JPH04125090A - Controlling method for power converter of vehicle - Google Patents

Controlling method for power converter of vehicle

Info

Publication number
JPH04125090A
JPH04125090A JP2241208A JP24120890A JPH04125090A JP H04125090 A JPH04125090 A JP H04125090A JP 2241208 A JP2241208 A JP 2241208A JP 24120890 A JP24120890 A JP 24120890A JP H04125090 A JPH04125090 A JP H04125090A
Authority
JP
Japan
Prior art keywords
term
idling
time
rotating speed
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2241208A
Other languages
Japanese (ja)
Inventor
Takuma Henmi
琢磨 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2241208A priority Critical patent/JPH04125090A/en
Publication of JPH04125090A publication Critical patent/JPH04125090A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To prevent deterioration of idling, at the time of idling by compensating the delay of a rotating speed by its differentiation, and connecting an idle control term for operating reverse characteristic to a rotating speed presuming term in series at the time of idling with the rotating speed presuming term. CONSTITUTION:An idle sense control term in which presuming term is output as reverse characteristic is associated at the time of idling, and sum with an IM rotating speed is obtained. A command frequency is obtained by the sum of command slip frequency and filter capacitor voltage differentiating term and a term of detecting the rotating speed. The delay time of detecting the rotating speed of the IM is compensating by differentiating at the time of gliding to presume a rotating speed near the actual speed. The rotating speed at the time of idling becomes faster than that at the time of gliding. However, since a slip command is constant, as the rotating speed increases, a command frequency is increased to accelerate a rotation. Thus, the rotting speed presuming term is operated reversely to the rotating speed to reduce the command frequency at the time of idling to prevent an increase in the idling.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は車両用電力変換装置の制御方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for controlling a power converter for a vehicle.

(従来の技術) 車両は、その車両の動力源である三相かご形誘導電動機
(以下IMと称す)の電源を車両用電力変換装置により
得ている。この車両電力変換装置は、高圧の架線電圧を
負荷であるIMに適した電圧、周波数へ変換し、IMを
コントロールする。
(Prior Art) A vehicle obtains power for a three-phase squirrel cage induction motor (hereinafter referred to as IM), which is a power source of the vehicle, through a vehicle power converter. This vehicle power converter converts high overhead line voltage into a voltage and frequency suitable for the IM, which is the load, and controls the IM.

例として電力変換装置にインバータが用いられる場合に
ついて説明する。第2図はその回路図である。インバー
タ回路4はパンタグラフ1に直流フィルタリアクトル2
を介して接続する。また、直流フィルタコンデンサ3は
インバータ回路4の直流の入力端に並列に接続する。そ
して、インバータ回路の三相交流出力にIMを接続する
As an example, a case where an inverter is used in a power conversion device will be described. FIG. 2 is its circuit diagram. Inverter circuit 4 connects pantograph 1 to DC filter reactor 2
Connect via. Further, the DC filter capacitor 3 is connected in parallel to the DC input terminal of the inverter circuit 4. Then, the IM is connected to the three-phase AC output of the inverter circuit.

三相誘導電動機は第3図のように円筒形の固定子鉄心の
表面周辺に3組のコイルを対称的に配置し、対称三相交
流を流すとフレミングの左手の法則により回転磁界が生
じる。三相交流の相回転がA、B、Cであるとすれば、
空隙部に出来るN。
As shown in Figure 3, a three-phase induction motor has three sets of coils arranged symmetrically around the surface of a cylindrical stator core, and when a symmetrical three-phase alternating current is applied, a rotating magnetic field is generated according to Fleming's left-hand rule. If the phase rotation of three-phase alternating current is A, B, and C, then
N that forms in the void.

