JPH0412655A - High-speed motor or scanner motor - Google Patents

High-speed motor or scanner motor

Info

Publication number
JPH0412655A
JPH0412655A JP11006590A JP11006590A JPH0412655A JP H0412655 A JPH0412655 A JP H0412655A JP 11006590 A JP11006590 A JP 11006590A JP 11006590 A JP11006590 A JP 11006590A JP H0412655 A JPH0412655 A JP H0412655A
Authority
JP
Japan
Prior art keywords
motor
rotor
polygon mirror
bearing
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11006590A
Other languages
Japanese (ja)
Inventor
Katsutoshi Arai
新居 勝敏
Kazuhiko Kawaike
川池 和彦
Hiroo Hiroyama
広山 弘夫
Takeshi Uno
宇野 斌
Kimiyoshi Ishizaki
石崎 公祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11006590A priority Critical patent/JPH0412655A/en
Priority to US07/692,662 priority patent/US5325006A/en
Publication of JPH0412655A publication Critical patent/JPH0412655A/en
Priority to US08/186,166 priority patent/US5493161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)

Abstract

PURPOSE:To remove the thermal deformation of a rotary polygon mirror or the unbalance by fluid force even in high-speed revolution by constituting a scanner motor in a sealed vessel of a low pressure of tens of Torrs or less, and driving it. CONSTITUTION:In a scanner motor, the rotary polygon mirror 1 is attached to a rotor 3 by a plate spring 16 being an elastic substance, and the shaft 2 supported by a bearing 5 is press-fit in this. The rotor 3 is driven by a rotor 9, consisting of a permanent magnet, and an armature 8, and for the revolution, the magnetic change of a magnet ring 10 is detected with a Hall element and is controlled. And since it is sealed with a motor case 11, a mirror cover 14, and a bearing case 6, and the inside is under a low pressure, the constituent parts gets at uniform temperature by radiation cooling. Accordingly, the thermal deformation of the rotary polygon mirror does not occur, and there is no deterioration of rotation accuracy caused by thermal factors. Furthermore, since fluid force hardly acts upon the rotary polygon mirror, unstable vibration does not occur even at high-speed rotation, and highly accurate rotation can be gotten.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速、特に10000rpn+を越える速度で
運転される高速モータに関し、レーザビームプリンタの
スキャナ駐動用モータとして用いられ、顕著な効果を発
揮するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-speed motor that is operated at high speed, particularly at a speed exceeding 10,000 rpm+, and is used as a motor for parking a scanner of a laser beam printer, and exhibits remarkable effects. It is something.

〔従来の技術〕[Conventional technology]

例えば、レーザビームプリンタには、レーザビームを転
写紙に偏向するための回転多面鏡が具備されている。回
転多面鏡はスキャナモータで駆動されるが、近年の高速
印字化および高精細化の要求から、回転むらや芯振れが
ない超高速のモータの提案が望まれている。特に、芯振
れ等による多面鏡の面倒れは、印字品質を著しく低下す
ることが知られている。
For example, a laser beam printer is equipped with a rotating polygon mirror for deflecting a laser beam onto transfer paper. Rotating polygon mirrors are driven by scanner motors, but in response to recent demands for high-speed printing and high definition, there is a need for ultra-high-speed motors that are free from uneven rotation and center runout. In particular, it is known that tilting of the polygon mirror due to center runout or the like significantly reduces printing quality.

