JPH04126072A - Cell culture and apparatus therefor - Google Patents
Cell culture and apparatus thereforInfo
- Publication number
- JPH04126072A JPH04126072A JP2242352A JP24235290A JPH04126072A JP H04126072 A JPH04126072 A JP H04126072A JP 2242352 A JP2242352 A JP 2242352A JP 24235290 A JP24235290 A JP 24235290A JP H04126072 A JPH04126072 A JP H04126072A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- cells
- culture
- cell culture
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004113 cell culture Methods 0.000 title claims description 19
- 210000004027 cell Anatomy 0.000 claims abstract description 83
- 239000001963 growth medium Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 210000004102 animal cell Anatomy 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 244000005700 microbiome Species 0.000 claims abstract description 4
- 230000002209 hydrophobic effect Effects 0.000 claims abstract 2
- 239000012528 membrane Substances 0.000 claims abstract 2
- 238000000605 extraction Methods 0.000 claims description 27
- 239000002609 medium Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 230000004663 cell proliferation Effects 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims description 2
- 238000004062 sedimentation Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 2
- 238000012258 culturing Methods 0.000 abstract description 8
- 239000012737 fresh medium Substances 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- XTKDAFGWCDAMPY-UHFFFAOYSA-N azaperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCN(C=2N=CC=CC=2)CC1 XTKDAFGWCDAMPY-UHFFFAOYSA-N 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は動物細胞、植物細胞、微生物等の培養方法及び
装置に関する6
[従来の技術]
培養装置の運転においては培養細胞の増殖、栄養成分の
消費、老廃成分の蓄積等により培養装置内部の状態は変
化し続け1通常はある一定期間で細胞の増殖や生産物の
蓄積は終りをむがえる。これに対し、培養槽内に新鮮培
地を供給すると共に培地を同流量で抜き出してやること
により培養槽内の状態を常に一定に保つことができ、連
続培養が可能になる。この連続培養方法としてはバイオ
ケミカルエンジニアリングファンダメンタルズ(D98
6年)第380頁から第383頁(Biochemic
al Engineering Fundamen
tals (D986)P2S5−383)において
論じられているようにケモスタット(Chemosta
t )と呼ばれる手法がある。この手法は培養装置に連
続的に新鮮培地を供給してやり、それと同流量の培地及
び細胞の混合液を培養装置から抜出してやる手法で、培
養装置内で増殖する細胞の数と抜出口がら流出する細胞
の数とをバランスさせることにより培養装置内の細胞密
度を一定に保つことができる。この関係は次式で表わさ
れる。Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a method and apparatus for culturing animal cells, plant cells, microorganisms, etc. 6 [Prior Art] In the operation of a culture apparatus, the growth of cultured cells, nutritional components, etc. The internal conditions of the culture apparatus continue to change due to consumption of cells, accumulation of waste components, etc.1 Usually, cell proliferation and product accumulation come to an end after a certain period of time. On the other hand, by supplying a fresh medium into the culture tank and withdrawing the medium at the same flow rate, the condition inside the culture tank can be kept constant at all times, making continuous culture possible. This continuous culture method is based on Biochemical Engineering Fundamentals (D98
6th year) pages 380 to 383 (Biochemical
al Engineering Fundamen
tals (D986) P2S5-383).
There is a method called t). In this method, fresh medium is continuously supplied to the culture device, and the same flow rate of a mixed solution of culture medium and cells is extracted from the culture device. By balancing the number of cells, the cell density within the culture device can be kept constant. This relationship is expressed by the following equation.
D=F/V −−−−−−−−−−−−−−一−−−
−−(2)ただし
χ:細胞寓度(cells/l2)
t:時間(h)
D、交換$(h−“)
μ、細胞の増殖率(h−’)
F:培地供給及び抜出速度(I2/h)V:培養装置容
量(I2)
式(D)において培!装置内の細胞密度χが一定である
、すなわちdχ/dt=0とすると次式の関係が成立す
る。D=F/V −−−−−−−−−−−−−−−−
--(2) where χ: cell density (cells/l2) t: time (h) D, exchange $ (h-") μ, cell proliferation rate (h-') F: medium supply and withdrawal rate (I2/h)V: Culture device capacity (I2) In equation (D), if the cell density χ in the culture device is constant, that is, dχ/dt=0, then the following relationship holds true.