Sの磁界は相回転と同じ矢印の方向に回転し、その回転
速度は、 Ns=  12Of−〔rpH〕 2            ・・・・・・■だたし P
:極数 f:周波数 (Hz) Ns二同期速度(rpm) となる。回転子の導体には、この回転磁界による電磁誘
導作用により電流が流れ、この電流と磁界により導体に
電磁力が生じ1回転子軸に対しての回転力となる。回転
子の回転速度は、同期速度より遅いがこの程度を表わす
値にすベリSがある。
The magnetic field of S rotates in the same direction of the arrow as the phase rotation, and its rotation speed is Ns= 12Of-[rpH] 2 ...... ■ P
: Number of poles f: Frequency (Hz) Ns two synchronous speed (rpm). A current flows through the conductor of the rotor due to the electromagnetic induction effect of this rotating magnetic field, and this current and magnetic field generate an electromagnetic force in the conductor, which becomes a rotational force with respect to one rotor axis. The rotational speed of the rotor is slower than the synchronous speed, but there is a value S that represents this degree.

すべりは回転速度が同期速度から下がる量の同期速度に
対する比で示され、回転速度N (rpm)におけるす
べりは 3=  N扛」L          ・・・■S となる1回転速度をω=2π・1(rad/s)として
NおよびωをSで表わすと、■、■式より20f N=  N5(1−3)=     (1−3)  (
rpm)−■またc、+=2π”ヨ= ”f(1−5)
 (rad/s)−m60      P となる。
Slip is expressed as the ratio of the amount by which the rotational speed decreases from the synchronous speed to the synchronous speed, and the slip at the rotational speed N (rpm) is 3=N"L...■S. One rotational speed is ω=2π・1. (rad/s), and when N and ω are expressed by S, 20f N= N5(1-3)= (1-3) (
rpm) -■Also c, +=2π"yo="f(1-5)
(rad/s)-m60P.

そして回転機のトルクTAN−■〕は T=Pm=  60Pm =  PoPm   (N−
、)  、・、■ω  2πN  r■π酊 Pa:回転機の出力PmCν〕 またPa+:=P、 (1−9)  (W)P2:二次
入力で同期速度で回転したと仮定した場合の出力〔同期
ワット〕 となる。
And the torque TAN-■] of the rotating machine is T = Pm = 60Pm = PoPm (N-
,) ,・, ■ω 2πN r■πdrunk Pa: Output of the rotating machine PmCν] Also, Pa+:=P, (1-9) (W) P2: When it is assumed that it rotates at a synchronous speed with the secondary input The output is [synchronous watts].

0〜0式かられかるようにIMはすベリや周波数を変化
させることでトルクや回転速度を変化させることができ
る。
As shown in the 0-0 formula, the torque and rotational speed can be changed by changing the IM speed and frequency.

このようにIMはインバータ装置より与えられる周波数
によって制御できる。その制御ブロック図を第5図へ示
す。
In this way, IM can be controlled by the frequency provided by the inverter device. A control block diagram thereof is shown in FIG.

指令すべり周波数順の指令すべりはIMから出力させた
いトルクにより決まる指令値である。回転速度予測項は
、IMの回転数を検出し回転子側の回転速度使を求める
The command slip in order of command slip frequency is a command value determined by the torque to be output from the IM. The rotational speed prediction term detects the rotational speed of the IM and determines the rotational speed on the rotor side.

フィルタコンデンサ電圧微分項は架線電圧が急昇した時
インバータの出力電圧を急昇させないように架線電圧の
急昇を検知し、制御へ反映させる。
The filter capacitor voltage differential term detects a sudden rise in the overhead line voltage and reflects it in the control so that the output voltage of the inverter does not suddenly rise when the overhead line voltage rises suddenly.

また、0式かられかるように検出する回転速度は同期速
度よりすべりの分だけ遅くなる。このため、回転速度を
一定に保つために、検出した回転速度と指令すべりの和
により固定子側を同期速度で回転させる周波数を指令す
る。また、さらに架線急変時のためにフィルタコンデン
サ電圧微分項も制御へ加えている。
Furthermore, the rotational speed detected from equation 0 is slower than the synchronous speed by the amount of slip. Therefore, in order to keep the rotational speed constant, a frequency for rotating the stator at a synchronous speed is commanded based on the sum of the detected rotational speed and the command slip. In addition, a filter capacitor voltage differential term is added to the control in case of sudden changes in the overhead line.