しかし、従来、レーザ光を高速スキャニングするために
用いられる回転多面鏡は、ミクロンメータないしはサブ
ミクロンメータの低回転精度が要求され、単線軸受性能
の改良だけでこの目的は達成できない。すなわち、第4
図に示すように6〜12面を有する回転多面鏡1の取付
精度Δ2が例えば数ミクロンメータの場合、感光体面上
におけるビーム走査位置の変動量Δyは数十ミクロンメ
ータに拡大され、印字精度が損なわれる問題がある。こ
れは加工精度及び組立精度だけでなく、回転時の動的要
因も関係してくる。具体的にはビーム走査位置の変動量
を10μm以下に押えるために回転多面鏡1の取付面a
の振れを1μm以下に加工し、さらに回転多面鏡1は過
剰な力で締付けられないよう弾性体16を介して取りつ
けられ機械的変形を防止するなどの配慮がなされている
However, the rotating polygon mirrors conventionally used for high-speed scanning of laser beams are required to have low rotational accuracy on the order of micrometers or submicrometers, and this objective cannot be achieved only by improving the performance of single-wire bearings. That is, the fourth
As shown in the figure, when the mounting accuracy Δ2 of the rotating polygon mirror 1 having 6 to 12 surfaces is, for example, several micrometers, the amount of variation Δy of the beam scanning position on the photoreceptor surface is expanded to several tens of micrometers, and the printing accuracy is increased. There is a problem with it being damaged. This is related not only to processing accuracy and assembly accuracy, but also to dynamic factors during rotation. Specifically, in order to suppress the amount of variation in the beam scanning position to 10 μm or less, the mounting surface a of the rotating polygon mirror 1 is
The rotating polygon mirror 1 is attached via an elastic body 16 to prevent mechanical deformation so that it will not be tightened with excessive force.

また、軸振動をサブミクロンメータのオーダに押えるた
め上記した動圧グループ軸受を用い作動時においても高
精度回転が維持できるように種々の工夫がなされている
Furthermore, in order to suppress shaft vibration to the order of submicron meters, various measures have been taken to maintain high precision rotation even during operation using the above-mentioned dynamic pressure group bearing.

特開昭61−157820号公報も前記動圧グループ軸
受を有するものであるが、これによっても充分な精度を
持たすことが難かしいものである。
JP-A-61-157820 also has the above-mentioned dynamic pressure group bearing, but even with this, it is difficult to provide sufficient accuracy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来のスキャナモータにおいては、回転多面鏡
の熱変形や流体力に対して配慮されておらず、高速回転
になるほど回転精度が低下し、印字の高精細化ができな
い問題が出てきた。すなわち、スキャナモータは200
00rpmないしはそれ以上の回転になるモータの電気
鉄心の鉄損が著しく増加するため、スキャナモータの動
作中はモータの発熱が取付面aから回転多面鏡1に熱伝
達され加熱される。ところが、回転多面鏡1は回転によ
るファン効果により冷却されるが、取付面aに於いては
温度が高いので、この面における熱伸びにより回転多面
鏡1はわずかではあるが第5図のように弯曲変形し、2
000Orpm以上の高速回転になると回転多面鏡の熱
変形が無視できなくなる。また、このような高速回転に
なると多面体ゆえに空気を撹拌する抵抗も著しく大きく
なるばかりでなく、回転多面鏡1が受ける流体抵抗によ
るアンバランスも増大し、不安定な振動が誘起され、回
転振動が増大することもある。また、この流体力のアン
バランスは回転むらの直接の原因になるため高精度回転
が望めないなどの欠点がある。
However, conventional scanner motors do not take into account the thermal deformation of the rotating polygon mirror and fluid forces, and the higher the rotation speed, the lower the rotational precision becomes, creating the problem that high-definition printing cannot be achieved. That is, the scanner motor is 200
Since the iron loss of the electric core of the motor that rotates at 00 rpm or more increases significantly, during operation of the scanner motor, the heat generated by the motor is transferred from the mounting surface a to the rotating polygon mirror 1 and heated. However, although the rotating polygon mirror 1 is cooled by the fan effect caused by rotation, the temperature at the mounting surface a is high, so due to the thermal expansion on this surface, the rotating polygon mirror 1 is slightly heated up, as shown in Fig. 5. Curved deformation, 2
When rotating at a high speed of 000 rpm or higher, thermal deformation of the rotating polygon mirror cannot be ignored. In addition, when rotating at such high speed, not only does the resistance to agitating the air increase significantly due to the polyhedron, but also the unbalance caused by the fluid resistance that the rotating polygon mirror 1 receives increases, inducing unstable vibrations and causing rotational vibrations to increase. It may also increase. Furthermore, this unbalance of fluid force is a direct cause of uneven rotation, so there is a drawback that high-precision rotation cannot be expected.