D=μ−−−−−−−−−−−−−−−−−−−−−−
−−(3)すなわち、交換率りと増殖率Uとは等しくな
ければならない。これは換言すれば培養する細胞の増殖
率によって希釈率が決定されてしまい、それ以上の希釈
率が得られないということである0例えは、動物細胞の
場合、増殖率μは0.01〜002(h−“)であり、
これと同じ交換率りて培養した場合、1日に培養装置全
容量の半分弱の培地を供給することができるだけとなり
、維持できる細胞!度はせいぜいl x 10 ’ (
cells/ff)程度である。D=μ−−−−−−−−−−−−−−−−−−−−
--(3) That is, the exchange rate and the proliferation rate U must be equal. In other words, the dilution rate is determined by the proliferation rate of the cells to be cultured, and a higher dilution rate cannot be obtained.For example, in the case of animal cells, the proliferation rate μ is 0.01~ 002(h-“),
If you culture at the same exchange rate, you will be able to supply a little less than half of the total capacity of the culture device in one day, and you will be able to maintain cells! The degree is at most l x 10' (
cells/ff).
これに対し培養装置からの細胞の流出を防止して細胞の
増殖率よりも高い割合で培養装置内の培地を交換しよう
とする種々の試みがなされてきた。この培養装置からの
細胞の流出を防止するためには細胞と培地を分離する手
段が必要であり、重力沈降型、遠心分離型、濾過等の方
法がある。これらの手法を用いることによりlXl0”
(cells/42 )以上の細胞密度が得られるよう
になってきた。In response, various attempts have been made to prevent cells from flowing out of the culture device and to replace the medium in the culture device at a rate higher than the cell proliferation rate. In order to prevent the cells from flowing out of the culture device, a means for separating the cells and the medium is required, and methods include gravity sedimentation, centrifugation, and filtration. By using these methods, lXl0”
It has become possible to obtain cell densities of (cells/42) or higher.
〔発明が解決しようとする課題1
この細胞分離装置を用いた培養では、式(D)の交換率
りを除外した場合であるから、常にdχ/dt>Oとな
り、細胞密度は無限に大きくなるはずであるが、実際に
はそうはならず、大きくてもせいぜいl X I O”
(cells/ff )までである。[Problem to be solved by the invention 1] In culture using this cell separation device, since the exchange rate of formula (D) is excluded, dχ/dt>O always holds, and the cell density becomes infinitely large. It should be, but in reality it doesn't happen, and even if it's big, it's at most l X I O"
(cells/ff).
これは細胞が何らかの要因で阻害されたり、死滅する細
胞の数が増大するためであり、通宮は栄養成分の不足に
よる飢餓状態によるものや老廃成分の蓄積による阻害で
あることが多い、細胞や生産物の種類によってはこの飢
餓状態にあるときの方が生産物を多く分泌する場合もあ
るが、逆に細胞の代謝系路が好ましくない方向に変化し
たり、死細胞の分解による酵素等の培地中への流出が生
産物の回収に悪影響を与えることがある。この悪影響を
防止するためには細胞当りの培地交換率α(D/ h−
cell)を一定量上の値に保持してやる必要があり、
これは次式で表わされる。This is because cells are inhibited by some factor or the number of cells that die increases. Depending on the type of product, more products may be secreted during this state of starvation, but on the other hand, the metabolic pathway of the cell may change in an unfavorable direction, or the production of enzymes due to the decomposition of dead cells may occur. Spillage into the culture medium may adversely affect product recovery. In order to prevent this negative effect, the medium exchange rate per cell α (D/h-
cell) must be maintained at a value above a certain amount,
This is expressed by the following formula.
