には、繊維間の接合機能をもたせ、芯成分には不織布
の力学的機能をもたせることにある。
The basic idea of the present invention is to provide the sheath component of the long fibers constituting the nonwoven fabric with a bonding function between the fibers, and to provide the core component with the mechanical function of the nonwoven fabric.

従って、低融点成分が高融点成分の表面を全面的に覆っ
ている、いわゆる芯鞘型複合繊維であることが基本要件
でり、低融点成分が高融点成分の表面を全面的に覆って
いない場合、高融点成分と低融点成分との接触点及び高
融点成分と高融点成分との接触点においては、繊維間に
強固な接着が得られず、従って引張強力の優れた部分的
に熱圧着された高強力な不織布を得ることは困難である
Therefore, the basic requirement is that it is a so-called core-sheath composite fiber in which the low melting point component completely covers the surface of the high melting point component, and the low melting point component does not completely cover the surface of the high melting point component. In this case, strong adhesion between the fibers cannot be obtained at the contact points between high melting point components and low melting point components, and at the contact points between high melting point components and high melting point components. It is difficult to obtain highly strong nonwoven fabrics.

本発明で用いられる熱可塑性樹脂組成物とは、溶融紡糸
可能な合成高分子重合体を総称するもので、ポリエステ
ル系としては、例えば、ポリエチレンテレフタレート、
ポリプチレンビベンゾエト、ポリプロピレンテレフタレ
ート、ポリペンチレンビベンゾエート、3,3−ビス(
p−オキシフェニル)ペンタンとテレフタル酸とのポリ
エステル、212−ビス(3−メチル4−オキシフェニ
ル)プロパンとテレフタル酸とのポリエステル、2.2
−ビス(P−オキシフェニル)ペンタンとイソフタル酸
とのポリエステル、ビスフェノールAとテレフタル酸又
はイソフタル酸とのポリエステル、ポリエチレン−2,
6−ナフタレンジカルポキシレト等のホモポリエステル
又はこれらに共重合成分としてエチレングリコール、プ
ロピレングリコール、ブタンジオール、キシリレングリ
コール、ビスフェノールA、ジエチレングリコール、ポ
リエチレングリコール、ポリプロピレングリコール、ア
ジピン酸、セバシン酸、フタル酸、イソフタル酸、2,
6−ナフタリンジカルボン酸、p−オキシエトキシ安息
香酸、グリコール酸等が共重合されたもの等のポリエス
テル系樹脂、ポリアミド系としては、例えばポリ−ε−
カプロアミドのようなω−アミノ酸からのポリアミド、
ポリヘキサメチレンアジパミドのようなω、ω′〜ジア
ミンとω。
The thermoplastic resin composition used in the present invention is a general term for synthetic polymers that can be melt-spun, and examples of polyester-based compositions include, for example, polyethylene terephthalate,
Polybutylene bibenzoate, polypropylene terephthalate, polypentylene bibenzoate, 3,3-bis(
Polyester of p-oxyphenyl)pentane and terephthalic acid, 212-bis(3-methyl4-oxyphenyl)propane and polyester of terephthalic acid, 2.2
- Polyester of bis(P-oxyphenyl)pentane and isophthalic acid, polyester of bisphenol A and terephthalic acid or isophthalic acid, polyethylene-2,
Homopolyesters such as 6-naphthalenedicarpoxylate or copolymerized components thereof such as ethylene glycol, propylene glycol, butanediol, xylylene glycol, bisphenol A, diethylene glycol, polyethylene glycol, polypropylene glycol, adipic acid, sebacic acid, phthalic acid, Isophthalic acid, 2,
Polyester resins such as those copolymerized with 6-naphthalene dicarboxylic acid, p-oxyethoxybenzoic acid, glycolic acid, etc., and polyamides include, for example, poly-ε-
polyamides from ω-amino acids, such as caproamide,
ω, ω′ ~ diamines and ω such as polyhexamethylene adipamide.

ω′−ジカルボン酸とからのポリアミドのホモポリマー
又はこれらの共重合体等のポリアミド系樹脂が挙げられ
る。
Examples include polyamide-based resins such as homopolymers of polyamides with ω'-dicarboxylic acids and copolymers thereof.

本発明で用いられる熱可塑性樹脂組成物とはこれらの単
一成分から成るものはもちろん、これらのブレンド体で
もよい。また、目的に応じては、顔料、熱安定剤、紫外
線吸収剤、難燃剤等が混合されてもさしつかえない。
The thermoplastic resin composition used in the present invention may be composed of these single components or may be a blend of these components. Further, depending on the purpose, pigments, heat stabilizers, ultraviolet absorbers, flame retardants, etc. may be mixed.

不織布の引裂強力は、よく分らないが不織布に加わった
引裂応力の吸収の度合いによって決定されるものと思わ
れる。不織布に応力が加わったとき不織布を構成してい
る繊維が切断破壊される前に繊維間相互の接合部が破壊
され、接合が外れて、繊維の自由度が大きくなると応力
が不織布内で一点に集中せず、緩和されるため、高い引
裂強力が発現するものと思われる。
The tear strength of a nonwoven fabric is not well understood, but it is thought to be determined by the degree of absorption of tearing stress applied to the nonwoven fabric. When stress is applied to a nonwoven fabric, the joints between the fibers are destroyed before the fibers that make up the nonwoven fabric are cut and destroyed, and when the bonds are separated and the degree of freedom of the fibers increases, the stress is concentrated at a single point within the nonwoven fabric. It is thought that high tearing strength is developed because it is not concentrated and is relaxed.

したがって、本発明に用いる芯鞘型複合繊維で構成され
る不織布は、高融点成分と低融点成分、即ち芯成分と鞘
成分との界面にて剥離現象が生じ易いような樹脂の組み
合せを選んだり、複合繊維自体を芯成分と鞘成分との界
面にて剥離現象が生じ易い構造にすれば引裂応力が加わ
ったときに芯と鞘との界面から剥離が生じ、繊維の自由
度が大きくなり、不織布の引裂強力を高くすることがで
きるものと思われる。
Therefore, for the nonwoven fabric composed of core-sheath composite fibers used in the present invention, a combination of high-melting point components and low-melting point components, that is, resins that are likely to cause peeling at the interface between the core component and the sheath component, is selected. If the composite fiber itself is structured so that peeling occurs easily at the interface between the core component and sheath component, peeling will occur from the interface between the core and sheath when tear stress is applied, increasing the degree of freedom of the fiber. It is believed that the tear strength of the nonwoven fabric can be increased.

本発明に用いるポリエステル系熱可塑性樹脂組成物とポ
リアミド系熱可塑性樹脂組成物の組み合せから成る芯鞘
型複合繊維で構成される不織布では、芯成分と鞘成分と
の界面にて剥離現象が生じ易く高引裂強力が発現する。
In the nonwoven fabric composed of a core-sheath composite fiber made of a combination of a polyester thermoplastic resin composition and a polyamide thermoplastic resin composition used in the present invention, a peeling phenomenon easily occurs at the interface between the core component and the sheath component. High tear strength is developed.

