JPH04126536A - Method for capturing inorganic sphered particles - Google Patents

Method for capturing inorganic sphered particles

Info

Publication number
JPH04126536A
JPH04126536A JP24730590A JP24730590A JPH04126536A JP H04126536 A JPH04126536 A JP H04126536A JP 24730590 A JP24730590 A JP 24730590A JP 24730590 A JP24730590 A JP 24730590A JP H04126536 A JPH04126536 A JP H04126536A
Authority
JP
Japan
Prior art keywords
particles
exhaust gas
sphered
flame
capturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24730590A
Other languages
Japanese (ja)
Inventor
Teruo Fujibayashi
晃夫 藤林
Toyokazu Teramoto
寺本 豊和
Shigeru Furuya
古屋 茂
Tadayuki Sakai
忠之 酒井
Masato Kitahara
北原 正人
Koichiro Nakano
中野 皓一朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24730590A priority Critical patent/JPH04126536A/en
Publication of JPH04126536A publication Critical patent/JPH04126536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Abstract

PURPOSE:To considerably increase the rate of capturing of powder in a cyclone by melting and sphering inorg. powdery starting material in a high temp. flame formed in a furnace, irradiating exhaust gas contg. the resulting sphered particles with ultrasonic wave and capturing the particles from the exhaust gas. CONSTITUTION:A high temp. flame is formed in a furnace 6, inorg. powdery starting material is melted and sphered in the flame and the resulting sphered particles are captured from exhaust gas. At this time, the exhaust gas in an exhaust duct 13 is irradiated with ultrasonic wave by ultrasonic vibrating plates 20 and then the sphered particles are captured. Water may be blown into the exhaust gas before the application. The rate of capturing of powder in a cyclone 8 can be considerably increased, load put on a bag filter 9 can be reduced and the filter 9 is hardly blocked.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ICの封止材料として用いられている溶融
球状化した無機質粒子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing molten spheroidal inorganic particles used as a sealing material for ICs.

〔従来の技術〕[Conventional technology]

ICの封止剤には、電気絶縁性、低熱膨張率等の機能が
要求される。そこで、一般には溶融処理したアモルファ
ス状のシリカ粒子などの無機質粒子と、エポキシ樹脂な
どの熱硬化性樹脂を混ぜて、封止を行なっている。一方
、近年、この無機質粒子として球形状の粒子を用いると
、流動性に優れ樹脂封止を行ないやすいという長所があ
ることがわかり、球形状の溶融無機質粒子が多く用いら
れるに至っている。この球形状の無機質粒子の製造方法
としては、例えば特開昭58−145613号公報によ
って公知である。この従来の方法においては、炉は球状
化室とその下部に接続された冷却室により構成され、炉
の頂部より原料粉末と共に火炎を噴射し原料粉末の表面
もしくは全体を溶融し、その表面張力で原料粉末が球状
化する。このようにして球状化処理された原料粉末は冷
却室で冷却固化されて、後続の捕集系に導かれる。上記
捕集系には例えばサイクロン、バグフィルタ−等の捕集
機が設置されている。
IC encapsulants are required to have functions such as electrical insulation and low coefficient of thermal expansion. Therefore, sealing is generally performed by mixing melt-treated inorganic particles such as amorphous silica particles with thermosetting resin such as epoxy resin. On the other hand, in recent years, it has been found that the use of spherical particles as the inorganic particles has the advantage of superior fluidity and ease of resin sealing, and spherical molten inorganic particles have come to be widely used. A method for producing spherical inorganic particles is known, for example, from Japanese Patent Application Laid-Open No. 145613/1983. In this conventional method, the furnace consists of a spheroidizing chamber and a cooling chamber connected to the lower part of the furnace, and a flame is injected from the top of the furnace along with the raw material powder to melt the surface or the entire raw material powder, and the surface tension The raw material powder becomes spheroidal. The raw material powder spheroidized in this manner is cooled and solidified in a cooling chamber, and then guided to a subsequent collection system. The collection system is equipped with a collection device such as a cyclone or a bag filter.

以上の様な従来の方法においては冷却後の排気ガスから
溶融球状化した粉末を捕集するためサイクロン、バグフ
ィルタ−等の捕集装置が用いられていた。
In the conventional method as described above, a collection device such as a cyclone or a bag filter has been used to collect the molten spheroidized powder from the cooled exhaust gas.