α=D/χ=α。−−−−−−−−−−−−−−(4)
しかしながら、前記のように無限に増加を続けようとす
る細胞密度χに対して交換率りは有限であるためある時
、6.においてどうしても式(4)を満たせなくなり、
その手前で細胞密度χの増加を止める手段がなかった。α=D/χ=α. −−−−−−−−−−−−−(4)
However, as mentioned above, the exchange rate is finite for the cell density χ, which continues to increase indefinitely, so at some point, 6. In this case, it becomes impossible to satisfy formula (4),
There was no way to stop the increase in cell density χ before that point.
本発明は与えられた交換率りにおいて、式(4)の条件
を満たして細胞への阻害が発生しない状態で細胞密度χ
を一定に保持することにより高い生産性を得ることので
きる細胞培養方法及び装置を提供することを目的とする
。In the present invention, at a given exchange rate, the cell density χ
An object of the present invention is to provide a cell culture method and device that can obtain high productivity by maintaining constant cell culture.
[課題を解決するための手段]
上記目的を達成するために、目的の値以上に細胞密度が
増加しないようある一定の割合で細胞を培!!装置・外
に抜出すようにしたものである。この抜出す細胞の量は
ケモスタットのように交換率りによって一義的に決定さ
れてしまうものでな(、任意にコントロールできるもの
でなければならない、このために培養装置(槽)に細胞
分離装置からの培地抜出口と、培地と細胞の混合液の抜
出口を別々に設け、両法出口からの抜出量の比率を制御
するようにしたものである。[Means for solving the problem] In order to achieve the above purpose, cells are cultured at a certain rate so that the cell density does not increase beyond the target value! ! It is designed so that it can be extracted outside the device. The amount of cells to be extracted is not uniquely determined by the exchange rate like in a chemostat (but must be able to be controlled arbitrarily; for this purpose, the cell separation device is connected to the culture device (tank). A medium outlet for the medium and a outlet for the mixed solution of the culture medium and cells are provided separately, and the ratio of the amounts withdrawn from the outlets of both methods is controlled.
[作 用]
細胞分離装置からの抜出速度をF、[!/h)、培養装
置内からの直接抜出速度をF、(β/h)としたとき、
培l!装置内において次の関係が成立する。[Function] The extraction speed from the cell separation device is set to F, [! /h), and when the direct extraction rate from the culture device is F, (β/h),
Culture! The following relationship holds within the device.
dχ
m= (U−ηD)χ −−−−−−−−−−(5)t
D= (F、+F、)/V −−−−−−−−(6
)η=F2/(F、+F、) −−−−−−(7)式
(5)〜(7)においてF’、=0となった場合がケモ
スタットの場合であり、F、=Oが従来の細胞分ilI
装置のみを使った場合に相当する。ここで交換率りと細
胞当りの培地交換率α。が与えられたとき、式(4)に
より目標とする細胞密度χ0が求まる。実際の細胞密度
χがχ。よりも小さいときはηくμ/Dとなるように抜
出流量分配比ηを設定してやれば式(5)に示すように
dχ/dt>Oとなり細胞密度が増加する。又、逆に細
胞密度χがχ。よりも大きいときはη〉μ/Dとなるよ
うにすればdχ/dt<0となり細胞密度が減少する。dχ m= (U-ηD)χ −−−−−−−−−−(5) t D= (F, +F,)/V −−−−−−−−(6
) η=F2/(F, +F,) −−−−−−(7) In equations (5) to (7), the case where F', = 0 is the case of a chemostat, and F, = O is Conventional cell fraction ilI
This corresponds to the case where only the device is used. Here, the exchange rate and the medium exchange rate per cell α. When is given, the target cell density χ0 is determined by equation (4). The actual cell density χ is χ. If the extraction flow rate distribution ratio η is set so that η is smaller than μ/D, dχ/dt>O as shown in equation (5), and the cell density increases. Also, conversely, the cell density χ is χ. When it is larger than , if η>μ/D, dχ/dt<0 and the cell density decreases.