本発明の部分的に熱圧着された高強力な不織布を得るた
めには、熱圧着させて不織布としたあとの単糸(−本の
繊維)の強度が3.0グラム/デニール以上であり、か
つ単糸の鞘部を形成する低融点成分の厚みが2.1μm
以下であることが同時に満たされることが不可欠であり
この2つの要件を満してはじめて不織布強力パラメータ
y5・Xが2、OX 1013以上となる。
In order to obtain the highly strong partially thermocompression bonded nonwoven fabric of the present invention, the strength of the single yarn (-fibers) after thermocompression bonding to form the nonwoven fabric is 3.0 g/denier or more, And the thickness of the low melting point component forming the sheath of the single yarn is 2.1 μm.
It is essential that the following conditions are met at the same time, and only when these two requirements are met will the nonwoven fabric strength parameter y5·X become 2 and OX 1013 or more.

すなわち、本発明の部分的に熱圧着された高強力な不織
布の強力を示すパラメータy5・Xは、熱圧着させて不
織布としたあとの複合繊維の単糸強度と相関関係があり
、低融点成分の厚みが2.1μm以下のものだけプロッ
トした第2図に示す通り、単糸強度が高くなるに従って
y5・Xは大きくなり単糸強度を3.0グラム/デニー
ル以上にすることによってはじめてy5・X≧2.OX
 101″を満たすことができる。
In other words, the parameter y5·X, which indicates the strength of the partially thermocompressed high-strength nonwoven fabric of the present invention, has a correlation with the single fiber strength of the composite fiber after thermocompression bonding to form the nonwoven fabric, and the low melting point component As shown in Figure 2, which plots only those with a thickness of 2.1 μm or less, as the single yarn strength increases, y5・X increases, and y5・X increases only when the single yarn strength increases to 3.0 g/denier or higher. X≧2. OX
101″ can be satisfied.

また、パラメータy5・Xは鞘成分の厚みとも相関関係
があり、熱圧着させて不織布としたあとの複合繊維の単
糸強度が3.0グラム/デニール以上のものだけプロッ
トした第3図に示す通り鞘成分の厚みが小さくなるに従
ってy S 、 Xが大きくなり、y S 、 x≧2
.OX 10 ”を満たすためには、鞘成分の厚みを2
.1μm以下にすることが不可欠であり、1.5 μm
以下にすることがより好ましい。
In addition, the parameter y5・X has a correlation with the thickness of the sheath component, as shown in Figure 3, which plots only composite fibers whose single fiber strength is 3.0 g/denier or more after thermocompression bonding and forming a nonwoven fabric. As the thickness of the sheath component becomes smaller, y S , X increases, and y S , x≧2
.. In order to satisfy OX 10”, the thickness of the sheath component should be 2
.. It is essential to reduce the thickness to 1 μm or less, and 1.5 μm
It is more preferable to do the following.

本発明に用いる複合繊維の芯成分及び/又は鞘成分の断
面形状は、円形のみではなく、三角形、四角形等の異形
断面又は中空断面であってもよく、芯成分が1つだけで
なく、いわゆる多芯構造のものであってもよい。本発明
でいう低融点成分の厚みとは、低融点成分の外周の任意
の点から芯成分、すなわち高融点成分に向って直線を引
いたときその直線が最小となる高融点成分周上の点の集
合を高融点成分の実外周として、その実外周上の任意の
点から低融点成分の外周へ向って直線を引いたときの直
線が最小となる長さのことをいう。
The cross-sectional shape of the core component and/or sheath component of the composite fiber used in the present invention is not only circular, but may also be a modified cross-section such as a triangle or quadrangle, or a hollow cross-section. It may also have a multicore structure. The thickness of the low melting point component as used in the present invention refers to the point on the circumference of the high melting point component where the straight line is the minimum when a straight line is drawn from any point on the outer periphery of the low melting point component toward the core component, that is, the high melting point component. Assuming that the collection of is the real outer circumference of the high melting point component, it is the minimum length of a straight line drawn from any point on the real outer circumference toward the outer circumference of the low melting point component.

例として、第4図に模式的に表わした複合繊維の断面図
を示す。図中の右下がりの斜線部(1)のlが本発明で
いう低融点成分の厚みに相当する。
As an example, a cross-sectional view of a composite fiber schematically shown in FIG. 4 is shown. 1 in the diagonally shaded area (1) downward to the right in the figure corresponds to the thickness of the low melting point component in the present invention.

本発明に用いる複合繊維の単糸繊度は、特に限定するも
のではないが不織布の高引張強力を維持するためには、
20デニール以下にすることが好ましい。
The single fiber fineness of the composite fiber used in the present invention is not particularly limited, but in order to maintain high tensile strength of the nonwoven fabric,
It is preferable to make it 20 deniers or less.

本発明の部分的に熱圧着された高強力な不織布とは、不
織布中に接合部と非接合部とが存在し、接合部と非接合
部との間には、中間接合部が存在するものをいう。例え
ば接合部の周りを中間接合部を介して非接合部が囲んで
いるもの、逆に非接合部の周りを接合部が囲んでいるも
のがある。
The partially thermocompressed high-strength nonwoven fabric of the present invention is one in which a bonded part and a non-bonded part exist in the nonwoven fabric, and an intermediate bonded part exists between the bonded part and the non-bonded part. means. For example, there are some in which a non-bonded part surrounds a bonded part via an intermediate bonded part, and conversely, a bonded part surrounds a non-bonded part.

本発明でいう接合部とは、不織布を構成している複合繊
維間が熱と圧力とにより融着し、繊維密度が高くなった
部分をいう。また、非接合部とは構成する繊維相互が融
着していない部分をいうが接合部から非接合部へ繊維体
積占有率の変化が徐々に移行する部分すなわち中間接合
部の存在が必要である。この中間接合部が存在しない場
合、不織布に応力が加わったとき応力が接合部と非接合
部との境界に集中し、引張強力、引裂強力共に低下する
。一方、中間接合部が存在する場合17は、中間接合部
で応力が分散され接合部と非接合部との境界への応力集
中を緩和し、その結果として引張強力及び引裂強力の低
下を防げる。例として、第5図(A)に高強力な不織布
の接合部、非接合部及び中間接合部の断面を斜め上方か
ら見た時の繊維形状の電子顕微鏡写真を、第5図(B)
にその模式図を示す。模式図第5図(B)中の(3)の
部分は°、接合部の表面であり(4)の部分は、接合部
の断面である。また、(5)の部分は、非接合部の表面
であり、(6)の部分は、非接合部の断面である。また
、(7)の部分は、中間接合部の表面であり、(8)の
部分は、中間接合部の断面である。
The bonded portion in the present invention refers to a portion where the conjugate fibers constituting the nonwoven fabric are fused together by heat and pressure, resulting in a high fiber density. In addition, a non-bonded part refers to a part where the constituent fibers are not fused to each other, but it is necessary to have an intermediate joint, which is a part where the change in fiber volume occupancy gradually shifts from the joined part to the non-bonded part. . If this intermediate joint does not exist, when stress is applied to the nonwoven fabric, the stress will be concentrated at the boundary between the joint and the non-joint part, and both tensile strength and tear strength will decrease. On the other hand, in the case where an intermediate joint exists (17), stress is dispersed at the intermediate joint, reducing stress concentration on the boundary between the joint and the non-joining part, and as a result, reduction in tensile strength and tear strength can be prevented. As an example, Fig. 5 (A) shows an electron micrograph of the fiber shape of a cross section of a high-strength non-woven fabric at a joint, a non-joint part, and an intermediate joint when viewed diagonally from above, and Fig. 5 (B)
A schematic diagram is shown below. The part (3) in the schematic diagram of FIG. 5(B) is the surface of the joint, and the part (4) is the cross section of the joint. Further, the portion (5) is the surface of the non-bonded portion, and the portion (6) is the cross section of the non-bonded portion. Moreover, the part (7) is the surface of the intermediate joint, and the part (8) is the cross section of the intermediate joint.

