JPS6127981B2 - - Google Patents

Info

Publication number
JPS6127981B2
JPS6127981B2 JP54015075A JP1507579A JPS6127981B2 JP S6127981 B2 JPS6127981 B2 JP S6127981B2 JP 54015075 A JP54015075 A JP 54015075A JP 1507579 A JP1507579 A JP 1507579A JP S6127981 B2 JPS6127981 B2 JP S6127981B2
Authority
JP
Japan
Prior art keywords
power
generator
output
load
generators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54015075A
Other languages
Japanese (ja)
Other versions
JPS55109142A (en
Inventor
Juichi Kitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1507579A priority Critical patent/JPS55109142A/en
Publication of JPS55109142A publication Critical patent/JPS55109142A/en
Publication of JPS6127981B2 publication Critical patent/JPS6127981B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は発電機の制御方法に係り、商用電源と
複数台の発電機との並列運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a generator, and more particularly, to a method for parallel operation of a commercial power source and a plurality of generators.

一般に化学プラント工場、ごみ焼却工場などで
は副生するスチームを利用して発電することが多
く、このため工場内にタービン発電機が設置さ
れ、この発電機から工場内所要動力に電力を供給
している。しかし発電電力量よりも所要電力量の
方が大きい場合、もしくはごみ焼却工場のよう
に、発電機が定常運転に入るまでに助燃作業が必
要な場合などにおいては、必然的に商用電源を必
要とし、このため商用電源(以後受電々源とい
う)と発電機とは並列運転が行なわれる。
Generally, chemical plants, waste incineration plants, etc. often use by-product steam to generate electricity, and for this reason, turbine generators are installed within the factory, and this generator supplies electricity to the power required within the factory. There is. However, if the amount of electricity required is greater than the amount of electricity generated, or if auxiliary combustion is required before the generator can start steady operation, such as in a waste incineration plant, a commercial power source is inevitably required. Therefore, the commercial power source (hereinafter referred to as the power receiving power source) and the generator are operated in parallel.

いま一例としてごみ焼却発電所について考察し
てみると、都市ごみは質や量にバラツキが多く発
電量が不安定であるという理由で、電力会社は買
電は勿論逆送電すら許可しないという場合が多
い。このため、ごみ焼却工場は契約電力一杯まで
受電電源で賄ない、あとの不足分を発電電力で充
足している。通常ごみ1トンあたり10kWHの発
電電力量があると云われているが、実際のごみ焼
却プラントでは発生する熱量の数分の一しか使用
出来ず、電気事業法の関係で買電電力一定制御が
採用されている。この場合負荷の変動に応じて発
電機の出力を制御する必要があるため、運転効率
の関係上、複数台の発電機を設置する場合があ
る。
As an example, if we consider waste incineration power plants, there are cases where electric power companies do not allow power purchase or even reverse power transmission because the quality and quantity of municipal waste varies widely and the amount of power generated is unstable. many. For this reason, waste incineration plants do not use the received power to meet the contracted power requirement, and then use generated power to cover the remaining shortfall. It is said that 10 kWh of electricity is normally generated per ton of waste, but in actual waste incineration plants, only a fraction of the amount of heat generated can be used, and due to the Electricity Business Act, fixed power purchase control is required. It has been adopted. In this case, it is necessary to control the output of the generator according to changes in the load, and therefore, for operational efficiency reasons, a plurality of generators may be installed.