従来のスキャナモータにおいては、このような回転多面
鏡に対する熱変形や、流体力のアンバランスによる回転
精度低下の問題に対しては配慮されておらず、加工精度
や組立精度の向上及び軸受の改良等で問題を解決してい
た。
Conventional scanner motors do not take into account problems such as thermal deformation of the rotating polygon mirror and reduction in rotational accuracy due to unbalanced fluid force, and improvements in machining accuracy and assembly accuracy and improvements in bearings are required. etc. solved the problem.

本発明の目的はこのような従来技術の欠点に鑑みなされ
たもので、高速回転に於ても高精度の回転で使用できる
高速モータ、特にレーザビームプリンタ用スキャナモー
タを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention was made in view of the drawbacks of the prior art, and it is an object of the present invention to provide a high-speed motor, particularly a scanner motor for a laser beam printer, which can be used with high precision even at high speeds.

具体的には動作時における回転多面鏡の熱変形や流体力
によるアンバランスのない高精度回転のスキャナモータ
を提供することにある。
Specifically, it is an object of the present invention to provide a scanner motor that rotates with high precision without thermal deformation of a rotating polygon mirror or unbalance due to fluid force during operation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば上記目的はスキャナモータの回転部分を
減圧環境におき駆動することにより達成される。すなわ
ち、スキャナモータを密閉容器内に構成し、この密閉容
器内を数十トールないしはそれ以下に減圧して気密に保
ち、駆動することにより上記した回転多面鏡の熱的変形
や流体力のアンバランスによる不安定な振動の発生とい
った問題が解決される。
According to the present invention, the above object is achieved by driving the rotating portion of the scanner motor in a reduced pressure environment. In other words, the scanner motor is configured in a sealed container, and the pressure inside this sealed container is reduced to several tens of Torr or less to keep it airtight.By driving, the thermal deformation of the rotating polygon mirror and the unbalance of fluid force can be avoided. This solves problems such as the occurrence of unstable vibrations.

C作用〕 減圧環境で回転多面鏡を駆動すると従来のスキャナモー
タのような回転によるファン効果がほとんど期待できな
いので、回転多面鏡は−様な温度に加熱される。したが
って回転多面鏡の取付面での部分的な熱膨張の恐れはな
くなるので、従来のスキャナモータのような回転多面鏡
の熱変形は起こらない。また、回転多面鏡は6〜12角
の多面体であるが、減圧環境すなわち気薄流体中では空
気抵抗は無視できるほど小さいので、従来のような空気
の撹拌によるアンバランス力は発生せず、低速から高速
回転まで高い回転精度が得られる。
Effect C] When a rotating polygon mirror is driven in a reduced pressure environment, the fan effect due to rotation as in a conventional scanner motor cannot be expected, so the rotating polygon mirror is heated to a -like temperature. Therefore, there is no possibility of partial thermal expansion on the mounting surface of the rotating polygon mirror, and therefore, thermal deformation of the rotating polygon mirror as in conventional scanner motors does not occur. In addition, although a rotating polygon mirror is a polyhedron with 6 to 12 sides, air resistance is negligibly small in a reduced pressure environment, that is, in a thin fluid, so there is no unbalanced force caused by air agitation as in the past, and it can be used at low speeds. High rotational accuracy can be obtained from to high speed rotation.

〔実施例〕〔Example〕

以下、本発明構成の一実施例を図面に基づいて説明する
。第1図は本発明が適用されるレーザビームプリンタ用
スキャナモータの一実施例である。
Hereinafter, one embodiment of the configuration of the present invention will be described based on the drawings. FIG. 1 shows an embodiment of a scanner motor for a laser beam printer to which the present invention is applied.

回転多面鏡1はロータ3に弾性体16を介して止め金具
16で軽く押圧され、取りつけられている。
The rotating polygon mirror 1 is attached to the rotor 3 through an elastic body 16 by being lightly pressed with a stopper 16.

