JPH0412589B2 - - Google Patents

Info

Publication number
JPH0412589B2
JPH0412589B2 JP60046479A JP4647985A JPH0412589B2 JP H0412589 B2 JPH0412589 B2 JP H0412589B2 JP 60046479 A JP60046479 A JP 60046479A JP 4647985 A JP4647985 A JP 4647985A JP H0412589 B2 JPH0412589 B2 JP H0412589B2
Authority
JP
Japan
Prior art keywords
electrode active
active material
positive electrode
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60046479A
Other languages
Japanese (ja)
Other versions
JPS61206169A (en
Inventor
Shigeto Okada
Yoji Sakurai
Toshiro Hirai
Hideaki Ootsuka
Junichi Yamaki
Takeshi Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60046479A priority Critical patent/JPS61206169A/en
Publication of JPS61206169A publication Critical patent/JPS61206169A/en
Publication of JPH0412589B2 publication Critical patent/JPH0412589B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、小型にして充放電容量の大きなリチ
ウム二次電池、詳細にはリチウムあるいはリチウ
ム合金を負極活物質とし、Cu2V2O7に添加物を加
え、溶融後急冷して得られる物質を正極活物質と
して用いた充放電が可能なリチウム二次電池に関
する。 〔従来の技術〕 従来から、リチウムを負極活物質として用いる
高エネルギー密度電池に関する提案は多くなされ
ている。例えば、正極活物質として黒鉛及びフツ
素のインターカレーシヨン化合物、負極活物質と
してリチウム金属をそれぞれ使用した電池が知ら
れている(例えば、米国特許第3514337号明細書
参照)。更にまた、フツ化黒鉛を正極活物質に用
いたリチウム電池や、二酸化マンガンを正極活物
質として用いたリチウム電池が既に市販されてい
る。しかし、これらの電池は一次電池であり、充
電できない欠点があつた。 リチウムを負極活物質として用いる二次電池に
ついては、正極活物質としてチタン、ジルコニウ
ム、ハフニウム、ニオビウム、タンタル、バナジ
ウムの硫化物、セレン化合物、テルル化合物を用
いた電池(例えば、米国特許第4009052号明細書
参照)、あるいは酸化クロム、セレン化ニオビウ
ム、銅バナデート等を用いた電池〔ジヤーナル
オブ ジ エレクトロケミカル ソサイエテイ
(J.Electrochem.Soc.)第124巻(7)第968頁及び第
325頁(1977)、特願昭55−25217号)等が提案さ
れているが、これらの電池はその電池特性及び経
済性が必ずしも十分であるとはいえなかつた。 〔発明が解決しようとする問題点〕 また、非晶質物質を正極活物質に用いたリチウ
ム電池については、MoS2、MoS3、V2S5の場合
〔ジヤーナル オブ エレクトロアナリチカル
ケミストリー(J.Electroanal.Chem.)第118巻第
229頁(1981)〕やLiV3O3の場合〔ジヤーナル
オブ ノン−クリスタリン ソリツズ(J.Non−
Crystalline Solids)第44巻第297頁(1981)等が
提案されている。しかし、大電流密度での放電や
充放電特性の点で問題があつた。 本発明の目的は、上記現状を改良して、小型で
充放電容量が大きく、優れた特性をもつリチウム
二次電池を提供することにある。 〔問題点を解決するための手段〕 本発明を概説すれば、本発明はリチウム二次電
池に関する発明であつて、Cu2V2O7に、添加物と
してP2O5、TeO2、GeO2、Sb2O3、BiO3及び
B2O3よりなる群から選択した少なくとも1種の
酸化物を加え、溶融後急冷することにより得られ
る非晶質物質を正極活物質とし、リチウム又はリ
チウム合金を負極活物質とし、前記正極活物質及
び前記負極活物質に対して化学的に安定であり、
かつリチウムイオンが前記正極活物質あるいは前
記負極活物質と電気化学反応をするための移動を
行いうる物質を電解質物質としたことを特徴とす
る。 本発明を更に詳しく説明すると、本発明による
リチウム二次電池に用いられる正極活物質は、前