第1図はこの場合の構成を示すものである。同
図においては、電力会社、すなわち受電電力系統
1から受電設備2を径て、しや断器3の個所で、
所内発電機5,5′、しや断器6,6′のラインに
並列接続したのち、しや断器8を介して各負荷群
10,11,12,………,nに電力を供給する
構成となつており、電力検出装置4によつて図示
しないタービンの制御を行なう。すなわち電力検
出装置には上限と下限の設定値があり、受電電力
を常にこの範囲内に入れるように、すなわち買電
電力が一定となるように発電機の出力を制御して
いる。第2図、第3図に於て更に詳細に説明する
と、負荷10〜nの中にはクレーンなども含ま
れ、負荷変動が大きく、総電力量は常に変動して
いる。このため受電電力検出装置4の検出電力が
上限を超えると、あるサンプリングタイムをおい
て発電機5または5′の出力を増加させ、結果的
には受電電力を減少させて、第2図の上限値以下
に入るように発電機出力を増加させることとな
る。
FIG. 1 shows the configuration in this case. In the figure, from the electric power company, that is, the power receiving power system 1, through the power receiving equipment 2, at the point of the breaker 3,
After connecting in parallel to the lines of the in-house generators 5, 5' and the breakers 6, 6', power is supplied to each load group 10, 11, 12, ......, n via the breakers 8. The power detection device 4 controls a turbine (not shown). That is, the power detection device has an upper limit and a lower limit setting value, and controls the output of the generator so that the received power is always within this range, that is, the purchased power is constant. To explain in more detail with reference to FIGS. 2 and 3, the loads 10 to n include cranes and the like, and the load fluctuations are large, and the total power amount is constantly fluctuating. Therefore, when the power detected by the received power detection device 4 exceeds the upper limit, the output of the generator 5 or 5' is increased after a certain sampling time, and as a result, the received power is decreased, and the upper limit shown in FIG. The generator output will be increased so that the value is below this value.

これは、第3図イに示す調定率曲線に於て、或
る時期に受電側でA、発電機5でB、発電機5′
でCの電力量を分担していたとすると、次の或る
時期で総電力量が増加してA+B+C+Dの電力
量となつたものと仮定する。そしてこのうち受電
電力量A+Dの値が第2図の上限より大きいとす
れば、発電機5、もしくは5′の図示しないスチ
ームタービンのガバナを制御する。これにより、
たとえば発電機5の出力特性を変更して第3図イ
に示すように発電機5側でB+Dの電力量を負担
すれば、必要とする総電力量はA+B+C+Dで
あるため、受電電力量は必然的に (A+B+C+D)−{(B+D)+C}=A となり、元の状態に戻る。すなわち、負荷変動が
あつても受電電力一定制御となる。
This means that in the regulation rate curve shown in Figure 3A, at a certain time, A on the power receiving side, B on the generator 5, and B on the generator 5'.
Assuming that the power amount of C is shared, it is assumed that the total power amount increases at a certain time next and becomes the power amount of A+B+C+D. If the value of the received power amount A+D is larger than the upper limit shown in FIG. 2, the governor of the steam turbine (not shown) of the generator 5 or 5' is controlled. This results in
For example, if the output characteristics of the generator 5 are changed and the power amount of B+D is borne by the generator 5 side as shown in Figure 3A, the total amount of power required is A+B+C+D, so the amount of received power will inevitably be Therefore, (A+B+C+D)-{(B+D)+C}=A, and the original state is returned. In other words, even if there is a load change, the received power is controlled to be constant.

逆に負荷電力が減少し、受電電力量がAからE
に減少し、Eの値が第2図の下限以下であるとす
れば、同様にして電力検出装置4は、たとえば発
電機5の出力を第3図ロに示す調定率曲線のよう
にBから(A−E)だけ減少するように制御す
る。ここで必要とする総電力量はB+C+Eであ
るから、受電電力量は (B+C+E)−{〔B−(A−E)〕+C}=A となり、受電電力は下限値以上に復帰する。すな
わち受電電力は一定の値に制御されることにな
る。
Conversely, the load power decreases and the amount of received power changes from A to E.
If the value of E is below the lower limit in FIG. It is controlled so that it decreases by (A-E). Since the total amount of power required here is B+C+E, the amount of received power is (B+C+E)-{[B-(A-E)]+C}=A, and the received power returns to the lower limit value or more. In other words, the received power is controlled to a constant value.