また、このロータ3の中心に軸2が圧入されていて、軸
受箱6に組込まれた軸受5によって軸2が回転自在に支
持されている。4は軸受5の潤滑油の飛散を防止する磁
性流体シールである。ロータ3の駆動は、ロータ3に固
着された永久磁石よりなるモータの回転子9及びその外
周に対向配置された磁界発生のための電機子8によって
なされ、回転数のコントロールは多極に着磁したマグネ
ットリング10の磁束変化をホール素子(図示していな
い)を用いて行っている。このようにして構成したスキ
ャナモータはモータケース11とミラーカバー14と軸
受ケース6によって密閉された室になっていて、封止管
12から内部の空気を真空ポンプ(図示していない)に
よって排気し、適当な圧力に減圧して封止する。
Further, a shaft 2 is press-fitted into the center of the rotor 3, and is rotatably supported by a bearing 5 incorporated in a bearing box 6. 4 is a magnetic fluid seal that prevents the lubricating oil of the bearing 5 from scattering. The rotor 3 is driven by a motor rotor 9 made of permanent magnets fixed to the rotor 3 and an armature 8 for generating a magnetic field placed opposite to its outer periphery.The rotation speed is controlled by multi-pole magnetization. The magnetic flux of the magnet ring 10 is changed using a Hall element (not shown). The scanner motor configured in this manner has a chamber sealed by the motor case 11, mirror cover 14, and bearing case 6, and internal air is evacuated from the sealed tube 12 by a vacuum pump (not shown). , reduce the pressure to an appropriate level and seal.

動作時レーザ光はガラス窓22より入射させるが、ガラ
ス窓22の形状はレーザ光を直進で人、反射させるため
に平板のガラスが用いられる。また、回転多面鏡1は弾
性体16を用いて変形させないように取り付けられるが
、この弾性体16として板ばねが用いられる。
During operation, the laser beam is incident through the glass window 22, and the shape of the glass window 22 is a flat glass plate so that the laser beam travels straight through and is reflected. Further, the rotating polygon mirror 1 is attached using an elastic body 16 so as not to be deformed, and a plate spring is used as the elastic body 16.

このようなスキャナモータの構成において、ロータ3は
高速回転するモータの発熱によって温度上昇し、取りつ
け面aから回転多面鏡1に伝熱し加熱される。また、内
部は減圧されて気薄な状態になっているので、回転多面
鏡1は従来のスキャナモータのような回転によるセルフ
クーリングができないのでほとんど−様な温度分布とな
る。これは、減圧環境での放熱は輻射冷却が支配的とな
り、冷却作用は大気条件に比べ少ないため構成部品は−
様な温度となる。したがって、回転多面鏡1は−様な温
度分布となっているので、従来のような熱変形は起らな
い。また、内部を減圧して回転するので回転部品による
風損が発生せず、モータの消費電力も少なくてすみ、減
圧環境内では放熱が悪くても、モータの電気損失が減る
のでロータ3の温度もそれほど高くならない。さらに、
回転多面鏡の受ける流体抵抗は減圧環境では無視できる
ほど小さいので、流体力に基づいた不安定な振動は発生
しない。このため、軸2を支持する軸受5においては、
それほど高剛性の軸受を用いなくても安定した回転を持
続させることができる。
In such a configuration of the scanner motor, the temperature of the rotor 3 rises due to heat generated by the motor rotating at high speed, and the heat is transferred from the mounting surface a to the rotating polygon mirror 1 and heated. Furthermore, since the interior is depressurized and in a thin state, the rotating polygon mirror 1 cannot self-cool by rotation like a conventional scanner motor, resulting in an almost negative temperature distribution. This is because radiation cooling is dominant in heat dissipation in a reduced pressure environment, and the cooling effect is less than in atmospheric conditions, so the components are -
The temperature will vary. Therefore, since the rotating polygon mirror 1 has a negative temperature distribution, thermal deformation as in the conventional case does not occur. In addition, since the internal pressure is reduced and the motor rotates, there is no windage loss caused by rotating parts, and the power consumption of the motor is reduced. is not that expensive either. moreover,
Since the fluid resistance experienced by the rotating polygon mirror is negligible in a reduced pressure environment, unstable vibrations based on fluid force do not occur. Therefore, in the bearing 5 that supports the shaft 2,
Stable rotation can be maintained without using very high rigidity bearings.