述したCu2V2O7とP2O3、TeO2、GeO2、Sb2O3
Bi2O3、B2O3のうちの少なくとも1種の酸化物と
の溶融急冷により得られる非晶質物質である。 該酸化物の使用量は、Cu2V2O7に対して50モル
%以下が好ましく、特に10〜25モル%が好適であ
る。 この正極活物質を用いて正極を形成するには、
この非晶質物質粉末又はこれとポリテトラフルオ
ロエチレンのごとき結合剤粉末との混合物をニツ
ケル、ステンレス等の支持体上に膜状に圧着成形
する。 あるいは、かかる非晶質物質粉末に導電性を付
与するためアセチレンブラツクのような導電体粉
末を混合し、これに更にポリテトラフルオロエチ
レンのような結合剤粉末を所要に応じて加え、こ
の混合物を金属容器に入れ、あるいは前述の混合
物をニツケルやステンレス等の支持体上に圧着成
形する等の手段によつて形成することができる。 負極活物質であるリチウム若しくはリチウム合
金は、一般のリチウム電池の場合と同様に、シー
ト状に展延し、又はそのシートをニツケルやステ
ンレス等の導電体網に圧着して負極として形成す
ることができる。 更に、電解質としては、プロピレンカーボネー
ト、2−メチルテトラヒドロフラン、ジオキソラ
ン、テトラヒドロフラン、1,2−ジメトキシエ
タン、エチレンカーボネート、γ−ブチロラクト
ン、ジメチルスルホキシド、アセトニトリル、ホ
ルムアミド、ジメチルホルムアミド、ニトロメタ
ン等の一種以上の非プロトン性有機溶媒と
LiClO4、LiAlCl4、LiBF4、LiCl、LiPF6若しく
はLiAsF8等のリチウム塩との組合せ又はLi+を伝
導体とする固体電解質あるいは溶融塩など、一般
にリチウムを負極活物質として用いた電池で使用
される既知の電解質を用いることができる。 また、電池構成上、必要に応じて微孔性セパレ
ータを用いるときなどは、多孔質ポリプロピレン
等より成る薄膜を使用してもよい。 前述したような正極活物質が優れた充放電特性
を有する理由は必ずしも明確ではないが、その1
つの理由は、本発明における正極活物質がほぼ完
全に非晶質であることにある。 すなわち、Cu2V2O7と共に溶融、冷却された
P2O5等のネツトワークフオーマーによつて、ラ
ンダムなネツトワークが形成され、反応性の高い
多くの不対ダングリングボンドを供給している。
このボンドは格子系の結晶構築に直接寄与してい
ないボンドのため、充放電に伴うダングリングボ
ンドの消費が格子破壊や元素析出を伴わないと考
えられ、このことが従来の結晶性正極材料より深
くて良好な充放電特性をもたらす原因と推定され
る。 前記のごとき金属酸化物非晶質材料を製造する
方法は基本的に限定されるものではない。しか
し、簡便な水中急冷法よりも、急冷速度に優れた
ロール急冷法の方が、より少量のP2O5等のネツ
トワークフオーマーで非晶質化でき、Cu2V2O7
正極活物質の充てん量をかせぐ上で有利である。
例えば、双ロール急冷法の場合第1図に示すよう
な装置を用いて非晶質材料を作製する。すなわ
ち、第1図は金属酸化物非晶質化のための双ロー
ル急冷装置の断面概略図である。Cu2V2O7
P2O5、TeO2、GeO2、Sb2O3、Bi2O3、B2O3のう
ち少なくとも1種を所定量混合したものを、先端
小孔径0.3mmφの石英ノズル1に入れ、炭化ケイ
素ヒーター2により700℃に加熱溶融する。母材
の完全溶融を確認の後、エアピストン3によつて
ノズル孔をロール対接触部に近付け、同時にノズ
ル内圧をアルゴンガス4により150Kg/cm3まで急
速加圧することによつて、ノズル孔より溶融体5
を2000〜4000rpmで高速回転するロール対6間に
噴出させ、超急冷固化した薄帯状非晶質物質7を
作製する。なお、ネツトワークフオーマーは、
P2O5、TeO2、GeO2、Sb2O3、Bi2O3、B2O3のう
ちのいずれを用いてもその非晶質化度及び電池特
性に有意差はなかつた。 〔実施例〕 以下に図面を参照して、本発明を実施例により
詳細に説明する。なお本発明は以下の実施例にの
み限定されるものではない。以下の実施例におい
て電池の作成及び測定は全てアルゴン雰囲気中で
行つた。 実施例 1 前記正極活物質としての非晶質物質は、
Cu2V2O7に所定量のP2O3を混合し、約700℃で溶
融の後、ロール急冷して作製した。1例として、
90モル%Cu2V2O7−10モル%P2O5からなる非晶
質物質のX線回折図形を第2図に示す。すなわち
第2図はX線回折結果をプラツグ角2θ(度、横軸)
と反射強度(Cps、縦軸)との関係で示したグラ
フである。第2図からわかるように、CuKα線で
2θが約32度付近に非常にブロードな山を持つX線
的に無定形なパターンを示しており、非晶質化し
ていることがわかる。他の混合比の場合にも、第
2図と同様な結果が得られた。 第3図は、本発明による電池の一具体例である
コイン型電池の構成を示す断面図であり、図中、
31はステンレス製封口板、32はポリプロピレ
ン製ガスケツト、33はステンレス製正極ケー