ここで抜出流量分配比ηは交換率りや細胞密度χに独立
に制御可能であるのでχ=χ。どなるように容易に制御
可能である。Here, the extraction flow rate distribution ratio η can be controlled independently of the exchange rate and cell density χ, so χ=χ. The sound can be easily controlled.
[実 施 例]
以下、本発明の一実施例を第1図により説明する0図に
おいて、培M装置lにおいて培養中の細胞にポンプ3に
より新鮮培地を供給する。液面が上限レベルセンサ6に
達すると新鮮培地の供給を停止し、ポンプ4により細胞
分離装置2を経由して培地のみを抜出すと同時にポンプ
5により細胞と培地の混合液を抜出す、このときポンプ
5の流量をポンプ4よりも十分大きく設定しておけば、
培養装置1から抜出されるのはポンプ5からのものがほ
とんどを占める。液面がポンプ5の抜出ノズル8よりも
下がると、ポンプ5からは気相部のガスのみが抜出され
、ポンプ4から抜出される培地のみによって液面が降下
する。液面が下限レベルセンサ7に達するとポンプ4及
びポンプ5を停止し、ポンプ3を起動することにより新
鮮培地の供給を再開する。[Example] Hereinafter, in Figure 0, an example of the present invention will be explained with reference to Figure 1, in which a fresh medium is supplied by a pump 3 to cells being cultured in a culture M device 1. When the liquid level reaches the upper limit level sensor 6, the supply of fresh medium is stopped, and the pump 4 extracts only the medium via the cell separation device 2. At the same time, the pump 5 extracts the mixture of cells and medium. If the flow rate of pump 5 is set sufficiently larger than that of pump 4,
Most of what is extracted from the culture device 1 comes from the pump 5. When the liquid level falls below the extraction nozzle 8 of the pump 5, only the gas in the gas phase is extracted from the pump 5, and the liquid level is lowered only by the culture medium extracted from the pump 4. When the liquid level reaches the lower limit level sensor 7, the pumps 4 and 5 are stopped, and the pump 3 is started to restart the supply of fresh culture medium.
本実施例によれば、ポンプ5の抜出ノズル8の高さによ
って抜出量分配比ηを変えることができる。According to this embodiment, the extraction amount distribution ratio η can be changed depending on the height of the extraction nozzle 8 of the pump 5.
η=h ”/ (h 1+h 2) −−−−−
−(8)次に、本発明の他の一実施例を第2図により説
明する。η=h”/ (h1+h2) −−−−−
-(8) Next, another embodiment of the present invention will be described with reference to FIG.
図において、培養装置lにおいて培養中の細胞にあらか
しめ設定した交換率りになるように一定流速F。(R/
h)でポンプ3により新鮮培地を供給する。ポンプ5は
ポンプ3より十分大きな流IF2 ′ (I2/h)で
一定にしておくことにより、液面がポンプ5の抜出ノズ
ル8よりも高くなった分だけの細胞と培地の混合液を抜
出す。ポンプ4からの培地の抜出速度Fl (p/h
)は次式により演算し、制御装置9よりポンプ4に速度
指令信号を出力する。In the figure, a constant flow rate F is used to maintain a predetermined exchange rate for the cells being cultured in the culture device L. (R/
h) Supply fresh medium by pump 3. By keeping the flow IF2' (I2/h) of pump 5 constant, which is sufficiently larger than that of pump 3, the mixture of cells and culture medium can be removed by the amount that the liquid level is higher than the extraction nozzle 8 of pump 5. put out. The rate of withdrawal of the medium from the pump 4 Fl (p/h
) is calculated by the following equation, and the control device 9 outputs a speed command signal to the pump 4.
