JPH04125432U - Capacitor type instrument transformer - Google Patents

Capacitor type instrument transformer

Info

Publication number
JPH04125432U
JPH04125432U JP3101091U JP3101091U JPH04125432U JP H04125432 U JPH04125432 U JP H04125432U JP 3101091 U JP3101091 U JP 3101091U JP 3101091 U JP3101091 U JP 3101091U JP H04125432 U JPH04125432 U JP H04125432U
Authority
JP
Japan
Prior art keywords
capacitor
current
voltage dividing
current component
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3101091U
Other languages
Japanese (ja)
Inventor
昭雄 中橋
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to JP3101091U priority Critical patent/JPH04125432U/en
Publication of JPH04125432U publication Critical patent/JPH04125432U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)

Abstract

(57)【要約】 【目的】コンデンサ形計器用変圧器のコンデンサの絶縁
劣化を初期の段階で検出する。 【構成】分圧コンデンサを流れる電流を検出するコンデ
ンサ電流検出器7と負担電流を検出する負担電流検出器
8とを設ける。両検出器の出力を入力として負担電流の
影響を受けない充電電流成分を補正電流成分として演算
する補正電流成分演算手段10を設ける。補正電流成分
とコンデンサ電流検出器7による電流の検出値とを充電
電流成分演算手段に与えて、負担の影響を受けない充電
電流成分を演算する。警報信号発生手段12は、充電電
流成分が設定値を超えたときに警報信号を発生する。
(57) [Summary] [Purpose] To detect insulation deterioration of capacitors in capacitor-type potential transformers at an early stage. [Structure] A capacitor current detector 7 for detecting a current flowing through a voltage dividing capacitor and a burden current detector 8 for detecting a burden current are provided. A correction current component calculation means 10 is provided which receives the outputs of both detectors as input and calculates a charging current component that is not affected by the burden current as a correction current component. The corrected current component and the current detected value by the capacitor current detector 7 are given to charging current component calculating means to calculate a charging current component that is not affected by the load. The alarm signal generating means 12 generates an alarm signal when the charging current component exceeds a set value.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、コンデンサ形計器用変圧器に関するものである。 The present invention relates to a capacitor-type potential transformer.

【0002】0002

【従来の技術】[Conventional technology]

コンデンサ形計器用変圧器は、図3に示したように、主コンデンサ1と該主コ ンデンサに直列に接続された分圧コンデンサ2とからなるコンデンサ結合部と、 分圧コンデンサの両端の電圧を入力とする変圧器3と、変圧器の1次回路に挿入 された共振リアクトル4とを備えている。主コンデンサ1と分圧コンデンサ2の 直列回路の両端に電源5の電圧が印加され、変圧器3の2次側に電圧計等の負担 (インピーダンスZb )5が接続される。 As shown in Figure 3, a capacitor-type voltage transformer has a main capacitor 1 and a main voltage transformer. a capacitor coupling section consisting of a voltage dividing capacitor 2 connected in series to the capacitor; Insert into the transformer 3 that inputs the voltage across the voltage dividing capacitor and the primary circuit of the transformer. A resonant reactor 4 is provided. Main capacitor 1 and voltage dividing capacitor 2 The voltage of the power supply 5 is applied to both ends of the series circuit, and the voltage of a voltmeter etc. is applied to the secondary side of the transformer 3. (Impedance Zb) 5 is connected.

【0003】 コンデンサ形計器用変圧器では、コンデンサ結合部が主絶縁を担っており、コ ンデンサ結合部の絶縁劣化は重大な事故につながる。コンデンサ結合部の絶縁劣 化は、誘電体の劣化によるtanδの増加から始まり、これを放置するとやがて 部分的な絶縁破壊から全面的な絶縁破壊へと進展する。0003 In capacitor-type potential transformers, the capacitor coupling part provides the main insulation; Insulation deterioration at the capacitor joint can lead to serious accidents. Poor insulation of capacitor coupling part The phenomenon begins with an increase in tanδ due to deterioration of the dielectric, and if left untreated, it will eventually Progresses from partial dielectric breakdown to complete dielectric breakdown.

