JPH0412628A - Power supply system - Google Patents

Power supply system

Info

Publication number
JPH0412628A
JPH0412628A JP2113545A JP11354590A JPH0412628A JP H0412628 A JPH0412628 A JP H0412628A JP 2113545 A JP2113545 A JP 2113545A JP 11354590 A JP11354590 A JP 11354590A JP H0412628 A JPH0412628 A JP H0412628A
Authority
JP
Japan
Prior art keywords
power
power generation
flywheel
generator
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2113545A
Other languages
Japanese (ja)
Inventor
Yasuo Yoshida
康夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2113545A priority Critical patent/JPH0412628A/en
Publication of JPH0412628A publication Critical patent/JPH0412628A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To reduce a power receiving system capacity from a commercial power system by connecting a flywheel generating system in parallel to a private power generating system and performing combined operation therewith. CONSTITUTION:In a flywheel generating system 8, a generator motor(G/M)9 is used for both a generator(at power generation time) and an electric motor(at power accumulation time). That is, input power from a power converter Pc11 is accumulated as rotational energy in a G/M rotational part and a flywheel 10, directly coupled to the G/M rotational part, by operating first the G/M9 as the electric motor at the power accumulation time. On the other hand, power is supplied by converting the rotational energy into electric energy, by functioning the G/M9 as the generator at the power generation time. In this way, peak power, received from a system bus bar 2, can be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は鉄鋼やセメント、製紙工業等で用いられ、非
定常電力を消費する電力負荷の電力供給システムに関す
るものである。
The present invention relates to a power supply system for a power load that is used in the steel, cement, paper manufacturing, etc. industries and consumes unsteady power.

【従来の技術】[Conventional technology]