本発明の接合部での高強力な不織布の見掛は体積に対す
る複合繊維の実体積の比率(以下、繊維体積占有率と記
す)は30%以上100%未満である。不織布の接合部
は、不織布の力学的性質、特に引張強力への影響が大き
く、繊維体積占有率が30%未満では、複合繊維相互が
接合するだけ充分に接近していない結果、高引張強力が
得られなくなる。また、繊維体積占有率が100%にな
ると、接合部の繊維が変形し、フィルム化し、極端な場
合には不織布に穴があき、高引張・高引裂強力をもつ高
強力な不織布が得られなくなる。さらに、50%以上8
0%以下であることが好ましい。
The ratio of the actual volume of the conjugate fiber to the apparent volume of the highly strong nonwoven fabric at the joint of the present invention (hereinafter referred to as fiber volume occupancy) is 30% or more and less than 100%. The joints of nonwoven fabric have a large influence on the mechanical properties of the nonwoven, especially the tensile strength. If the fiber volume occupancy is less than 30%, the composite fibers are not close enough to bond with each other, resulting in high tensile strength. You won't be able to get it. In addition, when the fiber volume occupancy reaches 100%, the fibers at the joint deform and form a film, and in extreme cases, holes form in the nonwoven fabric, making it impossible to obtain a highly strong nonwoven fabric with high tensile strength and high tear strength. . In addition, 50% or more8
It is preferably 0% or less.

(第6図(A)に本発明の部分的に熱圧着された高強力
な不織布の接合部における繊維体積占有率が80%であ
る不織布の断面における繊維形状の電子顕微鏡写真を示
す。) 本発明の非接合部の複合繊維は高強力な不織布の高引裂
強力を発現させるのに重要な役割を演じている。すなわ
ち、不織布にがかる引裂応力に対して、繊維が応力を吸
収するよう、繊維にある程度自由度をもたせることが重
要である。
(Figure 6(A) shows an electron micrograph of the fiber shape in the cross section of the nonwoven fabric in which the fiber volume occupancy is 80% at the joint of the partially thermocompressed highly strong nonwoven fabric of the present invention.) The non-bonded conjugate fibers of the invention play an important role in developing the high tear strength of the high strength nonwoven fabric. That is, it is important to give the fibers a certain degree of freedom so that they can absorb tearing stress applied to the nonwoven fabric.

したがって、本発明の非接合部での繊維体積占有率は、
50%以下であることが高強力な不織布、特に高引裂強
力を発現させるには、不可欠である。
Therefore, the fiber volume occupancy in the non-bonded part of the present invention is:
It is essential that the content is 50% or less in order to develop a high strength nonwoven fabric, especially high tear strength.

50%を越えると非接合部での繊維が固定され、自由度
が低下し、引裂応力に対する吸収力が低くなりその結果
として高い引裂強力が得られなくなる。非接合部での繊
維体積占有率は、30%以下であることが好ましい。(
第6図(B)に高強力な不織布の非接合部における繊維
体積占有率が20%である不織布の断面における繊維形
状の電子顕微鏡写真を示す。) ただし、接合部の繊維体積占有率の方が非接合部より大
きいことは、い・うまでもない。
If it exceeds 50%, the fibers in the non-bonded portions are fixed, the degree of freedom decreases, and the ability to absorb tear stress becomes low, resulting in a failure to obtain high tear strength. The fiber volume occupancy in the non-bonded portion is preferably 30% or less. (
FIG. 6(B) shows an electron micrograph of the fiber shape in the cross section of a high-strength nonwoven fabric in which the fiber volume occupancy in the non-bonded portion is 20%. ) However, it goes without saying that the fiber volume occupancy in the bonded area is greater than that in the non-bonded area.

本発明の接合部全体の面積の不織布全体の面積に対する
比f(以下、エンボス率と記す)については、この比率
が小さすぎると複合繊維間の接合数が少なくなりすぎて
引張強力が低下し、また、大きすぎると不織布自体がベ
ーパーライクになり引裂強力が低下するため、3%以上
50%以下であると好ましく、10%以上30%以下で
あるとより好ましい。
Regarding the ratio f of the area of the entire joint of the present invention to the area of the entire nonwoven fabric (hereinafter referred to as emboss ratio), if this ratio is too small, the number of joints between composite fibers will be too small and the tensile strength will decrease. Moreover, if it is too large, the nonwoven fabric itself becomes vapor-like and the tear strength decreases, so it is preferably 3% or more and 50% or less, and more preferably 10% or more and 30% or less.

本発明の高強力な不織布を得るためには、接合部1個の
面積は、以下の条件を満たすことが好ましい。
In order to obtain the highly strong nonwoven fabric of the present invention, it is preferable that the area of one joint part satisfies the following conditions.

すなわち、接合部が非接合部すこよって囲まれており、
かつ接合部全体を包含する最小の円の直径(以下、D、
と記す)が10価以下の場合、接合部1個の面積が0.
05−未満のときは接合部での複合繊維間の接合が不充
分となり、引張強力が低下するだけでなく不織布の表面
耐摩耗性も低下する。
In other words, the joint part is completely surrounded by the non-joint part,
and the diameter of the smallest circle that encompasses the entire joint (hereinafter referred to as D,
) has a valence of 10 or less, the area of one joint is 0.
When it is less than 05-, the bond between the conjugate fibers at the bonded portion becomes insufficient, and not only the tensile strength decreases, but also the surface abrasion resistance of the nonwoven fabric.