ス、34はリチウム負極、35はポリプロピレン
製微孔性セパレータ、36は正極合剤ペレツトを
示す。 まず、封口板1上に金属リチウム負極4を加圧
載置したものをガスケツト2の凹部に挿入し、金
属リチウム負極4の上にセパレータ5、正極合剤
ペレツト6をこの順序に載置し、電解液としての
1N LiClO4/プロピレンカーボネート(PC)+
1,2−ジメトキシエタン(DME)〔1:1容量
比〕(プロピレンカーボネートと1,2−ジメト
キシエタンの等容積溶媒)又は、1.5N LiAsF6
2−メチルテトラヒドロフラン(2MeTHF)を
適量注入して含浸させた後に、正極ケース3をか
ぶせてかしめることにより、直径23mm、厚さ2mm
のコイン型電池を作製した。 正極活物質は、Cu2V2O7とP2O5とをP2O5のモ
ル%が0〜50の範囲になるように混合し、上述し
た方法に従つて作製した。 作製した正極活物質は、混合粉砕機を用いて約
70分間にわたつて粉砕したのち、ケツチエンブラ
ツクEC及びテトラフルオロエチレンと重量比で
70:25:5の割合で秤取混合した。この混合粉体
をロールを用いて厚さ0.5mmのシート状に展延し、
直径20mmの正極合剤ペレツト6を作製した。 以上のようにして作製したリチウム二次電池
(電解液として1N LiClO4/PC−DMEを使用し
た)に対して1mAで定電流放電した結果の放電
特性(2V終止)を第1表に示す。
[Industrial Application Field] The present invention is a lithium secondary battery that is small in size and has a large charge/discharge capacity. Specifically, lithium or a lithium alloy is used as a negative electrode active material, additives are added to Cu 2 V 2 O 7 , and the battery is melted. The present invention relates to a lithium secondary battery that can be charged and discharged using a material obtained by post-quenching as a positive electrode active material. [Prior Art] Many proposals regarding high energy density batteries using lithium as a negative electrode active material have been made. For example, a battery is known in which an intercalation compound of graphite and fluorine is used as a positive electrode active material, and lithium metal is used as a negative electrode active material (for example, see US Pat. No. 3,514,337). Furthermore, lithium batteries using graphite fluoride as a positive electrode active material and lithium batteries using manganese dioxide as a positive electrode active material are already commercially available. However, these batteries were primary batteries and had the disadvantage that they could not be recharged. Regarding secondary batteries using lithium as a negative electrode active material, batteries using titanium, zirconium, hafnium, niobium, tantalum, vanadium sulfides, selenium compounds, and tellurium compounds as positive electrode active materials (for example, US Pat. No. 4,009,052) ) or batteries using chromium oxide, niobium selenide, copper vanadate, etc.