第5図は例えば自家発電システムを有する鉄鋼プラント
の電力設備を示す基本的概念図である。 図において、1は鉄鋼プラント設備、2は系統母線、3
は鉄鋼プラント設備1を系統母線2と切離すしゃ断器、
4は受電変圧器、5は自家発電システムを特に、タービ
ン6、発電機7を強調して図示している。なおプラント
によっては自家発電システム5が存在しない場合もある
。 次に鉄鋼プラントが必要とする電力負荷と電力設備の運
用との関係について説明する。先ず、第6図に一例とし
て鉄鋼プラントが必要とする電力負荷の具体的なパター
ンを示す。 一般に、鉄鋼プラントなどの電力負荷設備では、第6図
に示すように時間とともに矩形波状の非定常電力が消費
される。この電力変化は、例えば圧延プラントにおける
ローラ部分へ鉄板が送り込まれる際に、ミルモータの駆
動電力として必要とされるものや、電気炉に対し必要な
ものである。第6図は電気炉における一例である。図示
のようにこの電力変化は極めて急峻であり、時として電
力系統に対し周波数変動等の悪影響を及ぼす場合もあり
うる。 又、この負荷電力に対する受電設備としては自家発電シ
ステムがない場合にはピーク負荷に対する容量(この場
合22MW)が必要であり、受電設備自体も過剰なもの
となる。 次に、このようなプラントに自家発電システム5が設置
された場合を考える。第7図に自家発電システム5が追
加された場合の自家発電設備の運転パターンと必要電力
負荷との関係を示す。 自家発電システム5としては通常石炭火力等により駆動
されるタービン発電機等が使用されるが、タービン発電
機をはじめとして従来の発電設備では電力の立上げ、立
下げがシステム運用上急激に行えず、例えば第7図に示
す破線のパターンのような負荷追従性が期待できる程度
である。 従って、この場合、第7図ハンチング部分に示すような
変動パターンの電力を系統に対し要求することになる。
FIG. 5 is a basic conceptual diagram showing, for example, the power equipment of a steel plant having an in-house power generation system. In the figure, 1 is the steel plant equipment, 2 is the system bus, and 3 is the steel plant equipment.
is a breaker that separates steel plant equipment 1 from system bus 2,
4 is a power receiving transformer, 5 is a private power generation system, and particularly a turbine 6 and a generator 7 are illustrated with emphasis. Note that the private power generation system 5 may not exist depending on the plant. Next, the relationship between the power load required by a steel plant and the operation of power equipment will be explained. First, FIG. 6 shows, as an example, a specific pattern of electric power load required by a steel plant. Generally, in power load equipment such as a steel plant, unsteady power in the form of a rectangular wave is consumed over time as shown in FIG. This power change is required, for example, as driving power for a mill motor when a steel plate is fed to a roller portion in a rolling plant, or for an electric furnace. FIG. 6 is an example of an electric furnace. As shown in the figure, this power change is extremely steep, and may sometimes have an adverse effect on the power system, such as frequency fluctuations. Furthermore, if there is no private power generation system, the power receiving equipment for this load power needs to have a capacity (22 MW in this case) for the peak load, and the power receiving equipment itself becomes excessive. Next, consider a case where a private power generation system 5 is installed in such a plant. FIG. 7 shows the relationship between the operating pattern of the private power generation equipment and the required power load when the private power generation system 5 is added. As the private power generation system 5, a turbine generator or the like driven by coal-fired power is usually used, but with conventional power generation equipment such as a turbine generator, power cannot be suddenly started up and stopped due to system operation. For example, the load followability as shown in the broken line pattern shown in FIG. 7 can be expected. Therefore, in this case, power is requested from the grid in a fluctuating pattern as shown in the hunting part of FIG.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の電力供給システムは、以上のように構成家発電シ
ステムを有する場合でもかなりの負荷電力の変動分を同
様に商用電力系統に依存していたため商用電力系統に対
して周波数変動等の悪影響を及ぼす場合がある等の課題
があった。 又、商用電力系統からの受電設備もピーク負荷で決まる
容量を設置する必要があるため、受電設備自体も大きな
ものを必要とし、受電コストが大となる等の課題があっ
た。 さらに、自家発電設備の運用においても負荷追従性が悪
いために、系統母線への電力流出、いわゆる逆送問題を
防止するために自家発電システムの運転範囲を制限する
場合があった。 この発明は上記のような課題を解消するためになされた
もので、商用電力系統に対する受電設備、および電力負
荷変動を低減、あるいは皆無にすることができる電力供
給システムを得ることを目的とする。
As mentioned above, even when the conventional power supply system has a component power generation system, it is dependent on the commercial power grid for a considerable amount of load power fluctuation, which has negative effects such as frequency fluctuations on the commercial power grid. There were some issues, such as: Furthermore, since it is necessary to install power receiving equipment from the commercial power system with a capacity determined by the peak load, the power receiving equipment itself needs to be large, resulting in problems such as increased power receiving costs. Furthermore, in the operation of private power generation equipment, the operating range of the private power generation system is sometimes limited in order to prevent power leakage to the grid bus, or the so-called backfeed problem, due to poor load followability. This invention was made to solve the above-mentioned problems, and aims to provide a power receiving equipment for a commercial power system and a power supply system that can reduce or eliminate power load fluctuations.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る電力供給システムは、自家発電システム
へ並列に接続されたフライホイール発電システムを備え
、そのフライホイール発電システムは、電力発生時には
発電機として運転され、電力蓄勢時には電動機として運
転される発i!電動機と、その発電電動機の回転部に直
結され回転エネルギーを蓄積するフライホイールと、前
記発電電動機と前記系統母線との間に設置され電力を発
電電動機に入出力する電力変換器とをもって構成したも
のである。
The power supply system according to the present invention includes a flywheel power generation system connected in parallel to a private power generation system, and the flywheel power generation system is operated as a generator when generating electric power and as an electric motor when storing electric power. Departure i! A motor consisting of an electric motor, a flywheel that is directly connected to the rotating part of the generator motor and stores rotational energy, and a power converter that is installed between the generator motor and the system bus and inputs and outputs electric power to the generator motor. It is.

【作用】[Effect]

この発明におけるフライホイール発電システムは、自家
発電システムと並列に接続され、該自家発電システムと
組合せて運転することにより商用電力系統からの受電シ
ステム容量を低減し、負荷追従性の悪い自家発電システ
ムの運転には許容運転範囲内で行いながら、電力負荷が
要求する電力負荷パターンを任意の形に形成する。
The flywheel power generation system in this invention is connected in parallel with a private power generation system, and by operating in combination with the private power generation system, the capacity of the power receiving system from the commercial power system is reduced, and the power generation system of the private power generation system with poor load following ability is reduced. The power load pattern required by the power load is formed into an arbitrary shape while the operation is performed within the permissible operating range.