【0004】 tanδが増加すると、充電電流中の有効成分が増加する。また部分的な絶縁 破壊が生じるとコンデンサの直列数が少なくなるため、静電容量が大きくなり、 充電電流の絶対値そのものが増加する。0004 As tanδ increases, the active component in the charging current increases. Also partial insulation When destruction occurs, the number of capacitors connected in series decreases, resulting in an increase in capacitance. The absolute value of the charging current itself increases.

【0005】 従ってコンデンサの充電電流を検出して、それを正常値と比較することにより 、コンデンサ結合部の絶縁劣化を監視することができる。従来は、分圧コンデン サ2を流れる電流I2 を検出する電流検出器(変流器)7を設けて、この電流検 出器7の出力を監視装置9´に入力し、分圧コンデンサ2を流れる電流I2 の検 出値からコンデンサ結合部の絶縁劣化を監視するようにしていた。[0005] Therefore, by detecting the charging current of the capacitor and comparing it with the normal value, , insulation deterioration of the capacitor coupling part can be monitored. Traditionally, partial pressure capacitors A current detector (current transformer) 7 is provided to detect the current I2 flowing through the transformer 2. The output of the output device 7 is input to the monitoring device 9', and the current I2 flowing through the voltage dividing capacitor 2 is detected. The insulation deterioration of the capacitor coupling part was monitored based on the output value.

【0006】[0006]

【考案が解決しようとする課題】 図3において、主コンデンサ1及び分圧コンデンサ2の静電容量をそれぞれC 1 及びC2 、共振リアクトル4のインダクタンスをL、電源電圧をE(ベクトル 量)、分圧コンデンサ2を流れる電流をI2 (ベクトル量)、1次側に換算した 負担6のインピーダンスをZb ´(ベクトル量)、電源の角周波数をωとすると 、分圧コンデンサ2を流れる電流I2 は、次の(1)式により与えられる。[Problem that the idea aims to solve] In Figure 3, the capacitance of main capacitor 1 and voltage dividing capacitor 2 is C 1 and C2, the inductance of the resonant reactor 4 is L, and the power supply voltage is E (vector Quantity), the current flowing through voltage dividing capacitor 2 is converted to I2 (vector quantity), the primary side. If the impedance of burden 6 is Zb ′ (vector quantity) and the angular frequency of the power source is ω, then , the current I2 flowing through the voltage dividing capacitor 2 is given by the following equation (1).

【0007】 I2 =Ic −Io …(1) ここでIc は負担の影響を受けずにコンデンサの静電容量のみにより決まる電流 成分で、次の(2)式により与えられる。[0007] I2 = Ic - Io...(1) Here, Ic is the current determined only by the capacitance of the capacitor without being affected by the load. component, which is given by the following equation (2).

【0008】 Ic =jω{C1 ・C2 /(C1 +C2)}E …(2) またIo は負担6のインピーダンスZb により変化する電流成分で、次の(3) 式により決まる。[0008] Ic = jω{C1 ・C2 /(C1 +C2)}E …(2) In addition, Io is a current component that changes depending on the impedance Zb of burden 6, and the following (3) Determined by the formula.

【0009】 Io ={ωC1 ・C2 /(C1 +C2)}E(ωL/Zb ) …(3) このように、分圧コンデンサ2を流れる電流は、負担の影響を受ける成分を含 むため、この電流を監視しても、その変化がコンデンサの絶縁劣化によるものか 、負担のインピーダンス変化によるものか判断することができず、コンデンサ結 合部の絶縁劣化を的確に監視することができなかった。[0009] Io = {ωC1 ・C2 / (C1 + C2)}E (ωL / Zb) ... (3) In this way, the current flowing through the voltage dividing capacitor 2 includes a component that is affected by the load. Therefore, even if this current is monitored, it is difficult to determine whether the change is due to deterioration of the capacitor insulation. , it is not possible to determine whether this is due to a change in the impedance of the load, and the capacitor connection It was not possible to accurately monitor insulation deterioration at joints.