F 1= (D−n)Fo −−−−−−−−−−(9
)このときの抜出量分配比ηはη=μ/Dとなるように
設定するが、細胞密度計10により測定された細胞烹度
χの制御目標値χ。かうの偏差に応じて増減させてやる
ことにより偏差を小さくし、制御目標値χ。に近づける
ことができる。F 1= (D-n)Fo ------------------------(9
) At this time, the extraction amount distribution ratio η is set so that η=μ/D, and the control target value χ of the cell heatness χ measured by the cell density meter 10. By increasing or decreasing the deviation in accordance with the deviation, the deviation is made smaller and the control target value χ is increased. can be approached.
本発明によれば、抜出量分配比qを変えることにより細
胞当りの培地交換率αを一定に保つことができるので、
細胞の状態を増殖期、定常期等の任意の値に保持するこ
とができ、生産性の向上培養の再現性の向上を図ること
ができる。According to the present invention, the medium exchange rate α per cell can be kept constant by changing the extraction volume distribution ratio q.
The state of the cells can be maintained at any value such as the growth phase or the stationary phase, thereby improving productivity and culturing reproducibility.
第1図は本発明の一実施例の培養装置の説明図、第2図
は本発明の他の実施例の培養装置の説明図である。
1−−−−−一培養装置、2−−−−−一細胞分離装置
、3−−−−−−ポンプ、4−−−−−−ポンプ、5−
−−−−−ポンプ、6 −−−−−一上限レベルセンサ
、7−−−−−−下限レベルセンサ、8−−−−−一抜
出ノズル、9−−−−−一制御装置、10−−−−−一
細胞圀FIG. 1 is an explanatory diagram of a culturing apparatus according to one embodiment of the present invention, and FIG. 2 is an explanatory diagram of a culturing apparatus according to another embodiment of the present invention. 1-----One culture device, 2-----One cell separation device, 3-------Pump, 4-------Pump, 5-
------- Pump, 6 ------- One upper limit level sensor, 7--- Lower limit level sensor, 8--- One extraction nozzle, 9--- One controller, 10---One cell area
Claims (1)
から細胞を含まない培地を抜出す手段(A)と細胞と培
地の混合液を抜出す手段(B)とを備え、該手段(A)
(B)の両抜出し比率を変えて培養装置内の細胞密度を
制御することを特徴とする細胞培養方法。 2、前記細胞を含まない培地を抜出す手段が、重力沈降
、又は遠心分離、又はろ過のうち所望の方法であること
を特徴とする請求項第1記載の細胞培養方法。 3、前記細胞を含まない培地を抜出す手段が、疎水性ろ
過膜であることを特徴とする請求項第1記載の細胞培養
方法。 4、前記細胞が動物細胞、又は植物細胞、又は微生物の
いずれかであることを特徴とする請求項第1、又は請求
項第2、又は請求項第3記載の細胞培養方法。 5、細胞分離装置を経て細胞を含まない培地を抜出すた
めの抜出口(C)と細胞と培地の混合液を抜出すための
抜出口(D)とを設けた動物細胞、植物細胞、微生物等
を液中培養する細胞培養装置において、 前記抜出口(C)と抜出口(D)の流量比を任意に設定
する手段を設けたことを特徴とする細胞培養装置。 6、前記抜出口(C)と抜出口(D)の流量比の設定手
段は、抜出口(D)を培養槽の液面近くに設け、抜出口
(D)から細胞及び培地の混合液と培養槽気相部のガス
とが交互に抜出され、制御するよう構成したことを特徴
とする請求項第5記載の細胞培養装置。 7、前記出口(C)と抜出口(D)流量比の設定手段は
、流量可変ポンプを使用したことを特徴とする請求項第
5記載の細胞培養装置。 8、前記抜出口(C)と抜出口(D)の流量比の設定手
段は、絞り弁を使用したことを特徴とする請求項第5記
載の細胞培養装置。 9、前記抜出口(C)と抜出口(D)の流量比の設定手
段は、弁による開閉を行ない、抜出口(C)と抜出口(
D)それぞれの開閉時間を制御することを特徴とする請
求項第5記載の細胞培養装置の運転方法。 10、前記抜出口(C)と抜出口(D)の流量比の設定
手段は、培養槽内の細胞密度を測定し、測定された細胞
密度と制御目標細胞密度との偏差を用いて前記流量比を
制御することを特徴とする請求項第5記載の細胞培養装
置の運転方法。 11、前記細胞密度の検出手段は透過光、散乱光等を測
定する濁度計であることを特徴とする請求項第10記載
の細胞培養装置の運転方法。 12、前記細胞密度の検出手段はテレビカメラによる細