【発明の実施例】[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。図中
、第5図と同一の部分は同一の符号をもって図示した第
1図において、8はフライホイール発電設備を示すもの
で、そのフライホイール発電システムの基本構成につい
ては第2図に示す。 第2図において、9は発電電動機、10は前記発電電動
機9に機械的に直結されたフライホイール(ただしフラ
イホイールがない場合もありうる)、11はパワーエレ
クトロニクスからなる電力変換器、12は励磁装置を示
す。また、フライホイール発電システム8には、第2図
1al に示すように、電力変換器11を発電電動機9
の1次側に置く場合と、同図[b] に示すように2次
側に置く場合の2つのシステム構成があるが、いずれの
場合においてもその基本構成は (ア)発t!動機(G/M)9、 (イ)G/M回転部に直結されたフライホイール(F/
W)10、(F/Wが無い場合もありうる。) n)07M9と系統母線2との間に設置され電力を07
Mに入出力する電力変換器(Pc)11、から成り立っ
ている。 先ず、フライホイール発電システム8そのものの動作原
理について説明する。 このフライホイール発電システム8では07M9は発電
機(電力発生時)にも電動機(電力蓄勢時)にも使用さ
れることになる。 すなわち、電力蓄勢時には先ずC/M9は電動機として
運転され、電力変換器Pc1lから入力された電力をG
/M回転部およびG/M回転部に直結されたF/WIO
に回転エネルギーとしてエネルギーを蓄勢する。 一方、電力発生時には07M9を発電機として機能させ
回転エネルギーを電気エネルギーに変換し、電力を供給
する。 これら電力の発生、蓄勢のパターンの一例を第3図に示
す。図示のように、一連の運転でG/M90回転速度が
繰り返し変化し、07M9の周波数も回転速度に対応し
て変化することになる。 また、電力変換器Pc1lは07M9の周波数が変化し
た状態においても第2図における電力変換器Pc1lの
出力、あるいは07M9の出力そのものの周波数を系統
、又は変動電力を要求するプラントの周波数に一致させ
て電力を変換するために設置される。このフライホイー
ル発電システムはエネルギーの蓄積密度が極めて高いフ
ライホイールと高速応答性を誇るパワーエレクトロニク
スを組み合せたシステムであり、装置全体の出力応答性
としてIOMW/S以上の入出力変化の対応が可能とな
る。 次に自家発電システムを有する鉄鋼プラント−・フライ
ホイール発電システム8を適用した場合について述べる
。 鉄鋼プラントでは第4図、第6図及び第7図の実線に示
したような矩形波状の電力負荷パターンが要求されるが
、本発電設備を適用した場合、負荷の低い期間にエネル
ギーを蓄え、大きな負荷が要求される期間にそのエネル
ギーを供給することができる。 第4図は電気炉に対しフライホイール発電システム8を
適用した場合の具体的なエネルギー蓄勢。 放出の関係を示すものである。 図において、自家発電設備は破線にて示すパターンによ
って運用される。図中、Elは自家発電設備からフライ
ホイール発電設備に蓄えられるエネルギーをE2はフラ
イホイール発電システム8から負荷に放出されるエネル
ギーをそれぞれ示している。 (フライホイール発電システム8における損失を無視す
れば第4図において2xEz=E+となる。)なお、上
記実施例では変動電力を要求する負荷として1つの鉄鋼
プラントを自家発電システム、およびフライホイール発
電システムとしてそれぞれ1つのシステムの例を示した
がこれらは全て1つずつの構成である必要はなく、任意
個数のシステムの組合せであっても良い。 この場合、フライホイール発電システムが複数個のシス
テムから成る場合にはプラントの操業度によって決まる
負荷電力に対応した任意個数のフライホイール発電シス
テムを運用することになる。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the same parts as in FIG. 5 are designated by the same reference numerals. In FIG. 1, reference numeral 8 indicates a flywheel power generation facility, and the basic configuration of the flywheel power generation system is shown in FIG. In FIG. 2, 9 is a generator motor, 10 is a flywheel mechanically directly connected to the generator motor 9 (however, there may be no flywheel), 11 is a power converter made of power electronics, and 12 is an excitation motor. Show the device. In addition, the flywheel power generation system 8 includes a power converter 11 connected to a generator motor 9 as shown in FIG.
There are two system configurations: one is placed on the primary side of the t! Motive (G/M) 9, (a) Flywheel (F/M) directly connected to the G/M rotating part
W) 10, (There may be cases where there is no F/W.) n) Installed between 07M9 and system bus 2 and transmitting power to 07
It consists of a power converter (Pc) 11 that inputs and outputs to M. First, the operating principle of the flywheel power generation system 8 itself will be explained. In this flywheel power generation system 8, 07M9 is used both as a generator (when generating electric power) and an electric motor (when storing electric power). That is, when storing power, C/M9 is first operated as an electric motor, and converts the power input from power converter Pc1l into G
F/WIO directly connected to /M rotating part and G/M rotating part
It stores energy as rotational energy. On the other hand, when generating electricity, 07M9 functions as a generator to convert rotational energy into electrical energy and supply electricity. An example of the pattern of generating and storing power is shown in FIG. As shown in the figure, the G/M90 rotational speed changes repeatedly in a series of operations, and the frequency of 07M9 also changes corresponding to the rotational speed. Furthermore, even when the frequency of 07M9 changes, power converter Pc1l matches the frequency of the output of power converter Pc1l in FIG. 2, or the output of 07M9 itself, to the frequency of the grid or the plant that requires variable power. Installed to convert electricity. This flywheel power generation system is a system that combines a flywheel with extremely high energy storage density and power electronics that boasts high-speed response, and the output response of the entire device is capable of responding to input/output changes exceeding IOMW/S. Become. Next, a case will be described in which a steel plant flywheel power generation system 8 having an in-house power generation system is applied. Steel plants require a rectangular wave power load pattern as shown by the solid lines in Figures 4, 6, and 7, but when this power generation equipment is applied, energy is stored during periods of low load, and That energy can be supplied during periods when large loads are required. Figure 4 shows a specific example of energy storage when the flywheel power generation system 8 is applied to an electric furnace. This shows the relationship between emissions. In the figure, private power generation equipment is operated according to the pattern shown by the