このように変動する負荷を有する系統で、且つ
買電電力一定制御を行なう場合は、頻繁に発電機
の出力を制御する必要があるが、発電機が1台で
あれば比較的簡単であつても、複数台の制御では
非常に困難になる。すなわち自動負荷分担装置を
使用して、定常時での発電機の出力を等分に制御
しているとき、出力の制御は複数台の発電機全体
に対して行なわれるべきか、もしくは個々に行な
われるべきかを決定する必要がある。
In a system with a fluctuating load like this, when controlling the purchased power at a constant rate, it is necessary to frequently control the output of the generator, but this is relatively simple if there is only one generator. However, controlling multiple units becomes extremely difficult. In other words, when an automatic load sharing device is used to equally control the output of generators during steady state, should the output be controlled for all of the generators or individually? It is necessary to decide whether the

前者の場合、負荷が減少しても等分とすると、
それぞれの発電機は軽負荷となつて効率の悪い運
転となり、発電機を複数台に分割した意義がなく
なる。一方個々に出力の制御を行なうとすれば、
繁雑な制御となり、負荷の急変に対応しきれず、
逆送電の可能性、或いは最大需要電力を超えるこ
ともありうる。いずれにしろ、受電設備2の図示
しないしや断器をトリツプすることとなり、受
電々源と発電々源の解列が行なわれることにな
る。
In the former case, even if the load decreases, if it is divided equally,
Each generator has a light load, resulting in inefficient operation, and there is no point in dividing the generator into multiple units. On the other hand, if you want to control the output individually,
This results in complicated control, making it impossible to respond to sudden changes in load.
There is a possibility of reverse power transmission or exceeding the maximum demand power. In any case, a disconnector (not shown) of the power receiving equipment 2 will be tripped, and the power receiving power source and the power generating power source will be disconnected from each other.

このため本発明では、かかる欠点を除去し、負
荷変動時に複数台の発電機出力を自動的に効率良
く制御する、発電機の制御装置を提供することを
目的とする。
Therefore, it is an object of the present invention to provide a generator control device that eliminates such drawbacks and automatically and efficiently controls the output of a plurality of generators during load fluctuations.

以下本発明を、図面に示す一実施例に基づいて
説明する。すなわち第1図と同一部分に同一符号
を付した第4図において、発電機5,5′の電力
をそれぞれ検出する装置7,7′と、負荷電力検
出装置9とを設け、これら電力検出装置の内、4
に於て受電電力Ws、7に於て発電出力WG1
7′に於て同じく発電出力WG2、及び9に於て負
荷電力WLを検出するものとする。これらの検出
信号WS,WG1,WG2及びWLを、第5図に示すフ
ローシートにもとづいて演算するものとする。こ
の演算装置はコンピユータもしくは有極接点の論
理演算回路で構成されるものとする。
The present invention will be described below based on an embodiment shown in the drawings. That is, in FIG. 4, in which the same parts as in FIG. Of these, 4
Received power Ws at 7, generated output W G1 at 7,
It is assumed that the power generation output W G2 is similarly detected at 7', and the load power W L is detected at 9. These detection signals W S , W G1 , W G2 and W L are calculated based on the flow sheet shown in FIG. It is assumed that this arithmetic device is composed of a computer or a logic arithmetic circuit with polarized contacts.

或る時点で WL=WS+WG1+WG2 が成立していれば、制御系は何の作動も行なわな
いが、△tなる時間後、すなわちt′=t+△tの
時点で負荷変動が発生し、負荷電力が△WLだけ
増加し、WLからWL′になつたとする。この場合
は前述したように発電機5、もしくは5′の何れ
かの出力、または同時に両者の出力を調整しなけ
ればならない。本発明では第5図aに示すよう
に、両者の出力を比較し、発電機5の出力WG1
発電機5′の出力WGに等しいか、或いは大きい場
合、まず発電機5の出力増加から行なう。
If W L = W S + W G1 + W G2 is established at a certain point in time, the control system will not perform any operation, but after a time of △t, that is, at the time of t' = t + △t, the load fluctuation will occur. Suppose that the load power increases by ΔW L and becomes W L ' from W L . In this case, as described above, it is necessary to adjust the output of either the generator 5 or 5', or the output of both at the same time. In the present invention, as shown in FIG. 5a, the outputs of the two are compared, and if the output W G1 of the generator 5 is equal to or larger than the output W G of the generator 5', the output of the generator 5 is increased first. Let's do it from