of the Electrochemical Society (J.Electrochem.Soc.) Vol. 124 (7) No. 968 and No.
325 (1977), Japanese Patent Application No. 55-25217), etc., but these batteries could not necessarily be said to have sufficient battery characteristics and economical efficiency. [Problems to be solved by the invention] In addition, regarding lithium batteries using amorphous materials as positive electrode active materials, in the case of MoS 2 , MoS 3 , and V 2 S 5 [Journal of Electroanalytical
Chemistry (J.Electroanal.Chem.) Volume 118 No.
229 (1981)] and LiV 3 O 3 [Journal
Of Non-Crystalline Solites (J.Non-
Crystalline Solids, Vol. 44, p. 297 (1981), etc. have been proposed. However, there were problems with discharge at high current density and charge/discharge characteristics. An object of the present invention is to improve the above-mentioned current situation and provide a lithium secondary battery that is small in size, has a large charge/discharge capacity, and has excellent characteristics. [Means for Solving the Problems] To summarize the present invention, the present invention relates to a lithium secondary battery, in which P 2 O 5 , TeO 2 , GeO 2 are added to Cu 2 V 2 O 7 as additives. 2 , Sb 2 O 3 , BiO 3 and
An amorphous material obtained by adding at least one oxide selected from the group consisting of B 2 O 3 , melting and rapid cooling is used as a positive electrode active material, lithium or a lithium alloy is used as a negative electrode active material, and the positive electrode active material is chemically stable with respect to the substance and the negative electrode active material;
In addition, the electrolyte material is characterized in that a substance capable of allowing lithium ions to move for an electrochemical reaction with the positive electrode active material or the negative electrode active material is used as the electrolyte material. To explain the present invention in more detail, the positive electrode active material used in the lithium secondary battery according to the present invention includes the aforementioned Cu 2 V 2 O 7 and P 2 O 3 , TeO 2 , GeO 2 , Sb 2 O 3 ,
It is an amorphous material obtained by melting and rapidly cooling with at least one oxide of Bi 2 O 3 and B 2 O 3 . The amount of the oxide used is preferably 50 mol % or less, particularly preferably 10 to 25 mol %, based on Cu 2 V 2 O 7 . To form a positive electrode using this positive electrode active material,
This amorphous material powder or a mixture of the amorphous material powder and a binder powder such as polytetrafluoroethylene is pressure-molded into a film on a support such as nickel or stainless steel. Alternatively, a conductive powder such as acetylene black may be mixed with the amorphous substance powder to impart conductivity, and a binder powder such as polytetrafluoroethylene may be added thereto as required. It can be formed by placing it in a metal container or by pressure-molding the above-mentioned mixture on a support such as nickel or stainless steel. Lithium or lithium alloy, which is the negative electrode active material, can be formed into a negative electrode by spreading it into a sheet or by pressing the sheet onto a conductor network such as nickel or stainless steel, as in the case of general lithium batteries. can. Further, as the electrolyte, one or more aprotons such as propylene carbonate, 2-methyltetrahydrofuran, dioxolane, tetrahydrofuran, 1,2-dimethoxyethane, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide, nitromethane, etc. organic solvent and
Combinations with lithium salts such as LiClO 4 , LiAlCl 4 , LiBF 4 , LiCl, LiPF 6 or LiAsF 8 or solid electrolytes or molten salts with Li + as the conductor, generally used in batteries using lithium as the negative electrode active material. Any known electrolyte can be used. Further, when a microporous separator is used as necessary in the battery configuration, a thin film made of porous polypropylene or the like may be used. The reason why the positive electrode active material has excellent charge and discharge characteristics as described above is not necessarily clear, but one reason is
One reason is that the positive electrode active material in the present invention is almost completely amorphous. That is, melted and cooled with Cu 2 V 2 O 7
Random networks are formed by network formers such as P 2 O 5 and supply many unpaired dangling bonds with high reactivity.