broken line. In the figure, El represents the energy stored in the flywheel power generation equipment from the private power generation equipment, and E2 represents the energy released from the flywheel power generation system 8 to the load. (If the loss in the flywheel power generation system 8 is ignored, 2xEz=E+ in FIG. 4.) In the above embodiment, one steel plant is used as a load requiring variable power as a private power generation system and a flywheel power generation system. Although examples of one system for each are shown, it is not necessary that each of these systems has a single configuration, and an arbitrary number of systems may be combined. In this case, if the flywheel power generation system is composed of a plurality of systems, an arbitrary number of flywheel power generation systems will be operated corresponding to the load power determined by the operating level of the plant.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば変動電力を要求するプ
ラントに対して自家発電システムとフライホイール発電
システムを並列に接続し、負荷追従性の悪い自家発電シ
ステムの運転には許容運転範囲内で行いながら、プラン
トが要求する電力負荷パターンを任意の形に形成するよ
うに運転するので、系統母線から受電するピーク電力が
低減でき、設備容量および運転コストを小さく抑えるこ
とができ、受電電力を皆無とすることができる効果があ
る。 更に、負荷追従性を気にすることなく自家発電システム
を運転できるので、自家発電システムを制約なく運転範
囲を拡大に運転することができる効果がある。
As described above, according to the present invention, a private power generation system and a flywheel power generation system are connected in parallel to a plant that requires variable power, and the private power generation system with poor load followability can be operated within an allowable operating range. As the power load pattern required by the plant is formed into an arbitrary shape, the peak power received from the grid bus can be reduced, equipment capacity and operating costs can be kept low, and the power received can be completely eliminated. There is an effect that can be achieved. Furthermore, since the private power generation system can be operated without worrying about load followability, there is an effect that the private power generation system can be operated without restrictions in an expanded operating range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるフライホイール発電
システムと自家発電システムとの組合せシステム構成図
、第2図は第1図におけるフライホイール発電システム
の基本構成図、第3図は第2図に示すフライホイール発
電システムの基本運転パターン図、第4図はこの発明を
適用したエネルギー蓄勢、放出のパターンを示す説明図
、第5図は従来の自家発電システム構成図、第6図は鉄
鋼プラント(電気炉)の電力負荷パターンの説明図、第
7図は第6図の電力負荷パターンに対し自家発電システ
ムを適用した場合の運転パターンを示す説明図である。 図において、2は系統母線、5は自家発電システム、8
はフライホイール発電システム、9は発電電動機、10
はフライホイール、11は電力変換器である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a system configuration diagram of a combination of a flywheel power generation system and a private power generation system according to an embodiment of the present invention, FIG. 2 is a basic configuration diagram of the flywheel power generation system in FIG. 1, and FIG. Fig. 4 is an explanatory diagram showing the energy storage and release pattern to which this invention is applied, Fig. 5 is a configuration diagram of a conventional private power generation system, and Fig. 6 is a diagram of the basic operation pattern of the flywheel power generation system shown in Fig. 6. FIG. 7 is an explanatory diagram of a power load pattern of a plant (electric furnace), and is an explanatory diagram showing an operation pattern when a private power generation system is applied to the power load pattern of FIG. 6. In the figure, 2 is the grid bus, 5 is the private power generation system, and 8
is a flywheel power generation system, 9 is a generator motor, 10 is
is a flywheel, and 11 is a power converter. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 時間と共に矩形波状の非定常電力が消費される電力負荷
設備に系統母線又は自家発電システムから電力を供給す
る電力供給システムにおいて、前記自家発電システムと
並列に接続されて運転され、電力発生時には発電機とし
て運転され、電力蓄勢時には電動機として運転される発
電電動機と、前記発電電動機の回転部に直結され回転エ
ネルギーを蓄積するフライホイールと、前記発電電動機
と前記系統母線との間に設置され電力を発電電動機に入
出力する電力変換器とを有するフライホイール発電シス
テムを備えたことを特徴とする電力供給システム。
In a power supply system that supplies power from a grid bus or private power generation system to power load equipment that consumes unsteady power in a rectangular wave shape over time, the power generator is operated in parallel with the private power generation system, and when power is generated, a generator-motor that is operated as a generator-motor and is operated as an electric motor when storing power; a flywheel that is directly connected to the rotating part of the generator-motor and stores rotational energy; and a flywheel that is installed between the generator-motor and the system bus and that stores electric power. A power supply system comprising a flywheel power generation system having a power converter that inputs and outputs to a generator motor.
JP2113545A 1990-04-27 1990-04-27 Power supply system Pending JPH0412628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2113545A JPH0412628A (en) 1990-04-27 1990-04-27 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2113545A JPH0412628A (en) 1990-04-27 1990-04-27 Power supply system