【0010】 本考案の目的は、コンデンサ結合部の絶縁劣化を的確に監視することができる ようにしたコンデンサ形計器用変圧器を提供することにある。0010 The purpose of this invention is to accurately monitor insulation deterioration of capacitor coupling parts. An object of the present invention is to provide a capacitor type potential transformer.

【0011】[0011]

【課題を解決するための手段】[Means to solve the problem]

本考案は、主コンデンサと、該主コンデンサに直列に接続された分圧コンデン サと、分圧コンデンサの両端の電圧を入力とする変圧器と、変圧器の1次回路に 挿入された共振リアクトルと、分圧コンデンサを流れる電流からコンデンサの絶 縁劣化を監視する監視装置とを備えたコンデンサ形計器用変圧器において、コン デンサの絶縁劣化を的確に監視し得るようにしたものである。 The present invention consists of a main capacitor and a voltage dividing capacitor connected in series with the main capacitor. A transformer whose input is the voltage across the voltage dividing capacitor, and a primary circuit of the transformer. The capacitor is isolated from the inserted resonant reactor and the current flowing through the voltage dividing capacitor. In capacitor-type potential transformers equipped with a monitoring device for monitoring edge deterioration, This allows the insulation deterioration of the capacitor to be accurately monitored.

【0012】 そのため本考案においては、分圧コンデンサを流れる電流を検出するコンデン サ電流検出器と、変圧器の2次側に流れる負担電流を検出する負担電流検出器と を設け、監視装置は、コンデンサ電流検出器の出力と負担電流検出器の出力と回 路定数とから負担電流の影響を受けて分圧コンデンサを流れている電流成分を補 正電流成分として演算する補正電流成分演算手段と、コンデンサ電流検出器によ り検出された電流と補正電流成分とから負担電流の影響を受けない充電電流成分 を演算する充電電流成分演算手段と、充電電流成分が設定値を超えたときにコン デンサの劣化を示す警報信号を発生する警報信号発生手段とにより構成する。0012 Therefore, in this invention, a capacitor is used to detect the current flowing through the voltage dividing capacitor. and a burden current detector that detects the burden current flowing to the secondary side of the transformer. The monitoring device connects the output of the capacitor current detector, the output of the burden current detector, and the circuit. Compensate the current component flowing through the voltage dividing capacitor due to the influence of the burden current from the circuit constant. A correction current component calculation means that calculates it as a positive current component and a capacitor current detector are used to calculate the current component. A charging current component that is not affected by the burden current is determined from the detected current and the correction current component. A charging current component calculation means that calculates the charging current component, and a controller that calculates the charging current component when it exceeds the set value and alarm signal generating means for generating an alarm signal indicating deterioration of the capacitor.

【0013】[0013]

【作用】[Effect]

上記のように構成すると、充電電流成分検出手段は、負担の影響を受けない純 粋のコンデンサ充電電流を検出する。警報信号発生手段は、この検出手段により 検出された充電電流を監視して、該充電電流が設定値を超えたときにコンデンサ の劣化を示す警報信号を発生するため、コンデンサ結合部の絶縁劣化を的確に監 視することができる。 With the above configuration, the charging current component detection means is a pure battery that is not affected by the load. Detects the best capacitor charging current. The alarm signal generation means uses this detection means. The detected charging current is monitored and the capacitor is activated when the charging current exceeds the set value. The insulation deterioration of the capacitor coupling part can be accurately monitored to generate an alarm signal indicating the deterioration of the capacitor. can be viewed.

【0014】[0014]

【実施例】【Example】

図1は本考案の実施例を示したもので、同図において1及び2はそれぞれ主コ ンデンサ及び分圧コンデンサ、3は変圧器、4は共振リアクトルである。主コン デンサ1及び分圧コンデンサ2によりコンデンサ結合部が構成され、このコンデ ンサ結合部に電源5の出力電圧E(ベクトル量)が印加されている。また変圧器 3の2次側には負担6が接続されている。 Figure 1 shows an embodiment of the present invention, in which 1 and 2 are the main components, respectively. 3 is a transformer, and 4 is a resonant reactor. Main controller Capacitor 1 and voltage dividing capacitor 2 constitute a capacitor coupling section, and this capacitor The output voltage E (vector quantity) of the power source 5 is applied to the sensor coupling portion. Also a transformer A load 6 is connected to the secondary side of 3.