一方30−を越えると不織布にかかる応力が複合繊維の
自由度の小さい接合部に集中し、接合部での破壊が生じ
やすくなり、その結果として接合部に穴があき引張強力
、引裂強力共に低下し、好ましくは、0.2−以上1〇
−以下である。
On the other hand, if it exceeds 30-, the stress applied to the nonwoven fabric will concentrate on the joints where the degree of freedom of the composite fibers is small, making it easy to break at the joints.As a result, holes will form in the joints and both tensile strength and tear strength will decrease. However, it is preferably from 0.2 to 10.

また、D、が10胴を越える場合、及び接合部が非接合
部によって囲れていない場合、接合部に内接する最大の
円の直径(以下D2と記す)が0.2 nun未満では
、接合部での複合繊維の接合が不充分となり、引張強力
が低下するだけでなく不織布の表面耐摩耗性も低下する
。一方3mmを越えると不織布にかかる応力が複合繊維
の自由度の小さい接合部に集中し、接合部での破壊が生
じやすくなりその結果として接合部に穴があき引張強力
、引裂強力共に低下し、好ましくは0.3胴以上1 m
m以下である。
In addition, if D exceeds 10 cylinders, and if the joint is not surrounded by non-joint parts, if the diameter of the largest circle inscribed in the joint (hereinafter referred to as D2) is less than 0.2 nun, the joint The bonding of the conjugate fibers at the non-woven fabric becomes insufficient, resulting in not only a decrease in tensile strength but also a decrease in the surface abrasion resistance of the nonwoven fabric. On the other hand, if it exceeds 3 mm, the stress applied to the nonwoven fabric will be concentrated at the joints where the degree of freedom of the composite fibers is small, and the joints will easily break, resulting in holes in the joints and a decrease in both tensile strength and tear strength. Preferably 0.3 torso or more 1 m
m or less.

本発明は、長繊維から成る不織布であり、短線雑事織布
では、長繊維不織布より引張強力の点で劣り、その結果
としてy5・X≧2.OX 10 I3なる高強力な不
織布が得られない。
The present invention is a nonwoven fabric made of long fibers, and short line miscellaneous woven fabrics are inferior to long fiber nonwoven fabrics in terms of tensile strength, and as a result, y5·X≧2. A highly strong nonwoven fabric of OX 10 I3 cannot be obtained.

長繊維不織布を製造する方法は、従来公知の一般的方法
、例えば、紡出された複合繊維を空気圧を利用して延伸
し、−船釣に使用されるコロナ帯電方式、摩擦帯電方式
によりフィラメントを帯電させ開繊後、移動する網状体
の上に堆積しつつ移送するという方法で不織布ウェブを
得る方法並びに、ゴデツトロール又は、ネルソンロール
で所定の引取速度に到達させた後に、その複合繊維を空
気噴射ノズルで引取って、分散、開繊後移動する網状体
の上に堆積させて、不織ウェブを得る方法がある。
The long-fiber nonwoven fabric can be produced using conventionally known general methods, such as stretching spun composite fibers using air pressure, and then forming filaments using a corona charging method or a frictional charging method used for boat fishing. A method of obtaining a nonwoven fabric web by charging and opening the fibers and then transporting them while depositing them on a moving net-like body, and a method of obtaining a nonwoven fabric web by a method of transporting the composite fibers while depositing them on a moving net-like body, and a method of obtaining the composite fibers by air injection after reaching a predetermined take-up speed with a godet roll or a nelson roll. There is a method of obtaining a nonwoven web by taking it up with a nozzle, dispersing it, opening it, and then depositing it on a moving net-like body.

本発明の部分的に熱圧着された複合部を有する高強力な
不織布は、このようにして得られた不織ウェブを加熱し
た凸部がロール表面に均一に分布したエンボスロールと
、表面平滑ロール間を通過させて、圧力をかけることに
より、また、超音波接合装置を通過させることにより、
得ることができる。
The high-strength nonwoven fabric having a partially thermocompressed composite part according to the present invention can be produced by heating the nonwoven web obtained in this way and using an emboss roll in which convex parts are uniformly distributed on the roll surface, and a roll with a smooth surface. By passing the material between the parts and applying pressure, or by passing it through an ultrasonic bonding device,
Obtainable.

不織布の等方性の尺度である最も強い方向と最も弱い方
向の引張強力の比(以下、引張強力比という)について
は、本発明の不織布では、特に限定してるものではない
が、実用的な引裂強力は最も低い方向の引裂強力で決定
される。すなわち不織布を強い方向から引裂いても、弱
い方向に引裂かれていき、最終的には、最も弱い方向に
引裂かれてしまう。したがって引張強力比は、2.0以
下であることが好ましく、1.2以下であることが特に
好ましい。
The ratio of tensile strength in the strongest direction to the weakest direction (hereinafter referred to as tensile strength ratio), which is a measure of the isotropy of a nonwoven fabric, is not particularly limited in the nonwoven fabric of the present invention, but it is within a practical range. Tear strength is determined by the tear strength in the lowest direction. In other words, even if the nonwoven fabric is torn in the strong direction, it will be torn in the weak direction, and eventually it will be torn in the weakest direction. Therefore, the tensile strength ratio is preferably 2.0 or less, particularly preferably 1.2 or less.

本発明では、高強力な不織布のパラメータとしてy5・
Xを用い、この値が2.OX 10 ”を越える不織布
を高強力な不織布としたが、土木関係、建設関係での実
用性を考えるとyすなわち1Mの不織布重量1グラムあ
たりの引張強力g / 3 cm巾/girdが、20
0以上、Xすなわち1ボの不織布重量1グラムあたり引
裂強力g/g/fが20以上であることが好ましい。
In the present invention, y5・
Using X, this value is 2. A nonwoven fabric with a strength exceeding OX 10" is considered a highly strong nonwoven fabric, but considering its practicality in civil engineering and construction, y, that is, the tensile strength per gram of 1M nonwoven fabric, g/3 cm width/gird, is 20
It is preferable that the tear strength g/g/f is 20 or more per gram of nonwoven fabric weight of 0 or more, that is, 1bo.

[実施例] 本発明を実施例によって更に説明する。なお、実施例中
に示す特性値の測定方法又は定義は次のとおりである。
[Examples] The present invention will be further explained by examples. The measurement methods or definitions of the characteristic values shown in the examples are as follows.

(1)融点<”c>: セイコー電子工業O@社製DSC−20を用い、試料1
0mgを採取し、室温より昇温速度20°C/分にて昇
温しで得られるDSC曲線の融点吸熱ピークの頂点の温
度である。
(1) Melting point <"c>: Using DSC-20 manufactured by Seiko Electronics Co., Ltd.
This is the temperature at the top of the melting point endothermic peak of the DSC curve obtained by collecting 0 mg and raising the temperature from room temperature at a heating rate of 20°C/min.