Publications (1)

Publication Number Publication Date
JPH0412628A true JPH0412628A (en) 1992-01-17

Family

ID=14615029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2113545A Pending JPH0412628A (en) 1990-04-27 1990-04-27 Power supply system

Country Status (1)

Country Link
JP (1) JPH0412628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675109B1 (en) * 1998-09-14 2007-01-29 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Electric power supply system for an electrical equipment
JP2011152013A (en) * 2010-01-25 2011-08-04 Ihi Corp Flywheel power storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675109B1 (en) * 1998-09-14 2007-01-29 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Electric power supply system for an electrical equipment
JP2011152013A (en) * 2010-01-25 2011-08-04 Ihi Corp Flywheel power storage system

Similar Documents

Publication Publication Date Title
Sebastián et al. Effective active power control of a high penetration wind diesel system with a Ni–Cd battery energy storage
US7714463B2 (en) Device for controlling single-phase power conditioner for renewable energy system
CN101867341A (en) System and method for fixed frequency power generation
JP2013013176A (en) Independent power supply device
US20190214824A1 (en) Power generation system and related method of operating the power generation system
US20170373501A1 (en) Power generation system, power generation control method and program
JP2000078896A (en) Wind power generating system
JP2011060921A (en) Solar power generation facility
Ranjan et al. Decentralized primary control of PV-battery system integrated with DC microgrid in off-grid mode
JPH0412628A (en) Power supply system
JPH08251827A (en) Combined cycle power generation system
Sanjeev et al. Effective control and energy management of isolated DC microgrid
JP4624717B2 (en) Power system
Kumar et al. Control strategy for fuel saving in asynchronous generator driven electric tugboats
JPS6127981B2 (en)
Chand Auxiliary power controls on the Nelson River HVDC scheme
Kumar et al. A Novel Power Management Strategy for Solar-Variable Speed Diesel Generator Hybrid System
Sanjeev et al. A novel configuration for PV-battery-DG integrated standalone DC microgrid
Kuchak et al. Improving the Dynamic Characteristics of the Autonomous Electric Generating Unit
JP2000078895A (en) Wind power generating system
Ruddell et al. Flywheel Energy Storage Systems
JPH06169598A (en) Generator system by natural energy
Dybko et al. Improved Dynamic of Engine Generation Set Using Energy Storage and the Instantaneous Power Theory
JP6351796B1 (en) Power supply system and power supply method
JP2024033637A (en) Vibration power generation device and power supply equipment