Since this bond does not directly contribute to the structure of the crystalline lattice system, it is thought that the consumption of dangling bonds during charging and discharging does not involve lattice destruction or element precipitation, which makes it better than conventional crystalline cathode materials. This is presumed to be the cause of deep and good charge/discharge characteristics. The method for producing the metal oxide amorphous material as described above is basically not limited. However, the roll quenching method, which has a better quenching speed than the simple underwater quenching method, can make the Cu 2 V 2 O 7 cathode amorphous with a smaller amount of network formers such as P 2 O 5 . This is advantageous in increasing the amount of active material filled.
For example, in the case of the twin roll quenching method, an amorphous material is produced using an apparatus as shown in FIG. That is, FIG. 1 is a schematic cross-sectional view of a twin-roll quenching apparatus for amorphizing metal oxides. Cu 2 V 2 O 7
A mixture of a predetermined amount of at least one of P 2 O 5 , TeO 2 , GeO 2 , Sb 2 O 3 , Bi 2 O 3 , and B 2 O 3 is put into a quartz nozzle 1 with a small hole diameter of 0.3 mmφ at the tip; Heat and melt at 700°C using silicon carbide heater 2. After confirming that the base material is completely melted, the nozzle hole is moved closer to the contact area between the rolls using the air piston 3, and at the same time, the internal pressure of the nozzle is rapidly increased to 150 kg/cm 3 using argon gas 4. Melt 5
is ejected between a pair of rolls 6 rotating at a high speed of 2,000 to 4,000 rpm to produce a thin strip-shaped amorphous material 7 that is ultra-quenched and solidified. In addition, the network former is
No matter which of P 2 O 5 , TeO 2 , GeO 2 , Sb 2 O 3 , Bi 2 O 3 , and B 2 O 3 was used, there was no significant difference in the degree of amorphism and battery characteristics. [Examples] The present invention will be explained in detail by examples below with reference to the drawings. Note that the present invention is not limited only to the following examples. In the following examples, all battery preparations and measurements were performed in an argon atmosphere. Example 1 The amorphous material as the positive electrode active material is
A predetermined amount of P 2 O 3 was mixed with Cu 2 V 2 O 7 , melted at about 700°C, and then rapidly cooled with a roll. As an example,
FIG. 2 shows the X-ray diffraction pattern of an amorphous material consisting of 90 mol % Cu 2 V 2 O 7 -10 mol % P 2 O 5 . In other words, Figure 2 shows the X-ray diffraction results at the Plagg angle 2θ (degrees, horizontal axis).
This is a graph showing the relationship between Cps and reflection intensity (Cps, vertical axis). As can be seen from Figure 2, CuKα radiation
It shows an amorphous pattern in X-rays with a very broad peak around 2θ of about 32 degrees, indicating that it has become amorphous. Results similar to those shown in FIG. 2 were obtained with other mixing ratios. FIG. 3 is a sectional view showing the structure of a coin-type battery, which is a specific example of the battery according to the present invention, and in the figure,
31 is a stainless steel sealing plate, 32 is a polypropylene gasket, 33 is a stainless steel positive electrode case, 34 is a lithium negative electrode, 35 is a polypropylene microporous separator, and 36 is a positive electrode mixture pellet. First, a metal lithium negative electrode 4 placed under pressure on a sealing plate 1 is inserted into the recess of the gasket 2, and a separator 5 and a positive electrode mixture pellet 6 are placed on the metal lithium negative electrode 4 in this order. as an electrolyte
1N LiClO 4 /propylene carbonate (PC) +
1,2-dimethoxyethane (DME) [1:1 volume ratio] (equal volume solvent of propylene carbonate and 1,2-dimethoxyethane) or 1.5N LiAsF 6 /
After injecting and impregnating an appropriate amount of 2-methyltetrahydrofuran (2MeTHF), the cathode case 3 is covered and caulked, resulting in a diameter of 23 mm and a thickness of 2 mm.