この場合まずWG1が発電機5の最大出力以内で
あることを条件として、発電機5の出力をWG1
らW′G1に調整し、 W′L=WS+W′G1+WG2 が成立するまで制御する。上式が成立すれば制御
系の作動は終了するが、W′G1=MAXとなつても
成立しない場合、制御系は、発電機5′の出力調
整に移る。発電機5′の出力WG2をW′G2に調整し
て、 W′L=WS+WG1(MAX)+W′G2 が成立すれば、制御の目的が達せられ、制御系は
その作動を終了する。
In this case, first, on the condition that W G1 is within the maximum output of generator 5, the output of generator 5 is adjusted from W G1 to W' G1 , and W' L = W S + W' G1 + W G2 holds. control up to. If the above equation holds true, the operation of the control system ends; however, if it does not hold even if W' G1 =MAX, the control system shifts to adjusting the output of the generator 5'. If the output W G2 of the generator 5' is adjusted to W' G2 and W' L = W S + W G1 (MAX) + W' G2 is established, the control objective is achieved and the control system ends its operation. do.

しかし、発電機5′の出力が最大となつても上
式が成立しない場合、すなわち W′L>WS+WG1(MAX)+WG2(MAX) の場合は、この発電システムでは応答できない。
したがつて制御系としては、この時点で作動を止
めて、受電々力WSが増加する旨アナウンスする
こととなる。
However, if the above equation does not hold even if the output of the generator 5' reaches its maximum, that is, if W' L > W S + W G1 (MAX) + W G2 (MAX), this power generation system cannot respond.
Therefore, the control system stops its operation at this point and announces that the received power W S will increase.

一方、発電機5′の出力WG2の方が、発電機5
の出力WG1よりも負荷変動以前に大きければ、第
5図bに示すように上記の制御系と同じ過程で、
まず発電機5′の方から制御する。そして最大出
力まで増加しても負荷変動に応じられない場合、
発電機5の出力制御に移る。
On the other hand, the output W G2 of the generator 5' is higher than the output W G2 of the generator 5'.
If the output W G1 is greater than the load change, as shown in Figure 5b, in the same process as the above control system,
First, the generator 5' is controlled. If the load fluctuation cannot be met even if the output is increased to the maximum,
Moving on to output control of the generator 5.

次に負荷変動により負荷電力が△Wだけ減少
し、WLからW′Lになつた場合は、第5図cに示
すように2台の発電機の出力電力を比較する。そ
してもし発電機5の出力WG1が発電機5′の出力
G2に等しいか、又は小さい場合、発電機5の最
小出力(MIN)の範囲内でその出力を減少し W′L=WS+W″G1+WG2 が成立するまで、その出力を制御する。上式が成
立すれば、制御の目的が達せられるので、制御系
な作動を終了する。
Next, when the load power decreases by ΔW due to load fluctuation and changes from W L to W' L , the output power of the two generators is compared as shown in FIG. 5c. And if the output W G1 of the generator 5 is equal to or smaller than the output W G2 of the generator 5', reduce its output within the range of the minimum output (MIN) of the generator 5, W' L = W S The output is controlled until +W'' G1 +W G2 is established. If the above equation is established, the purpose of control is achieved, and the control system operation is terminated.