(2)不織布引張強力(g / 3 crn巾/g/ボ
):JIS L 1085の不織布しん地試験法に準じ
幅3cmの試料片をつかみ間隔10cm、引張速度30
±2cm/分で測定した破断時の値(グラム)を不織布
のIn?あたりの重量(グラム)で除し、最も強い方向
と最も弱い方向の平均をとった値である。
(2) Tensile strength of non-woven fabric (g/3 crn width/g/bo): According to JIS L 1085 non-woven fabric stain test method, grab a sample piece with a width of 3 cm and set an interval of 10 cm and a tensile speed of 30
The value at break (grams) measured at ±2 cm/min is the In? It is the value obtained by dividing the weight (in grams) per unit and taking the average of the strongest direction and the weakest direction.

(3)不織布引裂強力(g/g/ボ):JIS L 1
085の不織布しん地試験法に準じ引裂強さC法(ペン
シュラム法)にて測定した値(グラム)を不織布の1ば
あたりの重M(グラム)で除し、最も強い方向と最も弱
い方向の平均をとった(直である。
(3) Nonwoven fabric tear strength (g/g/bo): JIS L 1
The value (grams) measured by the tear strength C method (Pensulam method) according to the nonwoven fabric stain test method of 085 is divided by the weight M (grams) per gram of the nonwoven fabric, and the I took the average (direct).

(4)単糸強度(グラム/デニール):熱圧着させて不
織布としたあとの複合繊維を不織布中より採取し、その
繊維をJIS L 1069の繊維の引張試験方法に準
じつかみ間隔20mm、引張速度20mm/分で測定し
た破断時の強力(グラム)を引張試験前の繊維のデニー
ルで除した値である。
(4) Single yarn strength (grams/denier): After thermocompression bonding to make a nonwoven fabric, the conjugate fibers were collected from the nonwoven fabric, and the fibers were tested in accordance with JIS L 1069 fiber tensile test method at a grip interval of 20 mm and a tensile speed. It is the value obtained by dividing the strength at break (in grams) measured at 20 mm/min by the denier of the fiber before the tensile test.

(5)接合部の繊維体積占有率(%):不織布の断面の
走査型電子顕微鏡写真から実測した厚みから不織布1ボ
の見掛けの体積(ホ)を求めた値に対する不織布の1r
rfあたりの重量(グラム)と複合繊維の密度(g/c
ffl)とから複合繊維の実体積(rl()を求めた値
の百分率(χ)である。
(5) Fiber volume occupancy (%) at the joint: 1r of the nonwoven fabric relative to the value obtained by calculating the apparent volume (e) of one nonwoven fabric from the thickness actually measured from a scanning electron micrograph of the cross section of the nonwoven fabric
Weight per rf (grams) and composite fiber density (g/c
It is the percentage (χ) of the value obtained from the actual volume (rl()) of the composite fiber from

(6)非接合部の繊維体積占有率(%):JIS 1.
1085の不織布しん地試験法の厚さ測定法に準し、厚
さ測定機を用いて20gf/ctF+の圧力のもとて厚
さ測定機のプレノサーフート2caのものを使用して測
定した厚みから、不織布1ボの見掛けの体積(ホ)を求
めた値に対する不織布のl rrrあたりの重量(グラ
ム)と複合繊維の密度(g/era)とから複合繊維の
実体積(ホ)を求めた値の百分率(%)である。
(6) Fiber volume occupancy (%) of non-bonded part: JIS 1.
Based on the thickness measured using a thickness measuring machine under a pressure of 20 gf / ctF + using a thickness measuring machine Preno Surfoot 2ca according to the thickness measuring method of the nonwoven fabric stain test method of 1085, The actual volume (E) of the composite fiber is determined from the weight (grams) per l rrr of the nonwoven fabric and the density (g/era) of the composite fiber for the apparent volume (E) of one nonwoven fabric. It is a percentage (%).

(7)低融点成分の厚み(μm): 不織布中の単糸断面の走査型電子顕微鏡写真から実測し
た値である。
(7) Thickness of low melting point component (μm): This is a value actually measured from a scanning electron micrograph of a cross section of a single fiber in a nonwoven fabric.

(8)不織布の実用性能: 評価を○、△、×で行ない、その基準を第1表にまとめ
て示す。
(8) Practical performance of nonwoven fabric: Evaluations were made using ○, △, and ×, and the criteria are summarized in Table 1.

(以下余白) 実施例1〜2 35°C、オルソ−クロロフェノール溶液中における固
有粘度η 0.62、融点256°C,密度1.38(
g/cyfl)のポリエチレンテレフタレート(以下P
ETと記す)を複合繊維の高融点成分の熱可塑性樹脂と
し、低融点成分の熱可塑性樹脂としてそれぞれ99%濃
硫酸の1%溶液の相対粘度η。
(Left below) Examples 1-2 35°C, intrinsic viscosity η 0.62 in ortho-chlorophenol solution, melting point 256°C, density 1.38 (
g/cyfl) of polyethylene terephthalate (hereinafter P
The relative viscosity η of a 1% solution of 99% concentrated sulfuric acid is used as a thermoplastic resin as a high melting point component of the composite fiber and as a thermoplastic resin as a low melting point component of the composite fiber.

2.3、融点220°Cのポリカプロアミド(以下N6
と記す)(実施例1)及び、99%濃硫酸1%溶液の相
対粘度ηr3.2、融点204°CのN6とポリヘキサ
メチレンアジパミドとの共重合体(以下C6PAと記す
)を用いた(実施例2)。
2.3, polycaproamide with a melting point of 220°C (hereinafter referred to as N6
) (Example 1) and a copolymer of N6 and polyhexamethylene adipamide (hereinafter referred to as C6PA) with a relative viscosity ηr 3.2 of a 1% solution of 99% concentrated sulfuric acid and a melting point of 204°C. (Example 2).

芯鞘構造で鞘の厚みを1.6μmとした複合繊維を引き
取り速度5000 m7分で引き取り、単糸繊度4.0
デニールとし、コロナ帯電方式により、フィラメントを
帯電させ、開繊後移動する多孔質帯状物に堆積しウェブ
化し、このウェブを凸部がロル表面に均一に分布したエ
ンボスロールとフラントロール間とで熱圧着し、最終的
にエンボス率20%、D+10mm以下、接合部1個の
面積0.3−の目付100 g/nrである不織布を得
た。
A composite fiber with a core-sheath structure and a sheath thickness of 1.6 μm was taken at a take-up speed of 5000 m7 minutes, and the single yarn fineness was 4.0.
Denier, the filament is charged using a corona charging method, and after opening, it is deposited on a moving porous strip to form a web, and this web is heated between an embossing roll and a flantro roll with convex portions evenly distributed on the roll surface. Finally, a nonwoven fabric having an embossing rate of 20%, D+10 mm or less, an area of 0.3- of one joint, and a basis weight of 100 g/nr was obtained.