【0015】 分圧コンデンサ2につながる回路に変流器からなる電流検出器7が取付けられ 、負担6につながる回路に同じく変流器からなる電流検出器8が取付けられてい る。電流検出器7及び8の出力は監視装置9に入力されている。[0015] A current detector 7 consisting of a current transformer is attached to the circuit connected to the voltage dividing capacitor 2. , a current detector 8 also consisting of a current transformer is attached to the circuit connected to the load 6. Ru. The outputs of current detectors 7 and 8 are input to a monitoring device 9.

【0016】 監視装置9は、図2に示したように、補正電流成分演算手段10と、充電電流 成分演算手段11と、警報信号発生手段12とにより構成される。[0016] As shown in FIG. 2, the monitoring device 9 includes a correction current component calculation means 10 and a charging current It is composed of a component calculation means 11 and an alarm signal generation means 12.

【0017】 補正電流成分演算手段10は、コンデンサ電流検出器7の出力と負担電流検出 器8の出力と回路定数とから、負担電流の影響を受けて分圧コンデンサを流れて いる電流成分を補正電流成分Io として演算する。[0017] The correction current component calculation means 10 detects the output of the capacitor current detector 7 and the burden current. From the output of circuit 8 and the circuit constants, it is determined that the voltage flowing through the voltage dividing capacitor is affected by the burden current. The current component is calculated as the corrected current component Io.

【0018】 充電電流成分演算手段11は、コンデンサ電流検出器により検出された電流I 2 と補正電流成分Io とから、負担電流の影響を受けない充電電流成分Ic を演 算する。[0018] The charging current component calculating means 11 calculates the current I detected by the capacitor current detector. 2 and the corrected current component Io, calculate the charging current component Ic that is not affected by the burden current. Calculate.

【0019】 警報信号発生手段12は、充電電流成分Ic が設定値を超えたときにコンデン サの劣化を示す警報信号を発生する。[0019] The alarm signal generating means 12 activates the capacitor when the charging current component Ic exceeds a set value. generates an alarm signal indicating deterioration of the sensor.

【0020】 前記(3)式のIo は次のように表すことができる。[0020] Io in the above formula (3) can be expressed as follows.

【0021】 Io ={ωC1 ・C2 /(C1 +C2)}E(ωL/Zb ´) ={C1 E/(C1 +C2 )}(1/Zb ´)ω2 C2 L =Ib ω2 C2 L …(4) ここでIb は変圧器の1次側で測った負担電流であり、Io ,Ib ,E,Zb ´ はいずれもベクトル量である。変圧器の2次側で電流検出器8により測定した負 担電流をib 、変圧器の巻数比をnとすると、 Ib =(1/n)ib …(5) (5)を(4)式に代入すると、 Io =(ib /n)ω2 C2 L …(6) (6)式において、回路定数ω,C2 ,L及びnは既知であるから、負担電流i b を測定することにより、負担電流の影響を受ける成分Io を演算することがで きる。Io = {ωC1 ・C2 / (C1 + C2)} E (ωL / Zb ′) = {C1 E / (C1 + C2 )} (1 / Zb ′) ω 2 C2 L = Ib ω 2 C2 L … ( 4) Here, Ib is the burden current measured on the primary side of the transformer, and Io, Ib, E, and Zb' are all vector quantities. If the burden current measured by the current detector 8 on the secondary side of the transformer is ib, and the turns ratio of the transformer is n, then Ib = (1/n)ib...(5) Expressing (5) into equation (4) By substituting, Io = (ib /n)ω 2 C2 L (6) In equation (6), since the circuit constants ω, C2, L and n are known, by measuring the burden current i b The component Io affected by the current can be calculated.

【0022】 (1)式より、負担の影響を受ける電流成分Io を補正電流成分として、電流 検出器7により検出した電流I2 (ベクトル量)にこの補正電流成分Io (ベク トル量)を加えることにより、負担電流の影響を受ける成分を除去して、純粋の コンデンサ充電電流成分Ic を演算できることが分かる。[0022] From equation (1), the current component Io affected by the load is taken as the corrected current component, and the current This correction current component Io (vector quantity) is added to the current I2 (vector quantity) detected by the detector 7. By adding a It can be seen that the capacitor charging current component Ic can be calculated.