しかし発電機5の出力が零に達しても、上式が
成立ない場合、すなわち W′L<WS+WG2 の場合は、制御系は発電機5′の出力調整に移
る。すなわち、発電機5′の出力WG2をWG2″にま
で減少して W′L=WS+WG2″ が成立すれば制御の目的が達せられるが、発電機
5′の出力を零にしても尚も W′L<WS であるなら、この発電システムでは応答出来ない
ことになり、受電電力WSを減少することとな
る。また発電機5′の出力WG2の方が、発電機5
の出力WG1よりも小さい場合は、前記と反対に第
5図dに示すように発電機5′の方から制御する
こととなる。
However, even if the output of the generator 5 reaches zero, if the above equation does not hold, that is, if W' L <W S +W G2 , the control system shifts to adjusting the output of the generator 5'. In other words, the control objective can be achieved if the output W G2 of the generator 5' is reduced to W G2 '' and W' L = W S + W G2 '', but if the output of the generator 5' is reduced to zero, However, if W′ L < WS , this power generation system will not be able to respond, and the received power W S will be reduced. Also, the output W G2 of the generator 5' is smaller than the output W G2 of the generator 5'.
If the output W G1 is smaller than the output W G1 , then, contrary to the above, the generator 5' is controlled as shown in FIG. 5d.

この説明では発電機2台の場合について記載し
たが、3台以上の場合でも (イ) 個々の発電機出力の内最大もしくは最小のも
のを検出し、この発電機から制御する。
In this explanation, the case of two generators is described, but even in the case of three or more generators, (a) the maximum or minimum output of each generator is detected and controlled from this generator.

(ロ) 1号機の制御で不充分な場合は、他の発電機
の中で最大もしくは最小のものを検出して順次
制御する。
(b) If control of Unit 1 is insufficient, detect the largest or smallest of the other generators and control them in sequence.

(ハ) 最終号機を制御しても尚不充分であれば、警
報表示すると共に、始めて受電電力の変動を許
す。
(c) If control of the last unit is still insufficient, a warning will be displayed and fluctuations in the received power will be allowed for the first time.

という同一の制御を行なうので、負荷変動が頻繁
に、かつ大幅であつても、発電システムは負荷分
担が最大の発電機から出力を増加させ、負荷分担
の最小の発電機から出力を減少させ、受電電力を
一定に制御することができる。したがつて応答性
もよく、かつ効率の良好な点での出力制御が可能
であり、従来のように複雑な操作も不要であると
いう利点が得られる。
Even if load fluctuations are frequent and large, the power generation system increases output from the generator with the greatest load sharing, decreases output from the generator with the least load sharing, and so on. The received power can be controlled to be constant. Therefore, the output can be controlled with good responsiveness and efficiency, and there is an advantage that complicated operations unlike the conventional ones are not required.

なお上記の説明では、ゴミ焼却プラントにおけ
る商用電源と複数台の発電機との並列運転制御に
ついて述べたが、これに限定されることなく、一
般の並列運転に適用できること勿論である。
In the above description, the parallel operation control of a commercial power source and a plurality of generators in a garbage incineration plant has been described, but the present invention is not limited to this and can of course be applied to general parallel operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の単線系統図、第2図及び
第3図は本発明の基本を説明するための特性線
図、第4図は本発明の一実施例を示す単線系統
図、第5図は本発明の方法を説明するフローチヤ
ートである。 1……受電電力系統、2……受電設備、3,
6,6′,8……しや断器、4,7,7′,9……
電力検出装置、5,5′……発電機、10,1
1,12,………,n……負荷。
Fig. 1 is a single-line system diagram of a conventional device, Figs. 2 and 3 are characteristic diagrams for explaining the basics of the present invention, and Fig. 4 is a single-line system diagram showing an embodiment of the present invention. FIG. 5 is a flowchart illustrating the method of the present invention. 1...Power receiving power system, 2...Power receiving equipment, 3,
6, 6', 8...Shiya disconnector, 4, 7, 7', 9...
Power detection device, 5, 5'... Generator, 10, 1
1, 12, ......, n...load.