第2図は、軸受装置の一実施例を示したもので、軸受ケ
ース6に永久磁石17と磁極片18で構成した磁性流体
シール4とラジアル軸受19と軸受押え7に嵌合された
スラスト軸受2oが組込まれ、軸2を回転自在に支持し
ている。21は潤滑用の磁性流体で軸2の回転によって
磁性流体が飛散しても磁性流体シール4で捕捉させ、外
部を汚染させないように、軸受19の潤滑液として磁性
流体21を用いている。また、従来のスキャナモータに
使用される空気軸受は軸径φ15m+前後の寸法の動圧
グループ軸受であるが、減圧環境においては、回転多面
鏡には流体の撹拌によるアンバランスな力が作用しない
ので軸径φ4膿前後の円筒軸受が使用でき、軸受装置と
して安価でスキャナモータがコンパクトになるなどの利
点がある。
FIG. 2 shows an embodiment of a bearing device, in which a bearing case 6 includes a magnetic fluid seal 4 composed of a permanent magnet 17 and a magnetic pole piece 18, a radial bearing 19, and a thrust bearing fitted into a bearing retainer 7. 2o is incorporated to rotatably support the shaft 2. Reference numeral 21 denotes a lubricating magnetic fluid, and the magnetic fluid 21 is used as a lubricating fluid for the bearing 19 so that even if the magnetic fluid scatters due to the rotation of the shaft 2, it is captured by the magnetic fluid seal 4 and does not contaminate the outside. Furthermore, the air bearings used in conventional scanner motors are dynamic pressure group bearings with a shaft diameter of φ15m + dimensions of around 15m, but in a reduced pressure environment, unbalanced forces due to fluid agitation do not act on the rotating polygon mirror. A cylindrical bearing with a shaft diameter of around φ4 can be used, and has advantages such as being inexpensive as a bearing device and making the scanner motor compact.

このスキャナモータは一台毎減圧して封止してもよいが
、量産品のため第1図のように組立てられたモータを多
数台排気用の密閉容器に入れて真空ポンプで減圧し、封
止管12の先端を閉じてモータ内部を気密に保つ。封止
管12の封止装置は排気用の密閉容器に取りつけられて
いて適当な圧力に減圧後封止装置を作動させて封止する
This scanner motor may be depressurized and sealed one by one, but since it is a mass-produced product, a large number of motors assembled as shown in Figure 1 are placed in an airtight container for exhaust, the pressure is depressurized with a vacuum pump, and then sealed. The end of the stop tube 12 is closed to keep the inside of the motor airtight. A sealing device for the sealing tube 12 is attached to an airtight container for exhaust, and after reducing the pressure to an appropriate level, the sealing device is operated to seal the tube.

第3図は本発明による他の実施例を示したもので、モー
タは高速回転になるほど電機子鉄心8の鉄損が著しく増
加し温度が上昇する。このため第3図の構成においては
モータケース11の外周に電機子8を配置し、電機子8
の発熱を直接大気に放熱させている。この構成ではモー
タの電気子8と回転子9のギャップは広くなってモータ
の駆動力は低下するが、定格回転においては軸受5の摩
擦損失(数ワット)に相当する駆動力で回転を持続させ
ることができるので、起動時間が長くなる以外は第1図
に示したスキャナモータと同等の作用効果を発揮する。
FIG. 3 shows another embodiment of the present invention, in which the faster the motor rotates, the more the iron loss in the armature core 8 increases and the temperature rises. Therefore, in the configuration shown in FIG. 3, the armature 8 is arranged around the outer periphery of the motor case 11, and
heat is radiated directly into the atmosphere. In this configuration, the gap between the motor's armature 8 and the rotor 9 becomes wider and the driving force of the motor decreases, but at rated rotation, rotation is maintained with a driving force equivalent to the friction loss (several watts) of the bearing 5. Therefore, the scanner motor exhibits the same effect as the scanner motor shown in FIG. 1, except that the startup time is longer.