A coin-type battery was fabricated. The positive electrode active material was prepared by mixing Cu 2 V 2 O 7 and P 2 O 5 so that the mole % of P 2 O 5 was in the range of 0 to 50, and according to the method described above. The prepared positive electrode active material was crushed using a mixing pulverizer.
After pulverizing for 70 minutes, it was mixed with Kettchen Black EC and tetrafluoroethylene in a weight ratio.
They were weighed and mixed at a ratio of 70:25:5. This mixed powder was spread into a sheet with a thickness of 0.5 mm using a roll.
A positive electrode mixture pellet 6 having a diameter of 20 mm was prepared. Table 1 shows the discharge characteristics (2V termination) of the lithium secondary battery produced as described above (using 1N LiClO 4 /PC-DME as the electrolyte) at a constant current of 1 mA.

【表】 また、1mAの定電流、正極活物質当り
150Ah/Kgの容量で充放電を行つた結果の充放電
特性(サイクル数)を第2表に示す。
[Table] Also, 1mA constant current, per positive electrode active material
Table 2 shows the charge/discharge characteristics (number of cycles) resulting from charging/discharging at a capacity of 150 Ah/Kg.

【表】 第2表のうちから、代表例として、P2O5を10
モル%含有する固溶体を正極活物質としたときの
充放電曲線を第4図に示す。すなわち、第4図は
充放電容量(Ah/Kg、横軸)とセル電圧(V、
縦軸)との関係を示すグラフである。図中の数字
は充放電のサイクル数を示す。ここで、電解液は
1.5N.LiAsF6/2MeTHFを用いた。 この結果からわかるように、P2O5を10〜25モ
ル%含むM2O3−P2O5の溶融・冷却物はCu2V2O7
単独やP2O5を50モル%より多く含む溶融冷却物
に比べて優れた充放電特性を示している。 実施例 2 実施例1(第3図)と同様にして作製したリチ
ウム二次電池を用いて、1mAの定電流で2V−
3.5V間で電圧規制充放電を行つた結果を第4図
と同様な関係で第5図に示す。ここで電解液は
1.5N LiAsF6/2MeTHFを用いた。 初回の放電容量は270Ah/Kgに達し、その後も
50回まで200Ah/Kgの容量を保持した。 実施例 3 実施例1と同様にして作製したリチウム二次電
池を用いて、1mA(0.5mA/cm2)、2mA(1mA/
cm2)、4mA(2mA/cm2)、8mA(4mA/cm2)の定電
流で放電した結果を第6図に示す。すなわち第6
図はLi/Cu2V2O7(個、横軸)とセル電圧(V、
縦軸)との関係を示すグラフである。ここで、電
解液は1.5N LiAsF6/2MeTHFを用いた。 1mA(0.5mA/cm2)放電時の2V終止容量での正
極利用率を100%とした場合、その容量維持率は、
2mA、4mA、8mAでそれぞれ84%、67%、26%
と良好な値を示した。 実施例 4 Cu2V2O7とTeO2、GeO2、Sb2O3、Bi2O3
B2O3のうちの1種の酸化物とを、Cu2V2O7の割
合が90モル%となるように秤取し、実施例1と同
様にして正極活物質を調製した。 この正極活物質を用いて実施例1と同様にして
正極合剤ペレツトを作り、更にコイン型リチウム
二次電池を作製した。この電池を用いて1mA、
160Ah/Kgの条件で充放電試験を行つた結果の放
電特性(サイクル数)を第3表に示した。
[Table] From Table 2, as a representative example, P 2 O 5 is 10
FIG. 4 shows a charge-discharge curve when a solid solution containing mol % is used as a positive electrode active material. In other words, Figure 4 shows the charge/discharge capacity (Ah/Kg, horizontal axis) and cell voltage (V,
It is a graph showing the relationship with the vertical axis). The numbers in the figure indicate the number of charge/discharge cycles. Here, the electrolyte is
1.5N.LiAsF 6 /2MeTHF was used. As can be seen from this result, the melted and cooled M 2 O 3 −P 2 O 5 containing 10 to 25 mol% of P 2 O 5 is Cu 2 V 2 O 7
It shows superior charge-discharge characteristics compared to P 2 O 5 alone or a molten cooled product containing more than 50 mol % of P 2 O 5 . Example 2 Using a lithium secondary battery produced in the same manner as in Example 1 (Figure 3), a 2V-