Claims (1)

【特許請求の範囲】[Claims] 1 受電設備、複数台の発電設備、及びこれら両
設備の並列運転を可能にする設備とから成る電力
設備において、負荷電力が予定した値以上もしく
は以下になつたとき、複数台の発電機の内負荷分
担が最大の発電機から出力を増加させ、負荷分担
の最小の発電機から出力を減少させ、受電電力を
一定に制御することを特徴とする発電機の並列運
転方法。
1. In an electric power facility consisting of power receiving equipment, multiple generating equipment, and equipment that enables parallel operation of both equipment, when the load power exceeds or falls below the planned value, one of the multiple generators A method for parallel operation of generators, characterized in that the output is increased from the generator with the greatest load sharing, and the output is decreased from the generator with the least load sharing, thereby controlling the received power to a constant level.
JP1507579A 1979-02-14 1979-02-14 Method of operating generators in parallel Granted JPS55109142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1507579A JPS55109142A (en) 1979-02-14 1979-02-14 Method of operating generators in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1507579A JPS55109142A (en) 1979-02-14 1979-02-14 Method of operating generators in parallel

Publications (2)

Publication Number Publication Date
JPS55109142A JPS55109142A (en) 1980-08-22
JPS6127981B2 true JPS6127981B2 (en) 1986-06-27

Family

ID=11878725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1507579A Granted JPS55109142A (en) 1979-02-14 1979-02-14 Method of operating generators in parallel

Country Status (1)

Country Link
JP (1) JPS55109142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123514A1 (en) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. Crane device
WO2008123513A1 (en) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. Crane device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618462B2 (en) * 1981-09-10 1994-03-09 株式会社明電舎 Private power generator
JP2010166723A (en) * 2009-01-16 2010-07-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for adjusting power generation output
JP6422682B2 (en) * 2014-06-24 2018-11-14 株式会社東芝 Power control apparatus and power control method
JP6677665B2 (en) * 2017-02-24 2020-04-08 京セラ株式会社 Power supply system and power supply system control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123514A1 (en) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. Crane device
WO2008123513A1 (en) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. Crane device
JP2008254830A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Crane device

Also Published As

Publication number Publication date
JPS55109142A (en) 1980-08-22

Similar Documents

Publication Publication Date Title
US11936187B2 (en) Method and system for extracting excess power
Kiprakis et al. Maximising energy capture from distributed generators in weak networks
Liu et al. Non-disruptive load-side control for frequency regulation in power systems
JPS6127981B2 (en)
JP2001086649A (en) Load frequency controlling method in power system
Xu et al. Unlock the flexibility of combined heat and power for frequency response by coordinative control with batteries
JP6469021B2 (en) Electricity supply and demand control device
JP4993972B2 (en) Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system
JPH08251827A (en) Combined cycle power generation system
EP0098047A1 (en) Electrical control systems
JPS5956827A (en) Non-utility generator
Gatavi et al. Advanced reactive power control strategy for better lvrt capability for dfig-based wind farm
AU2020437492A1 (en) Method for the control of an energy system, and associated device
JPS58139650A (en) Method of controlling non-utility generating facility
JP3033991B2 (en) Fuel cell DC parallel operation system
JPS63107421A (en) System stabilizer
KR20210081092A (en) Intelligent operation methods and apparatuses of energy storage system linked with heterogeneous distributed resource
JP6692205B2 (en) Interconnected operation control device, distributed power supply operating system using the same, and interconnected operation control method
JPS6345815Y2 (en)
US20230369889A1 (en) Power control device, power control method, and power control program
Abdolrasol et al. Rule-base current control for microgrid energy management system
JP7351168B2 (en) Negawatt trading support device and negawatt trading method
JP6668420B2 (en) Transmission power control device and distributed generation equipment
SU684672A1 (en) Arrangement for group automatic control of power-generating units of thermal electric power station
JP3907832B2 (en) Power transmission end output control device for thermal power plant