得られた複合繊維の単糸繊度、低融点成分の厚み及び不
織布の特性として、熱圧着後の単糸強度、繊維体積占有
率、引張強力、引裂強力、パラメタy S 、 xまた
、各熱可塑性樹脂組み合せの融点差、各実施例での加熱
ロール温度を第1表及び引張・引裂強力の関係を第1図
に示す。
The single fiber fineness of the obtained composite fiber, the thickness of the low melting point component, and the characteristics of the nonwoven fabric include the single fiber strength after thermocompression bonding, fiber volume occupancy, tensile strength, tear strength, parameters y S , x and each thermoplasticity. Table 1 shows the melting point difference between the resin combinations and the heating roll temperature in each example, and the relationship between the tensile strength and tear strength is shown in FIG.

比較例1 実施例1と同じPETを単独で紡糸し、実施例1と同じ
装置にて開繊・堆積・接合し、目付100g/rdであ
る不織布を得た。得られた不織布の特性を第2表及び第
1図に示す。
Comparative Example 1 The same PET as in Example 1 was spun alone, and the fibers were opened, deposited, and joined using the same device as in Example 1 to obtain a nonwoven fabric having a basis weight of 100 g/rd. The properties of the obtained nonwoven fabric are shown in Table 2 and FIG.

実施例3〜13、比較例2〜4 実施例1と同じPETを高融点成分、実施例1と同じN
6を低融点成分とし、低融点成分の厚み及び単糸繊度を
変えて紡糸し、実施例1と同じ装置にて開繊・堆積後加
熱ロール温度を200’Cにて接合して目付け100g
/nfである不織布を得た。
Examples 3 to 13, Comparative Examples 2 to 4 The same PET as in Example 1 was used as a high melting point component, and the same N as in Example 1 was used.
6 was used as a low melting point component, the thickness of the low melting point component and the fineness of the single filament were changed, the fibers were opened and deposited using the same equipment as in Example 1, and the heating roll temperature was set to 200'C to obtain a fabric weight of 100 g.
/nf nonwoven fabric was obtained.

実施例1並びに得られた複合繊維の繊度、低融点成分の
厚み及び不織布の特性を第3表及び第1図に示す。
Example 1 and the fineness of the obtained composite fiber, the thickness of the low melting point component, and the properties of the nonwoven fabric are shown in Table 3 and FIG.

実施例14〜16、比較例5 実施例1と同じPETを高融点成分、実施例1と同じN
6を低融点成分とし、低融点成分の厚みを1.6μm、
単糸繊度を4デニールとし紡糸速度を変え、紡糸し、実
施例1と同じ装置にて開繊・堆積後加熱ロール温度20
0°Cにて接合して目付100 g/rr?である不織
布を得た。実施例1並びに得られた複合繊維の繊度、低
融点成分の厚み及び不織布の特性を第4表及び第1図に
示す。
Examples 14 to 16, Comparative Example 5 The same PET as in Example 1 was used as the high melting point component, and the same N as in Example 1 was used.
6 is a low melting point component, the thickness of the low melting point component is 1.6 μm,
The single fiber fineness was set to 4 denier, the spinning speed was changed, the fibers were spun, and the fibers were opened and deposited using the same equipment as in Example 1, and then heated at a temperature of 20 denier.
Bonded at 0°C and has a fabric weight of 100 g/rr? A nonwoven fabric was obtained. Example 1 and the fineness of the obtained composite fiber, the thickness of the low melting point component, and the properties of the nonwoven fabric are shown in Table 4 and FIG.

実施例17〜20、比較例6.7 実施例1と同じPETを高融点成分、実施例1と同じN
6を低融点成分とし、実施例1と同じ条件、装置で紡糸
し開繊・堆積し、上下共200″Cに加熱した平滑ロー
ルを用いて接合し、目付100g/ボの不織布を得た。
Examples 17 to 20, Comparative Example 6.7 The same PET as in Example 1 was used as a high melting point component, and the same N as in Example 1 was used.
6 was used as a low melting point component, the fibers were spun, opened and deposited using the same equipment as in Example 1, and the upper and lower parts were joined using smooth rolls heated to 200''C to obtain a nonwoven fabric with a basis weight of 100 g/bo.

このとき、エンボスロールとフラットロールとの間隙を
変えて、不織布の接合部及び非接合部の繊維体積占有率
を変えた。得られた不織布の特性を第5表及び第1図に
示す。
At this time, the gap between the embossing roll and the flat roll was changed to change the fiber volume occupancy in the bonded and non-bonded areas of the nonwoven fabric. The properties of the obtained nonwoven fabric are shown in Table 5 and FIG.

実施例21〜23、比較例8 実施例1と同じPETを高融点成分、実施例1と同じN
6を低融点成分とし、単糸繊度を変えて紡糸し、実施例
1と同じ装置にて開繊・堆積後加熱ロール温度を200
”Cにて接合して目付100 g /ポである不織布を
得た。得られた複合繊維の繊度、低融点成分の厚み及び
不織布特性を第6表及び第1図に示す。
Examples 21 to 23, Comparative Example 8 The same PET as in Example 1 was used as a high melting point component, and the same N as in Example 1 was used.
6 was used as a low melting point component, the single fiber fineness was changed and spun, and after opening and stacking using the same device as in Example 1, the heated roll temperature was set to 200.
A nonwoven fabric having a basis weight of 100 g/po was obtained by joining at "C". The fineness of the obtained composite fiber, the thickness of the low melting point component, and the properties of the nonwoven fabric are shown in Table 6 and FIG.

実施例24〜26、比較例9.10 実施例1と同じPETを高融点成分、実施例1と同じN
6を低融点成分とし、低融点成分の厚みを1.6μmと
し、単糸繊度を4デニールで紡糸し、実施例1と同じ装
置にて開繊・堆積後加熱ロール温度を200’Cにてエ
ンボス率を変えて接合し、目付100g/n(である不
織布を得た。実施例1及び得られた不織布特性を第7表
及び第1図に示す。
Examples 24 to 26, Comparative Examples 9.10 The same PET as in Example 1 was used as a high melting point component, and the same N as in Example 1 was used.
6 was used as a low melting point component, the thickness of the low melting point component was 1.6 μm, the single yarn fineness was spun at 4 denier, the fiber was opened and deposited using the same device as in Example 1, and the heating roll temperature was set at 200'C. By changing the embossing ratio and joining, a nonwoven fabric with a basis weight of 100 g/n was obtained. Example 1 and the properties of the obtained nonwoven fabric are shown in Table 7 and FIG.

実施例27〜29、比較例11.12 実施例1と同じPETを高融点成分、実施例1と同じN
6を低融点成分とし、低融点成分の厚みを1.6μmと
し単糸繊度を4デニールで紡糸し、実施例1同じ装置に
て開繊・堆積後D1が10mm以下の加熱ロールにて温
度200°Cで接合部1個の面積を変えて接合し、目付
100g/mである不織布を得た。実施例1及び得られ
た不織布特性を第8表及び第1図に示す。
Examples 27 to 29, Comparative Examples 11.12 The same PET as in Example 1 was used as a high melting point component, and the same N as in Example 1 was used.
6 was used as a low melting point component, the thickness of the low melting point component was 1.6 μm, the single fiber fineness was spun at 4 denier, and after opening and stacking in the same device as Example 1, the fiber was heated to a temperature of 200 using a heating roll with D1 of 10 mm or less. By changing the area of one joint at °C, a nonwoven fabric having a basis weight of 100 g/m was obtained. Example 1 and the properties of the obtained nonwoven fabric are shown in Table 8 and FIG.