〔発明が解決しようとする課題] ところが、サイクロンは流動抵抗が小さいが捕集率が悪
く、一方、バグフィルタ−は捕集率は高いが、流動抵抗
が大きく、目詰まりしやすいという問題があった。以上
の様にサイクロン、バグフィルタ−は一長一短があり、
一般には両者を直列に併用している。しかしながら、こ
の場合でも長時間連続運転すると目詰まりをおこし、こ
の目詰まりを防止するためにフィルターの通過面積の広
い大形のバグフィルタ−を設けていたため設備費が膨大
となっていた。
[Problems to be solved by the invention] However, cyclones have a low flow resistance but a poor collection rate, while bag filters have a high collection rate but have a large flow resistance and are easily clogged. Ta. As mentioned above, cyclones and bag filters have advantages and disadvantages.
Generally, both are used in series. However, even in this case, continuous operation for a long period of time causes clogging, and in order to prevent this clogging, a large bag filter with a wide filter passage area is provided, resulting in an enormous equipment cost.

本発明はこれらの欠点を解決するために考案されたもの
で、サイクロンにおける粉末の捕集率が大幅に向上でき
るとともに、バグフィルタ−の負荷が軽減でき、目詰ま
りがおこりにくい無機質球状化粒子の捕集方法を得るこ
とを目的とする。
The present invention was devised to solve these drawbacks, and it can greatly improve the powder collection rate in the cyclone, reduce the load on the bag filter, and use inorganic spheroidal particles that are less likely to clog. The purpose is to obtain a collection method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するべくなされたものであり、
炉内に高温火炎を形成し、無機質原料粉末をその中で溶
融球状化した球状化粒子を排気ガス中から捕集するに際
して、該排気ガスに超音波を照射したのちに捕集するこ
とを特徴とする無機質球状化粒子の捕集方法によってか
かる目的を達成したものである。尚、超音波を照射する
前に水を吹き込むことによって効果的に捕集することが
できる。
The present invention has been made to achieve the above objects,
A high-temperature flame is formed in the furnace, and inorganic raw material powder is melted and spheroidized in the flame to collect the spheroidized particles from the exhaust gas, which is collected after irradiating the exhaust gas with ultrasonic waves. This object has been achieved by a method for collecting spheroidized inorganic particles. Note that water can be effectively collected by blowing water before irradiating the ultrasonic waves.

高温火炎は無機質原料粉末を溶融して球状化しうる温度
と熱量を有するものであればよく、例えば水素ガス、メ
タン、エタン、プロパン、ブタン、エチレン、アセチレ
ン、LNG、LPG等の炭化水素ガス、ベンゼン、トル
エン、ガソリン、軽油、灯油等の常温では液状の炭化水
素等の可燃ガスに酸素等の助燃ガスを混合し燃焼させて
形成する。
The high-temperature flame may be anything that has a temperature and heat amount that can melt the inorganic raw material powder and make it spherical, such as hydrogen gas, methane, ethane, propane, butane, ethylene, acetylene, hydrocarbon gas such as LNG, LPG, benzene, etc. It is formed by mixing a combustible gas such as a hydrocarbon that is liquid at room temperature, such as toluene, gasoline, diesel oil, or kerosene, with an auxiliary gas such as oxygen and burning the mixture.

無機質原料粉末はシリカ、アルミナ、マグネシア等であ
り、粒径は0.1〜500n程度、好ましくは3〜40
−程度のものが適当である。
The inorganic raw material powder is silica, alumina, magnesia, etc., and the particle size is about 0.1 to 500 nm, preferably 3 to 40 nm.
- is appropriate.

無機質原料粉末を溶融球状化する装置は、公知いかなる
装置であってもよく、通常は炉本体に高温火炎を形成す
るバーナーが付設されたものである。
The apparatus for melting and spheroidizing the inorganic raw material powder may be any known apparatus, and usually has a furnace body equipped with a burner for forming a high-temperature flame.

本発明は、無機質原料粉末が溶融球状化されて炉から排
出されたガスから溶融球状化粒子を捕集するにあたり、
まずこの排気ガスを超音波処理するところに特徴がある
In the present invention, in collecting the molten spheroidized particles from the gas discharged from the furnace after the inorganic raw material powder is molten and spheroidized,
The first feature is that this exhaust gas is treated with ultrasonic waves.