さらに、このような本発明によるスキャナモータは上記
したように熱的要因による回転精度の劣化がなく、その
上回転多面鏡には流体力がほとんど作用しないので高精
度な回転が得られ、本発明によるスキャナモータを用い
たレーザビームプリンタに於ては高速の印字と高精細な
画像が得られる。
Furthermore, as described above, the scanner motor according to the present invention does not suffer from deterioration in rotation accuracy due to thermal factors, and furthermore, since almost no fluid force acts on the rotating polygon mirror, highly accurate rotation can be obtained. Laser beam printers using scanner motors can produce high-speed printing and high-definition images.

〔発明の効果〕〔Effect of the invention〕

本発明によれば上記したように減圧環境で回転多面鏡を
駆動するので、回転時の振動が小さくなる。特にスキャ
ナモータに適用した場合は、回転多面鏡の熱変形が起ら
ず、熱的要因による回転精度の劣化はない。更に、回転
多面鏡には流体力がほとんど作用しないので高速回転に
於ても不安定な振動が発生せず、高精度な回転が得られ
る。又、本発明によるスキャナモータは消費電力が従来
のスキャナモータに比較し少なく、コンパクトなモータ
が提供でき、レーザビームプリンタの小形化にも有効な
モータとなる。さらに、低振動かつ高精度回転のこのモ
ータを用いたレーザビームプリンタに於ては高速印字や
高精細な画質が実現できるなどの利点がある。
According to the present invention, since the rotating polygon mirror is driven in a reduced pressure environment as described above, vibrations during rotation are reduced. Particularly when applied to a scanner motor, thermal deformation of the rotating polygon mirror does not occur, and there is no deterioration in rotation accuracy due to thermal factors. Furthermore, since almost no fluid force acts on the rotating polygon mirror, unstable vibrations do not occur even during high-speed rotation, and highly accurate rotation can be achieved. Further, the scanner motor according to the present invention consumes less power than conventional scanner motors, and can provide a compact motor, which is effective in downsizing laser beam printers. Furthermore, a laser beam printer using this motor with low vibration and high precision rotation has advantages such as high speed printing and high definition image quality.