【0023】 警報信号発生手段12は、予め設定した充電電流成分の絶対値及び有効電流成 分と、演算された充電電流成分Ic の絶対値及び有効電流成分とを比較して、演 算された値が設定値を超えたときに警報信号を出力する。この警報信号でランプ 等の警報発生器を駆動してコンデンサの絶縁が劣化していることを報知する。[0023] The alarm signal generating means 12 generates a preset absolute value of the charging current component and an effective current component. , and the calculated absolute value of the charging current component Ic and the effective current component. Outputs an alarm signal when the calculated value exceeds the set value. Lamp with this alarm signal etc., to notify that the insulation of the capacitor has deteriorated.

【0024】 上記監視装置9の各手段は、マイクロコンピュータにより実現することができ る。[0024] Each means of the monitoring device 9 can be realized by a microcomputer. Ru.

【0025】[0025]

【考案の効果】[Effect of the idea]

以上のように、本考案によれば、負担の影響を受けることなく、コンデンサの 充電電流を監視することができるため、コンデンサの絶縁劣化を初期の段階で検 出することができる利点がある。 As described above, according to the present invention, the capacitor can be used without being affected by the load. Since charging current can be monitored, deterioration of capacitor insulation can be detected at an early stage. There are advantages that can be obtained.

【0026】 コンデンサの絶縁劣化が進展すると、最悪の場合にはコンデンサが爆発する恐 れがあるため、コンデンサの絶縁劣化を放置すると、人命や設備に重大な障害を 与える可能性があるだけでなく、電力の供給に支障を来す重大な事態を招くおそ れがある。従ってコンデンサの絶縁劣化を初期の段階で検出可能とする本考案の 効果は、予測保全の観点から大きな意義を有するものである。[0026] As insulation deterioration of the capacitor progresses, in the worst case, the capacitor may explode. Therefore, if insulation deterioration of capacitors is left untreated, it can cause serious damage to human life and equipment. Not only is there a possibility that the There is. Therefore, this invention makes it possible to detect insulation deterioration of capacitors at an early stage. The effects are of great significance from the perspective of predictive maintenance.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の実施例の全体的な構成を示す構成図で
ある。
FIG. 1 is a configuration diagram showing the overall configuration of an embodiment of the present invention.

【図2】本考案の実施例で用いる監視装置の構成例を示
したブロック図である。
FIG. 2 is a block diagram showing a configuration example of a monitoring device used in an embodiment of the present invention.

【図3】従来のコンデンサ形計器用変圧器の構成を示す
構成図である。
FIG. 3 is a configuration diagram showing the configuration of a conventional capacitor type potential transformer.

【符号の説明】[Explanation of symbols]