超音波発生装置としては、例えばBLT(ランジュバン
型振動子)と振動板との組み合わせによる強力空中超音
波発生装置がある。この装置により排気ダクト内に強力
超音波(好ましくは定在波音波)を形成する。この時の
超音波の周波数は、数十KH2〜数百KHz、好ましく
は15〜100 K Hzであり、振動子は100〜5
00閣×200〜1500Ilalの矩形板で一振動子
あたりの電気入力は50〜100OWである。
Examples of the ultrasonic generator include a powerful aerial ultrasonic generator that is a combination of a BLT (Langevin type transducer) and a diaphragm. This device generates powerful ultrasonic waves (preferably standing wave acoustic waves) in the exhaust duct. The frequency of the ultrasonic wave at this time is several tens of KHz to several hundred KHz, preferably 15 to 100 KHz, and the transducer is 100 to 50 KHz.
The electrical input per vibrator is 50 to 100 OW with a rectangular plate of 00 × 200 to 1500 Il.

超音波処理に先立って排気ガスに水を吹き込み、排気ガ
ス中の水滴量を増加させておくことにより球状化粒子を
より効果的に捕集することができる。
By blowing water into the exhaust gas prior to ultrasonication to increase the amount of water droplets in the exhaust gas, spheroidized particles can be collected more effectively.

水の吹き込み量は、排ガス1rrf当り5〜100g程
度が適当である。吹き込みは微小水滴を形成できるよう
に行なえばよく、通常はノズルが利用される。
The appropriate amount of water to be blown is about 5 to 100 g per 1 rrf of exhaust gas. Blowing can be carried out in such a way as to form minute water droplets, and usually a nozzle is used.

吹き込み位置は超音波照射の直前が好ましい。The blowing position is preferably just before ultrasonic irradiation.

超音波照射後は速やかに捕集を行なう。捕集は従来と同
様、サイクロンとバグフィルタ−の併用により行えばよ
い。
Collection should be carried out immediately after ultrasonic irradiation. Collection may be carried out by using a cyclone and a bag filter in combination, as in the past.

〔作用〕[Effect]

第1図に排気ガス中の粒子1の挙動を模式的に示す。排
気ガス中には多量の水分が含まれているため冷却途中で
凝縮して水滴2となる。ここに超音波を照射するとこの
水滴を核に粉末がクラスター3を形成して10〜100
個の粒子が一つに凝集する。
FIG. 1 schematically shows the behavior of particles 1 in exhaust gas. Since the exhaust gas contains a large amount of water, it condenses into water droplets 2 during cooling. When ultrasonic waves are irradiated here, the powder forms clusters 3 with these water droplets as the nucleus, resulting in clusters of 10 to 100.
particles aggregate into one.

その結果、このクラスターは個々の粒子よりもかなり大
きな塊りとなる。従ってこのクラスターは遠心力を利用
しているサイクロン等の捕集装置では効率よく捕集可能
である。
As a result, the clusters are much larger than individual particles. Therefore, these clusters can be efficiently collected by a collection device such as a cyclone that uses centrifugal force.

〔実施例〕〔Example〕

実施例1 第2図に示す装置を用いた。この装置は炉本体6の頂部
にバーナー4が取付けられ、バーナー4には燃料ガス供
給管及び助燃ガス供給管(いずれも図示されていない、
)とともに原料ホッパー5からの原料供給管11が接続
されている。炉本体6の下部には溶融球状化粒子の冷却
室7が連設されており、そこから排気ダクト13を経て
サイクロン8、バグフィルタ−9、ブロワ−10が順に
接続されている。サイクロン8で捕集された球状化粒子
12はその下部から抜き出される。
Example 1 The apparatus shown in FIG. 2 was used. In this device, a burner 4 is attached to the top of a furnace body 6, and a fuel gas supply pipe and an auxiliary combustion gas supply pipe (both not shown) are connected to the burner 4.
) and a raw material supply pipe 11 from the raw material hopper 5 is connected thereto. A cooling chamber 7 for molten spheroidized particles is connected to the lower part of the furnace body 6, and a cyclone 8, a bag filter 9, and a blower 10 are connected in this order through an exhaust duct 13. The spheroidized particles 12 collected by the cyclone 8 are extracted from the lower part thereof.