Figure 5 shows the results of voltage-regulated charging and discharging between 3.5V and the same relationship as Figure 4. Here the electrolyte is
1.5N LiAsF 6 /2MeTHF was used. The initial discharge capacity reached 270Ah/Kg and continued
It maintained a capacity of 200Ah/Kg up to 50 times. Example 3 Using a lithium secondary battery produced in the same manner as in Example 1, 1 mA (0.5 mA/cm 2 ) and 2 mA (1 mA/cm 2 ) were used.
Figure 6 shows the results of discharging at constant currents of 4 mA (2 mA/cm 2 ), 8 mA (4 mA/cm 2 ) , and 8 mA (4 mA/cm 2 ). That is, the sixth
The figure shows Li/Cu 2 V 2 O 7 (units, horizontal axis) and cell voltage (V,
It is a graph showing the relationship with the vertical axis). Here, 1.5N LiAsF 6 /2MeTHF was used as the electrolyte. If the positive electrode utilization rate at 2V final capacity during 1mA (0.5mA/cm 2 ) discharge is 100%, the capacity retention rate is:
84%, 67%, 26% at 2mA, 4mA, 8mA respectively
showed a good value. Example 4 Cu 2 V 2 O 7 and TeO 2 , GeO 2 , Sb 2 O 3 , Bi 2 O 3 ,
An oxide of one type of B 2 O 3 was weighed out so that the proportion of Cu 2 V 2 O 7 was 90 mol %, and a positive electrode active material was prepared in the same manner as in Example 1. Using this positive electrode active material, a positive electrode mixture pellet was prepared in the same manner as in Example 1, and a coin-type lithium secondary battery was further manufactured. 1mA using this battery,
Table 3 shows the discharge characteristics (number of cycles) obtained by conducting a charge/discharge test under the condition of 160 Ah/Kg.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、充放電
容量の大きい小型高エネルギー密度のリチウム二
次電池を構成することができ、かかる本発明電池
はコイン型電池など種々の分野に利用できるとい
う利点を有する。
As explained above, according to the present invention, it is possible to construct a small, high-energy density lithium secondary battery with a large charge/discharge capacity, and the battery of the present invention has the advantage that it can be used in various fields such as coin-type batteries. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属酸化物非晶質化のための双ロール
急冷装置の断面概略図、第2図は本発明における
正極活物質のX線回折結果をプラツグ角と反射強
度との関係で示したグラフ、第3図は本発明の1
実施例であるコイン型電池の構成を示す断面図、
第4図〜第6図は本発明の1実施例における電池
の充放電特性を示す特性図である。 1:石英ノズル、2:炭化ケイ素ヒーター、
3:エアピストン、4:アルゴンガス、5:溶融
体、6:ロール対、7:薄帯状非晶質物質、3
1:封口板、32:ガスケツト、33:正極ケー
ス、34:リチウム負極、35:セパレータ、3
6:正極合剤ペレツト。
Figure 1 is a schematic cross-sectional view of a twin-roll quenching device for amorphizing metal oxides, and Figure 2 shows the X-ray diffraction results of the positive electrode active material in the present invention in terms of the relationship between the plug angle and the reflection intensity. The graph, FIG. 3 is one of the present invention.