胞像を画像処理する装置であることを特徴とする請求項
第10記載の細胞培養装置の運転方法。 13、前記全抜出量の内、培養槽から直接抜出される細
胞と培地の混合液の流量の占める割合とを次式によって
決定することを特徴とする請求項第1、又は請求項第2
、又は請求項第3、又は訓求項第4、又は請求項第10
記載の細胞培養方法。 η=μ/D ただし η=F_2/(F_1+F_2) D=(F_1+F_2)/V ここで η:抜出流量分配比 μ:細胞増殖率(h^−^1) D:交換率(h^−^1) F_1:細胞分離装置を経由した培地のみの抜出流量(
l/h) F_2:培養装置内からの細胞及び培地混合液の直接抜
出速度(l/h) V:培養装置容量(l)[Scope of Claims] 1. A cell culture method in which cells are cultured in liquid, comprising means (A) for extracting a medium containing no cells from a culture tank and means (B) for extracting a mixed solution of cells and medium. provision, said means (A)
A cell culture method characterized by controlling the cell density within the culture device by changing the extraction ratio of (B). 2. The cell culture method according to claim 1, wherein the means for extracting the cell-free medium is a desired method among gravity sedimentation, centrifugation, or filtration. 3. The cell culture method according to claim 1, wherein the means for extracting the cell-free medium is a hydrophobic filtration membrane. 4. The cell culture method according to claim 1, claim 2, or claim 3, wherein the cells are animal cells, plant cells, or microorganisms. 5. Animal cells, plant cells, and microorganisms provided with an extraction port (C) for extracting a medium without cells through a cell separation device and an extraction port (D) for extracting a mixed solution of cells and culture medium. 1. A cell culture device for submerged culture of a cell, etc., characterized in that the cell culture device is provided with means for arbitrarily setting a flow rate ratio between the extraction port (C) and the extraction port (D). 6. The means for setting the flow rate ratio between the extraction port (C) and the extraction port (D) is such that the extraction port (D) is provided near the liquid surface of the culture tank, and the mixture of cells and culture medium is supplied from the extraction port (D). 6. The cell culture device according to claim 5, wherein the cell culture device is configured such that the gas in the gas phase portion of the culture tank is alternately extracted and controlled. 7. The cell culture apparatus according to claim 5, wherein the means for setting the flow rate ratio between the outlet (C) and the outlet (D) uses a variable flow rate pump. 8. The cell culture device according to claim 5, wherein the means for setting the flow rate ratio between the extraction port (C) and the extraction port (D) uses a throttle valve. 9. The means for setting the flow rate ratio between the outlet (C) and the outlet (D) is configured by opening and closing a valve.