排気ダクト13には、サイクロン8の直前に2枚の超音
波振動板20が対向して設置されている。超音波発振器
設置部の拡大図を第3図に示す。この超音波発振器は振
動子17、ホーン18、共振棒19及び振動板20より
なり、共振棒19の排気ダクト壁貫通部にはシール装置
15が設けられている。14は排気ガスの流れ方向を、
そして20は高周波電源を示している。
In the exhaust duct 13, two ultrasonic diaphragms 20 are installed facing each other just before the cyclone 8. Figure 3 shows an enlarged view of the ultrasonic oscillator installation section. This ultrasonic oscillator consists of a vibrator 17, a horn 18, a resonant rod 19, and a diaphragm 20, and a sealing device 15 is provided at the portion of the resonant rod 19 that penetrates the exhaust duct wall. 14 indicates the flow direction of exhaust gas,
And 20 indicates a high frequency power source.

以上述べた装置で、バーナーから可燃ガスとしてL P
 G 15Nm’/hr、助燃ガスとして酸素75Nm
3/hr、原料粉末として平均粒径50nのシリカ粉末
を100 kg /h rの条件で炉内に噴射し、溶融
球状化を行い、球状化した粒子の回収を行った結果を第
1表に示す。
With the above-described device, L P is released as combustible gas from the burner
G 15Nm'/hr, oxygen 75Nm as auxiliary gas
Table 1 shows the results of injecting silica powder with an average particle size of 50n as a raw material powder into the furnace at a rate of 100 kg/hr, melting it into spheroids, and collecting the spheroidized particles. show.

実施例2 超音波照射の直前にミストノズルを設けて排気ダクトに
水を吹き込んだほかは実施例1と同様にしてシリカ粉末
を球状化し捕集を行った。
Example 2 Silica powder was spheroidized and collected in the same manner as in Example 1, except that a mist nozzle was provided and water was blown into the exhaust duct immediately before ultrasonic irradiation.

用いた装置の排気ダクト後半の拡大図を第4図に示す、
超音波発振器の直前に市販の6本のミストノズル21が
周方向に等間隔に設けられているほかは実施例1のもの
と同じである。水はそれぞれのノズルから201 /w
inを噴射させた。
Figure 4 shows an enlarged view of the latter half of the exhaust duct of the device used.
This example is the same as Example 1 except that six commercially available mist nozzles 21 are provided at equal intervals in the circumferential direction immediately before the ultrasonic oscillator. Water is 201/w from each nozzle
In was injected.

実験結果を第1表に示す。The experimental results are shown in Table 1.

比較例 超音波照射を行なわなかったほかは実施例1と同様にし
てシリカ粉末を球状化し捕集を行なった。
Comparative Example Silica powder was spheroidized and collected in the same manner as in Example 1, except that ultrasonic irradiation was not performed.

実験結果を第1表に示す。The experimental results are shown in Table 1.

第1表 〔発明の効果〕 本発明によって球状化粒子のサイクロン等の一次捕集装
置による捕集率を大巾に高め、バグフィルタ−の負荷を
低減して目詰まりの発生を極めて少なく、あるいは大巾
に遅延させることができる。
Table 1 [Effects of the Invention] The present invention greatly increases the collection rate of spheroidized particles by a primary collection device such as a cyclone, reduces the load on bag filters, and greatly reduces the occurrence of clogging. It can be delayed for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明における粒子の凝集状態を説明する模
式図である。第2図は実施例で使用した装置の構成を示
すフローシートであり、第3図は実施例1で使用したそ
の排気ダクト要部の拡大図、そして第4図は実施例2で
使用した排気ダクト要部の拡大図である。 1・・・分散浮遊状態の球状化粒子 2・・・水滴 3・・・クラスター 4・・・バーナー 6・・・炉本体 7・・・冷却室 8・・・サイクロン 9・・・バグフィルタ− 20・・・超音波振動板 21・・・ミストノズル
FIG. 1 is a schematic diagram illustrating the aggregation state of particles in the present invention. Figure 2 is a flow sheet showing the configuration of the device used in the example, Figure 3 is an enlarged view of the main part of the exhaust duct used in example 1, and Figure 4 is the exhaust duct used in example 2. It is an enlarged view of the main part of the duct. 1... Spheroidal particles in a dispersed floating state 2... Water droplets 3... Clusters 4... Burner 6... Furnace body 7... Cooling chamber 8... Cyclone 9... Bag filter - 20... Ultrasonic diaphragm 21... Mist nozzle