A cross-sectional view showing the configuration of a coin-type battery as an example,
FIGS. 4 to 6 are characteristic diagrams showing the charging and discharging characteristics of a battery in one embodiment of the present invention. 1: Quartz nozzle, 2: Silicon carbide heater,
3: air piston, 4: argon gas, 5: melt, 6: roll pair, 7: ribbon-shaped amorphous material, 3
1: Sealing plate, 32: Gasket, 33: Positive electrode case, 34: Lithium negative electrode, 35: Separator, 3
6: Positive electrode mixture pellet.

Claims (1)

【特許請求の範囲】[Claims] 1 Cu2V2O7に、添加物としてP2O5、TeO2
GeO2、Sb2O3、Bi2O3及びB2O3よりなる群から選
択した少なくとも1種の酸化物を加え、溶融後急
冷することにより得られる非晶質物質を正極活物
質とし、リチウム又はリチウム合金を負極活物質
とし、前記正極活物質及び前記負極活物質に対し
て化学的に安定であり、かつリチウムイオンが前
記正極活物質あるいは前記負極活物質と電気化学
反応をするための移動を行いうる物質を電解質物
質としたことを特徴とするリチウム二次電池。
1 Cu 2 V 2 O 7 with additives such as P 2 O 5 , TeO 2 ,
An amorphous material obtained by adding at least one oxide selected from the group consisting of GeO 2 , Sb 2 O 3 , Bi 2 O 3 and B 2 O 3 and rapidly cooling after melting is used as a positive electrode active material, Lithium or a lithium alloy is used as a negative electrode active material, which is chemically stable with respect to the positive electrode active material and the negative electrode active material, and for lithium ions to undergo an electrochemical reaction with the positive electrode active material or the negative electrode active material. A lithium secondary battery characterized in that an electrolyte material is a substance capable of movement.
JP60046479A 1985-03-11 1985-03-11 Lithium secondary battery Granted JPS61206169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60046479A JPS61206169A (en) 1985-03-11 1985-03-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60046479A JPS61206169A (en) 1985-03-11 1985-03-11 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS61206169A JPS61206169A (en) 1986-09-12
JPH0412589B2 true JPH0412589B2 (en) 1992-03-05

Family

ID=12748334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60046479A Granted JPS61206169A (en) 1985-03-11 1985-03-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS61206169A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470678A (en) * 1992-08-19 1995-11-28 Hitachi Maxell, Ltd. Lithium cell with a cathode comprising a copper compound oxide

Also Published As

Publication number Publication date
JPS61206169A (en) 1986-09-12

Similar Documents

Publication Publication Date Title
US4675260A (en) Lithium battery including vanadium pentoxide base amorphous cathode active material
KR100237580B1 (en) Non-aqueous electrolyte battery and its production method
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH0729602A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
US20040234858A1 (en) Positive electrode for lithium secondary battery and lithium secondary battery
KR100837579B1 (en) Cathode active material, non-aqueous electrolyte cell and methods for preparation thereof
KR100426095B1 (en) Non-aqueous electrolyte secondary cell
JPH05326016A (en) Nonaqueous electrolytic secondary battery
JPH0536411A (en) Nonaqueous solvent secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH0364989B2 (en)
JP2724350B2 (en) Lithium battery
JPH0541251A (en) Nonaqueous electrolyte secondary battery
US20020197531A1 (en) Negative electrode active material and nonaqueous electrolyte battery
JPH0456428B2 (en)
JPH047070B2 (en)
JPH0424828B2 (en)
JPH0412589B2 (en)
JPH0350385B2 (en)
JPH0467751B2 (en)
JPH0415584B2 (en)
JP2559055B2 (en) Lithium battery
JP4534264B2 (en) Nonaqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP3005688B2 (en) Lithium battery