6. The method of operating a cell culture apparatus according to claim 5, comprising: D) controlling respective opening and closing times. 10. The means for setting the flow rate ratio of the extraction port (C) and the extraction port (D) measures the cell density in the culture tank, and adjusts the flow rate using the deviation between the measured cell density and the control target cell density. 6. The method of operating a cell culture apparatus according to claim 5, wherein the ratio is controlled. 11. The method of operating a cell culture apparatus according to claim 10, wherein the cell density detection means is a turbidity meter that measures transmitted light, scattered light, etc. 12. The method of operating a cell culture apparatus according to claim 10, wherein the cell density detection means is a device that processes a cell image obtained by a television camera. 13. Claim 1 or Claim 2, characterized in that the proportion of the flow rate of the mixture of cells and culture medium directly extracted from the culture tank in the total extraction amount is determined by the following formula:
, or claim 3, or instructional claim 4, or claim 10
Cell culture method described. η=μ/D However, η=F_2/(F_1+F_2) D=(F_1+F_2)/V Here, η: Extraction flow rate distribution ratio μ: Cell proliferation rate (h^-^1) D: Exchange rate (h^-^ 1) F_1: Extraction flow rate of only the medium via the cell separation device (
(l/h) F_2: Direct removal rate of cells and medium mixture from the culture device (l/h) V: Culture device capacity (l)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2242352A JPH0813268B2 (en) | 1990-09-14 | 1990-09-14 | Cell culture method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2242352A JPH0813268B2 (en) | 1990-09-14 | 1990-09-14 | Cell culture method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04126072A true JPH04126072A (en) | 1992-04-27 |
JPH0813268B2 JPH0813268B2 (en) | 1996-02-14 |
Family
ID=17087918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2242352A Expired - Lifetime JPH0813268B2 (en) | 1990-09-14 | 1990-09-14 | Cell culture method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0813268B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100432828B1 (en) * | 2001-03-19 | 2004-05-24 | 라파즈 한라 시멘트 주식회사 | Biological CO2 fixation method using semi-continuous and series operation |
JP2021078443A (en) * | 2019-11-20 | 2021-05-27 | 株式会社Ihi | Microorganism manufacturing apparatus |
-
1990
- 1990-09-14 JP JP2242352A patent/JPH0813268B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100432828B1 (en) * | 2001-03-19 | 2004-05-24 | 라파즈 한라 시멘트 주식회사 | Biological CO2 fixation method using semi-continuous and series operation |
JP2021078443A (en) * | 2019-11-20 | 2021-05-27 | 株式会社Ihi | Microorganism manufacturing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0813268B2 (en) | 1996-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4426450A (en) | Fermentation process and apparatus | |
JP3328287B2 (en) | Particle sedimentation tank used for cell culture | |
US5426024A (en) | Fermentation method and fermentor | |
EP0260627B1 (en) | Pressure incubator | |
US5660977A (en) | Fermentation method and fermentor | |
CN106916726A (en) | A kind of fermentation process coupled with separation system for continuously fermenting on a large scale | |
JPH04126072A (en) | Cell culture and apparatus therefor | |
CN114011588A (en) | Multi-process flotation liquid level automatic control practical training device | |
CN203159629U (en) | Stoving neutralization auxiliary reaction tower | |
CN219848267U (en) | Liquid-liquid phase separator | |
TWM648899U (en) | Exosome manufacturing system | |
US20210214660A1 (en) | A System and Method for Growing and Extracting Algae | |
CN209878100U (en) | Feeding and discharging control system of bioreactor | |
CN116643514A (en) | Operation control method of power plant pretreatment system based on water balance | |
CN217628437U (en) | A balanced control system for filtered juice subsides clarification fast | |
KR100420928B1 (en) | Anti-fouling photobioreactor | |
CN102199538A (en) | Non-stirred bioreactor | |
Davis et al. | Competitive yeast fermentation with selective flocculation and recycle | |
Stephanopoulos et al. | A novel bioreactor‐cell precipitator combination for high‐cell density, high‐flow fermentations | |
CN210252707U (en) | Multi-process flotation liquid level automatic control practical training device | |
CN209702747U (en) | A kind of fermentor | |
CN208378874U (en) | Circulation defoaming system | |
JPS60259179A (en) | Cell culture tank and cell culture method | |
EP0092771A2 (en) | Process and apparatus for culture of microorganisms using oxygen-enriched gas | |
CN206543476U (en) | Cleaning system and apply its liquid microbial process units |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080214 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090214 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090214 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100214 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100214 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110214 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110214 Year of fee payment: 15 |