Claims (2)

【特許請求の範囲】[Claims] (1)炉内に高温火炎を形成し、無機質原料粉末をその
中で溶融球状化した球状化粒子を排気ガス中から捕集す
るに際して、該排気ガスに超音波を照射したのちに捕集
することを特徴とする無機質球状化粒子の捕集方法
(1) A high-temperature flame is formed in the furnace, and the inorganic raw material powder is melted and spheroidized in the flame to collect the spheroidized particles from the exhaust gas.The exhaust gas is irradiated with ultrasonic waves and then collected. A method for collecting inorganic spheroidal particles characterized by
(2)超音波を照射する前に排気ガスに水を吹き込むこ
とを特徴とした無機質球状化粒子の捕集方法
(2) A method for collecting spheroidized inorganic particles characterized by blowing water into the exhaust gas before irradiating it with ultrasonic waves.
JP24730590A 1990-09-19 1990-09-19 Method for capturing inorganic sphered particles Pending JPH04126536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24730590A JPH04126536A (en) 1990-09-19 1990-09-19 Method for capturing inorganic sphered particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24730590A JPH04126536A (en) 1990-09-19 1990-09-19 Method for capturing inorganic sphered particles

Publications (1)

Publication Number Publication Date
JPH04126536A true JPH04126536A (en) 1992-04-27

Family

ID=17161437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24730590A Pending JPH04126536A (en) 1990-09-19 1990-09-19 Method for capturing inorganic sphered particles

Country Status (1)

Country Link
JP (1) JPH04126536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075745A (en) * 2004-09-10 2006-03-23 Honda Electronic Co Ltd Ultrasonic particle catching apparatus
JP2006122823A (en) * 2004-10-29 2006-05-18 Honda Electronic Co Ltd Ultrasonic steam-water separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075745A (en) * 2004-09-10 2006-03-23 Honda Electronic Co Ltd Ultrasonic particle catching apparatus
JP4581065B2 (en) * 2004-09-10 2010-11-17 本多電子株式会社 Ultrasonic particle collector
JP2006122823A (en) * 2004-10-29 2006-05-18 Honda Electronic Co Ltd Ultrasonic steam-water separator

Similar Documents

Publication Publication Date Title
JP3676377B2 (en) Rapid cooling of molten material
EP0691881B1 (en) Pulse combusted acoustic agglomeration process
US4378976A (en) Combined sonic agglomerator/cross flow filtration apparatus and process for solid particle and/or liquid droplet removal from gas streams
US5197399A (en) Pulse combusted acoustic agglomeration apparatus and process
JP3876296B2 (en) Method for continuously producing hollow glass spheres
AU2087100A (en) Apparatus and process to extract heat and to solidify molten material particles
US4071588A (en) Process for production of magnetite spheres with an arc heater
JPH04126536A (en) Method for capturing inorganic sphered particles
US8317905B2 (en) Particulate removal from gas streams
WO1994008719A1 (en) Process for comminution of materials by turbulence
JP2007083112A (en) Powder manufacturing apparatus and powder manufacturing method
WO2006033445A1 (en) Crushing and draying method and crushing and drying device
JPH04126534A (en) Method and apparatus for producing inorganic sphered particles
JP2003175329A (en) Method for manufacturing spherical inorganic powder
JP2022029382A (en) Modification catalyst, production method for the same and modification device and exhaust emission control device
CN206512153U (en) A kind of feed nozzle of catalytic cracking
JPH04126538A (en) Apparatus for producing inorganic sphered particles
JP2003326239A (en) Waste treatment apparatus and waste treatment method
JPH0639785Y2 (en) Equipment for producing inorganic spheroidized particles
JP3659788B2 (en) Equipment for producing molten spheroids from sludge incineration ash
CN106675617A (en) Feeding nozzle for catalytic cracking
JPH04126537A (en) Production of inorganic sphered particles
NZ200776A (en) Cooling hot particulate-laden gas stream by atomising liquid water into the stream
JPH1054537A (en) Method of adjusting property of slag and slag generator
JPH1029830A (en) Production of fragmentary ore type raw material