実施例30〜32、比較例13.14 実施例1と同じPETを高融点成分、実施例1と同じN
6を低融点成分とし、低融点成分の厚みを1.6μmと
し単糸繊度4デニールで紡糸し、実施例1と同じ装置に
て開繊・堆積後D1が10mmを越えるエンボスロール
及び接合部が非接合部によって囲まれていないエンボス
ロールにて、温度200°CでD2を変えて接合し、目
付100g/rdである不織布を得た。この不織布特性
を第9表及び第1図に示す。
Examples 30 to 32, Comparative Examples 13.14 The same PET as in Example 1 was used as a high melting point component, and the same N as in Example 1 was used.
6 was used as a low melting point component, the thickness of the low melting point component was set to 1.6 μm, the single yarn fineness was spun with a single fiber fineness of 4 denier, and after fiber opening and deposition using the same device as in Example 1, the embossing roll and joint portion with D1 exceeding 10 mm were obtained. Using an embossing roll that is not surrounded by non-bonded parts, they were bonded at a temperature of 200° C. while changing D2 to obtain a nonwoven fabric with a basis weight of 100 g/rd. The properties of this nonwoven fabric are shown in Table 9 and FIG.

比較例15 実施例1と同じ方法にて不織ウェブを得た後、中間接合
部が存在しないような彫刻模様の加熱エンボスロールに
て、温度200°Cで接合し、目付100g/nfの不
織布を得た。実施例1及びこの不織布特性を第10表及
び第1図に示す。
Comparative Example 15 A nonwoven web was obtained in the same manner as in Example 1, and then joined at a temperature of 200°C using a heated embossing roll with a engraved pattern such that there is no intermediate joint, to obtain a nonwoven fabric with a basis weight of 100 g/nf. I got it. Example 1 and its nonwoven fabric properties are shown in Table 10 and FIG.

比較例16 実施例1と同じ方法で得られた複合繊維の長繊維を51
印にカットし、カード法により不織ウェブを形成し、実
施例1と同じ装置にて200°Cの加熱ロールで接合し
て、目付100 g/rrfである不織布を得た。実施
例1及びこの不織布特性を第11表に示す。
Comparative Example 16 51 long fibers of composite fiber obtained by the same method as Example 1
A nonwoven web was formed by the carding method, and bonded using a heating roll at 200°C in the same apparatus as in Example 1 to obtain a nonwoven fabric with a basis weight of 100 g/rrf. Example 1 and its nonwoven fabric properties are shown in Table 11.

前述の本発明の不織布の各実施例に示されるように本発
明の部分的に熱圧着された高強度な不織布は、次の要件
をすべて満たしている。
As shown in the above-mentioned examples of the nonwoven fabric of the present invention, the partially thermocompressed high-strength nonwoven fabric of the present invention satisfies all of the following requirements.

すなわち、■長繊維であること■低融点成分と高融点成
分との融点差があること■鞘成分の厚みが2.1μm以
下であること■熱圧着後の不織布中の単糸強度3.0グ
ラム/デニール以上であること■接合部の繊維体積占有
率が30%以上100%未満であること■非接合部の繊
維体積占有率部が50%以下であること■中間接合部が
存在することの要件を全て満たす。
In other words, ■ It must be a long fiber ■ There must be a difference in melting point between the low melting point component and the high melting point component ■ The thickness of the sheath component must be 2.1 μm or less ■ Single fiber strength in the nonwoven fabric after thermocompression bonding is 3.0 gram/denier or more ■The fiber volume occupancy of the joined part must be 30% or more and less than 100%.■The fiber volume occupancy of the non-joined part must be 50% or less.■There must be an intermediate joint. Satisfies all requirements.

以上の全要件を満たす実施例1〜32はy5・Xを満た
し、引張強力、引裂強力、不織布表面耐摩耗性、下地へ
の添い易さ、水側は易さ、層間の耐剥離性を発現する。
Examples 1 to 32, which meet all the above requirements, satisfy y5・X and exhibit tensile strength, tear strength, nonwoven surface abrasion resistance, ease of adhesion to the base, ease of application on the water side, and interlayer peeling resistance. do.

実施例及び比較例の実用性能について評価した。その結
果を第12表にまとめて示す。
The practical performance of Examples and Comparative Examples was evaluated. The results are summarized in Table 12.

〔発明の効果〕〔Effect of the invention〕

従来の不織布は引張強力が高いと引裂強力が低く、反対
に引裂強力が高いと引張強力が低くなり、いずれの不織
布においても第1図に示すようにy5・x=2X101
3の曲線の下方に位置するが、本発明の高強力な不織布
は、y5・x=2X10”の曲線より上方に位置し、高
引張強力を維持したまま、高引裂強力を発現させること
が可能である。
In conventional nonwoven fabrics, when the tensile strength is high, the tear strength is low, and on the other hand, when the tear strength is high, the tensile strength is low, and as shown in Fig. 1, y5 x = 2 x 101
However, the high-strength nonwoven fabric of the present invention is located above the curve y5 x = 2X10'', and can develop high tear strength while maintaining high tensile strength. It is.