【図面の簡単な説明】 第1図は本発明によるスキャナモータの縦断面図、第2
図は軸受装置の縦断面図、第3図は本発明によるスキャ
ナモータの他の実施例を示す縦断面図、第4図は従来の
スキャナモータの部分断面図、第5図は従来のスキャナ
モータの回転多面鏡の熱変形を示す説明図である。 1・・・回転多面鏡、3・・・ロータ、5・・・軸受、
8・・・モ第1図 第3図
[Brief Description of the Drawings] Fig. 1 is a vertical sectional view of a scanner motor according to the present invention;
3 is a longitudinal sectional view showing another embodiment of the scanner motor according to the present invention, FIG. 4 is a partial sectional view of a conventional scanner motor, and FIG. 5 is a longitudinal sectional view of a conventional scanner motor. FIG. 2 is an explanatory diagram showing thermal deformation of a rotating polygon mirror. 1... Rotating polygon mirror, 3... Rotor, 5... Bearing,
8...Mo Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、ロータと、このロータを回転自在に支持する軸受装
置と、前記ロータに対向して配置した固定子と、前記ロ
ータおよび軸受装置部を含む空間を密閉状態にした高速
モータにおいて、 前記空間を減圧状態にした高速モータ。 2、回転多面鏡を備えたモータのロータとこのロータを
回転自在に支持する軸受装置とモータロータに対向して
配置した電機子と電機子を固着したモータケースとミラ
カバーでモータを構成し、モータケースの一端がミラカ
バーで、他端が軸受ケースで閉じられていて、内部を減
圧状態にしたスキャナモータ。 3、前記第2項記載のスキャナモータにおいて、電機子
をモータケースの外周に装着し、回転構成部品及び軸受
装置を減圧された室に置いたことを特徴とするスキャナ
モータ。 4、第2項のスキャナモータにおいて、 ケースの一部に封止管を設け、この封止管が外部の空気
の流入を阻止するスキャナモータ。
[Scope of Claims] 1. A high-speed vehicle that includes a rotor, a bearing device that rotatably supports the rotor, a stator disposed opposite to the rotor, and a space containing the rotor and the bearing device in a sealed state. A high-speed motor in which the space is in a reduced pressure state. 2. The motor consists of a motor rotor equipped with a rotating polygon mirror, a bearing device that rotatably supports this rotor, an armature placed opposite to the motor rotor, a motor case to which the armature is fixed, and a mirror cover. A scanner motor whose one end is closed with a Miracover and the other end is closed with a bearing case, and the internal pressure is reduced. 3. The scanner motor according to item 2 above, wherein the armature is attached to the outer periphery of the motor case, and the rotating components and bearing device are placed in a depressurized chamber. 4. The scanner motor according to item 2, wherein a sealing tube is provided in a part of the case, and the sealing tube prevents outside air from flowing in.
JP11006590A 1990-04-27 1990-04-27 High-speed motor or scanner motor Pending JPH0412655A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11006590A JPH0412655A (en) 1990-04-27 1990-04-27 High-speed motor or scanner motor
US07/692,662 US5325006A (en) 1990-04-27 1991-04-29 Sealed magnetic fluid bearing for polygon mirror drive motor
US08/186,166 US5493161A (en) 1990-04-27 1994-01-25 Sealed magnetic fluid bearing for polygon mirror drive motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11006590A JPH0412655A (en) 1990-04-27 1990-04-27 High-speed motor or scanner motor

Publications (1)

Publication Number Publication Date
JPH0412655A true JPH0412655A (en) 1992-01-17

Family

ID=14526175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11006590A Pending JPH0412655A (en) 1990-04-27 1990-04-27 High-speed motor or scanner motor

Country Status (1)

Country Link
JP (1) JPH0412655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165549A (en) * 2012-02-09 2013-08-22 Fuji Electric Co Ltd Rotary electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165549A (en) * 2012-02-09 2013-08-22 Fuji Electric Co Ltd Rotary electric machine

Similar Documents

Publication Publication Date Title
US5325006A (en) Sealed magnetic fluid bearing for polygon mirror drive motor
JPH0686503A (en) Motor, polygon mirror motor and disk driving motor
JP3266448B2 (en) Rotary device of brushless motor
JP2777011B2 (en) Surface-facing motor
JPH07318842A (en) Scanning optical device
US5650674A (en) Enclosed electric motor with dynamic pressure air bearing
JP4201317B2 (en) Rotating deflection apparatus, optical writing apparatus using the same, and laser scanning display
JPH0412655A (en) High-speed motor or scanner motor
JPH0651224A (en) Optical scanning device
JP2986887B2 (en) Polygon mirror motor
JP3278654B1 (en) Polygon scanner motor
JP3192279B2 (en) Deflection scanning device
JP3710509B2 (en) Hydrodynamic bearing type motor and polygon mirror drive scanner motor
JP2974514B2 (en) Scanning optical device
JP2623205B2 (en) Air / magnetic bearing type optical deflector
JP2569859Y2 (en) Light beam scanning device
JP2865766B2 (en) Polygon mirror motor
JPH05241089A (en) Optical scanner and assembly thereof
JPH1114929A (en) Deflection scanning device
JP3311231B2 (en) Light deflection device
JPH04242714A (en) Rotary multiple surface mirror device
JPH06160751A (en) Light deflection device
JPH08210350A (en) Dynamic pressure bearing device
JPH0565852B2 (en)
JPH0919100A (en) Motor tightly sealed to reduced pressure state and its manufacture