1…主コンデンサ、2…分圧コンデンサ、3…変圧器、
4…共振リアクトル、7…コンデンサ電流検出器、8…
負担電流検出器、9…監視装置、10…補正電流成分演
算手段、11…充電電流成分演算手段、12…警報信号
発生手段。
1... Main capacitor, 2... Voltage dividing capacitor, 3... Transformer,
4... Resonant reactor, 7... Capacitor current detector, 8...
Burden current detector, 9... Monitoring device, 10... Correction current component calculating means, 11... Charging current component calculating means, 12... Alarm signal generating means.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 主コンデンサと、該主コンデンサに直列
に接続された分圧コンデンサと、前記分圧コンデンサの
両端の電圧を入力とする変圧器と、前記変圧器の1次回
路に挿入された共振リアクトルと、前記分圧コンデンサ
を流れる電流からコンデンサの絶縁劣化を監視する監視
装置とを備えたコンデンサ形計器用変圧器において、前
記分圧コンデンサを流れる電流を検出するコンデンサ電
流検出器と、前記変圧器の2次側に流れる負担電流を検
出する負担電流検出器とを具備し、前記監視装置は、前
記コンデンサ電流検出器の出力と負担電流検出器の出力
と回路定数とから負担電流の影響を受けて分圧コンデン
サを流れている電流成分を補正電流成分として演算する
補正電流成分演算手段と、前記コンデンサ電流検出器に
より検出された電流と前記補正電流成分とから負担電流
の影響を受けない充電電流成分を演算する充電電流成分
演算手段と、前記充電電流成分が設定値を超えたときに
コンデンサの劣化を示す警報信号を発生する警報信号発
生手段とを備えていることを特徴とするコンデンサ形計
器用変圧器。
Claim 1: A main capacitor, a voltage dividing capacitor connected in series with the main capacitor, a transformer receiving the voltage across the voltage dividing capacitor as input, and a voltage dividing capacitor connected in series with the main capacitor, a transformer having a voltage across the voltage dividing capacitor as input, and a voltage dividing capacitor connected in series with the main capacitor, a transformer having a voltage across the voltage dividing capacitor as input, and a voltage dividing capacitor connected in series with the main capacitor. A capacitor-type potential transformer comprising a resonant reactor and a monitoring device for monitoring insulation deterioration of the capacitor based on the current flowing through the voltage dividing capacitor, a capacitor current detector detecting the current flowing through the voltage dividing capacitor; and a burden current detector that detects a burden current flowing in the secondary side of the transformer, and the monitoring device detects the influence of the burden current from the output of the capacitor current detector, the output of the burden current detector, and circuit constants. corrective current component calculation means for calculating a current component flowing through a voltage dividing capacitor as a corrected current component based on the current detected by the capacitor current detector; A capacitor comprising a charging current component calculating means for calculating a charging current component, and an alarm signal generating means for generating an alarm signal indicating deterioration of the capacitor when the charging current component exceeds a set value. type instrument transformer.
JP3101091U 1991-05-07 1991-05-07 Capacitor type instrument transformer Withdrawn JPH04125432U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3101091U JPH04125432U (en) 1991-05-07 1991-05-07 Capacitor type instrument transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3101091U JPH04125432U (en) 1991-05-07 1991-05-07 Capacitor type instrument transformer

Publications (1)

Publication Number Publication Date
JPH04125432U true JPH04125432U (en) 1992-11-16

Family

ID=31914412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3101091U Withdrawn JPH04125432U (en) 1991-05-07 1991-05-07 Capacitor type instrument transformer

Country Status (1)

Country Link
JP (1) JPH04125432U (en)

Similar Documents

Publication Publication Date Title
JP5406614B2 (en) Insulation state detector
CN108646125B (en) Method, device and system for testing capacitance current
JP2004343972A (en) Electric leakage detection device
JPH04125432U (en) Capacitor type instrument transformer
JPS62173913A (en) Source apparatus of circuit breaker
KR101157189B1 (en) Portable Direct Current Ground Detecting Apparatus and Detecting Method using the same
CN108548982B (en) Method, device and system for testing capacitance current
JP3835874B2 (en) Earth leakage detector
CN108303595B (en) Capacitive current testing method, device and system based on pilot frequency phase current
JPH0341992B2 (en)
JPH0241474Y2 (en)
JP3805478B2 (en) Method and apparatus for measuring equivalent series resistance of capacitive element
CN211826227U (en) On-line measuring system for small current grounding capacitance current
JPH0373807A (en) Instrument for measuring displacement
SU978082A1 (en) Device for rapid checking of dc circuit insulation
KR102220329B1 (en) Apparatus for measuring leakage current in low voltage electric power lines and method thereof
JPS5852540Y2 (en) DC high voltage fluctuation detection device
JPS596137Y2 (en) Insulation monitoring device for rotating machine windings
JP2750690B2 (en) Leakage current detection method
JPS63213987A (en) Detector for output voltage of laser oscillator
JPH0431327B2 (en)
JPS5931012B2 (en) AC bridge type displacement detection device that can detect abnormalities
JPH0619406B2 (en) Ground fault detection method
CN111239477A (en) On-line measuring system for small current grounding capacitance current
JPS5836195Y2 (en) Electric circuit insulation resistance monitoring device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19950810