このような本発明の高強力な不織布は、引張強力、引裂
強力が共に優れた不織布を必要とする土木、建設、建材
分野では、特に有用である。
Such a high-strength nonwoven fabric of the present invention is particularly useful in the fields of civil engineering, construction, and building materials, which require a nonwoven fabric with excellent tensile strength and tear strength.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例、比較例及び従来技術の不織
布の引裂強力と引張強力との関係を示すグラフ。第2図
は、低融点成分の厚みが2.1μm1以下の熱圧着させ
て不織布としたあとの複合繊維の単糸強度と不織布強力
を示すパラメータy5・χとの関係を示すグラフ。第3
図は、熱圧着さ・已で不織布としたあとの単糸強度が3
.0 g/デニール以上の複合繊維の鞘部を形成する低
融点成分の厚みと不織布強力パラメータy5・Xとの関
係を示すグラフ。第4図(A)〜第4図(E)は、複合
繊維の繊維軸と直交する断面の各種例を模式的に示す断
面図。第5図(A)は不織布の接合部と非接合部の断面
を斜め上方から見た時の繊維の形状を示す電子顕微鏡写
真(倍率100倍)、第5図(B)は第5図(A)の模
式図。第6図(A)は、不織布の接合部における繊維体
積占有率が80%である不織布断面の繊維の形状を示す
電子顕微鏡写真(倍率200侑)、 第6図(B)は非
接合部における繊維体積占有率が20%である不織布断
面の繊維の形状を示す電子顕微鏡写真(倍率倍)。 1− 低融点成分 2− 高融点成分 3− 接合部の表面 4 ・−接合部の断面 5− 非接合部の表面 6− 非接合部の断面 7− 中間接合部の表面 8− 中間接合部の断面 ! ・−低融点成分の厚み
FIG. 1 is a graph showing the relationship between tear strength and tensile strength of nonwoven fabrics of Examples of the present invention, Comparative Examples, and prior art. FIG. 2 is a graph showing the relationship between the single fiber strength of a composite fiber with a low melting point component having a thickness of 2.1 μm or less and the parameter y5·χ indicating the strength of the nonwoven fabric after thermocompression bonding to form a nonwoven fabric. Third
The figure shows the single yarn strength of 3 after being made into a nonwoven fabric by thermocompression bonding.
.. 2 is a graph showing the relationship between the thickness of a low melting point component forming a sheath of a composite fiber of 0 g/denier or more and the nonwoven fabric strength parameter y5·X. FIG. 4(A) to FIG. 4(E) are cross-sectional views schematically showing various examples of cross sections orthogonal to the fiber axis of composite fibers. Figure 5 (A) is an electron micrograph (100x magnification) showing the shape of the fibers when the cross section of the bonded and non-bonded areas of the nonwoven fabric is viewed diagonally from above, and Figure 5 (B) is A) Schematic diagram. Figure 6 (A) is an electron micrograph (magnification 200x) showing the shape of the fibers in the cross section of a nonwoven fabric with a fiber volume occupancy of 80% at the joints of the nonwoven fabric. An electron micrograph (magnification) showing the shape of fibers in a cross section of a nonwoven fabric with a fiber volume occupancy of 20%. 1 - Low melting point component 2 - High melting point component 3 - Surface of joint 4 - Cross section of joint 5 - Surface of non-joint 6 - Cross section of non-joint 7 - Surface of intermediate joint 8 - Surface of intermediate joint cross section!・-Thickness of low melting point component

Claims (1)

【特許請求の範囲】[Claims] 1.長繊維から成る不織布で、その不織布を構成する長
繊維が融点を異にする2種類の熱可塑性樹脂組成物から
成り、その低融点成分がポリアミド系熱可塑性樹脂組成
物から成り、高融点成分がポリエステル系熱可塑性樹脂
組成物から成り、その低融点成分が2.1μm以下の厚
みで高融点成分の表面を全面的に覆う複合繊維であり、
かつその不織布は部分的に熱圧着された接合部と該接合
部間に延びる非接合部とを有し、接合部での繊維体積占
有率が30%以上100%未満であり、非接合部での繊
維体積占有率が50%以下であり、かつ接合部の繊維体
積占有率の方が非接合部の繊維体積占有率より大きく、
しかも熱圧着させて不織布としたあとの複合繊維の単糸
強度が3グラム/デニール以上であり、かつ不織布の引
張強度と引裂強度とが次式を満たすことを特徴とする部
分的に熱圧着された高強力な不織布。 y^5・x≧2×10^1^3 y:1m^2不織布重量1グラムあたりの引張強力 x:1m^2不織布重量1グラムあたりの引裂強力
1. A nonwoven fabric made of long fibers, the long fibers that make up the nonwoven fabric are made of two types of thermoplastic resin compositions with different melting points, the low melting point component being a polyamide thermoplastic resin composition, and the high melting point component being a polyamide thermoplastic resin composition. A composite fiber made of a polyester thermoplastic resin composition, in which the low melting point component completely covers the surface of the high melting point component with a thickness of 2.1 μm or less,
And the nonwoven fabric has a joint part partially bonded by thermocompression and a non-joint part extending between the joint part, the fiber volume occupation rate in the joint part is 30% or more and less than 100%, and The fiber volume occupancy of is 50% or less, and the fiber volume occupancy of the bonded portion is greater than the fiber volume occupancy of the non-bonded portion,
In addition, the single fiber strength of the composite fiber after thermocompression bonding to form a nonwoven fabric is 3 g/denier or more, and the tensile strength and tear strength of the nonwoven fabric satisfy the following formula. Made of high strength non-woven fabric. y^5・x≧2×10^1^3 y: 1m^2 Tensile strength per gram of nonwoven fabric weight x: 1m^2 Tear strength per gram of nonwoven fabric weight
JP24608690A 1990-09-18 1990-09-18 High-strength nonwoven fabric partially thermocompressed Expired - Lifetime JP2989238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24608690A JP2989238B2 (en) 1990-09-18 1990-09-18 High-strength nonwoven fabric partially thermocompressed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24608690A JP2989238B2 (en) 1990-09-18 1990-09-18 High-strength nonwoven fabric partially thermocompressed

Publications (2)

Publication Number Publication Date
JPH04126862A true JPH04126862A (en) 1992-04-27
JP2989238B2 JP2989238B2 (en) 1999-12-13

Family

ID=17143284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24608690A Expired - Lifetime JP2989238B2 (en) 1990-09-18 1990-09-18 High-strength nonwoven fabric partially thermocompressed

Country Status (1)

Country Link
JP (1) JP2989238B2 (en)

Also Published As

Publication number Publication date
JP2989238B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JP4658148B2 (en) Thermal adhesive laminated nonwoven fabric
US4310594A (en) Composite sheet structure
KR100240805B1 (en) Improved modulus nonwoven webs based on multi-layer blown microfibers
JP3093381B2 (en) Adhesive nonwoven web and mesh web composite
JP5340146B2 (en) Tufted and bonded nonwovens
MXPA02008965A (en) Multicomponent apertured nonwoven.
JPWO2004094136A1 (en) High strength nonwoven fabric
EP0582568A1 (en) Composite fabrics comprising continuous filaments locked in place by intermingled melt blown fibers and methods for making
JP2002534616A (en) Three-dimensionally structured planar fiber product and method for producing the same
JPH09209254A (en) Laminated nonwoven fabric and its production
WO1998009010A1 (en) A non-woven fabric and an absorbent article using thereof
JP4919852B2 (en) Adhesive fiber sheet and manufacturing method thereof
WO2004035900A1 (en) Nonwoven fabric made of core/sheath type composite fiber and process for producing the same
WO2010044412A1 (en) Plate to which sound-absorbing material is attached
JP4522671B2 (en) Nonwoven fabric for filter and method for producing the same
JP4359372B2 (en) Laminated nonwoven fabric and heat-sealed article
JPH04126862A (en) High-tenacity nonwoven fabric partially thermally bonded under pressure
JP3562667B2 (en) Method for producing stretchable long-fiber nonwoven fabric
JP2763135B2 (en) High-strength non-woven fabric partially thermocompressed
JP3070632B2 (en) Flexible nonwoven fabric and method for producing the same
JP3221200B2 (en) Laminated nonwoven fabric and method for producing the same
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JPH0376858A (en) Nonwoven fabric having high strength
JP2003231196A (en) Discriminated sheet and its production method
JPH04352861A (en) Nonwoven fabric and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

EXPY Cancellation because of completion of term