(発明が解決しようとする課題) パルスセンサ方式のIMの回転速度はモータ軸に設置し
たパルスセンサから出力されるパルスを一定時間カウン
トすることで求めている。そのため制御に利用する場合
回転速度を演算するための一定時間以上の遅れが生じる
。ところが指令すべりは指令により決まる一定値のため
、遅れのあるIMの回転速度を制御へ利用すると、モー
タに対して実際に必要なすべりと違うすベリの指令周波
数となることがある。たとえば5台車の機械系固有振動
や主回路の電気系固有振動によりIMの回転数が振動す
ると、フィルタコンデンサ電圧が変動する。この時、実
際に必要なすべりと遅れのあるすベリの間には第4図に
示すように誤差が生じる。これによりIMの指令周波数
が振動し、0式かられかるようにトルクも振動する。そ
してこの振動と台車や主回路の固有振動と共振しインバ
ータを停止させ電気車の正常な運行ができないことにな
る。
(Problem to be Solved by the Invention) The rotational speed of a pulse sensor type IM is determined by counting pulses output from a pulse sensor installed on the motor shaft for a certain period of time. Therefore, when used for control, there is a delay of more than a certain time for calculating the rotational speed. However, since the command slip is a constant value determined by the command, if the delayed rotational speed of the IM is used for control, the command frequency may be different from the slip actually required for the motor. For example, when the rotational speed of the IM oscillates due to the mechanical system natural vibration of the five bogies or the electric system natural vibration of the main circuit, the filter capacitor voltage fluctuates. At this time, an error occurs between the actually required slip and the delayed slip as shown in FIG. As a result, the IM command frequency oscillates, and the torque also oscillates, as shown in formula 0. This vibration resonates with the natural vibrations of the bogie and the main circuit, stopping the inverter and preventing normal operation of the electric vehicle.

IMの回転速度検出による遅れ時間を回転速度を予測し
補償することによりリアルタイム処理の動作へ近づける
By predicting the rotation speed and compensating for the delay time caused by the detection of the rotation speed of the IM, the operation can be brought closer to real-time processing.

〔発明の構成ゴ (課題を解決するための手段) 本発明のブロック図を第1図に示す。IMの回転速度の
検出演算による遅れを回転速度の微分により補償し、遅
れ時間のない回転速度を予測する回転速度予測項と空転
時には回転速度予測項と逆特性で作用させる空転制御項
を直列に接続することで遅れ時間を補償し従来のIMの
回転速度との和でIMの回転速度を予測する。
[Configuration of the Invention (Means for Solving the Problems) A block diagram of the present invention is shown in FIG. The rotation speed prediction term that compensates for the delay caused by the rotation speed detection calculation of the IM by differentiating the rotation speed and predicts the rotation speed without delay time, and the idle control term that acts with the opposite characteristics to the rotation speed prediction term when idle is connected in series. By connecting, the delay time is compensated and the rotational speed of the IM is predicted by the sum of the rotational speed of the conventional IM.

(作 用) IMの回転速度は一定時間における入力するパルスのカ
ウント数により求めているのでパルスのカウントおよび
演算に要する時間は少なくとも遅れる。この遅れを微分
により補償することで実際の回転速度により近い回転速
度が得られる。そして空転時は回転速度が滑走時に比べ
速くなるので、IMの指令周波数が大きくなり、よりI
Mを回転させようとする。これを防ぐために空転の検知
時に回転速度予測項により指令周波数を減らすようにす
る。
(Function) Since the rotational speed of the IM is determined by the number of input pulse counts in a certain period of time, the time required for pulse counting and calculation is at least delayed. By compensating for this delay by differentiation, a rotation speed closer to the actual rotation speed can be obtained. When idling, the rotational speed is faster than when sliding, so the IM command frequency increases and the I
Try to rotate M. To prevent this, the command frequency is reduced using the rotational speed prediction term when idling is detected.

(実施例) 本発明の実施例を第1図に示す。回転速度検出は、検出
した回転速度を微分し回転速度を予測する回転速度予測
項と滑走時はこの予測項をそのまま出力し、空転時は、
この予測項を逆特性に出力するようにした空転検知制御
項とを組み合せ、IM回転速度との和を取るように構成
されている。
(Example) An example of the present invention is shown in FIG. Rotation speed detection uses a rotation speed prediction term that predicts the rotation speed by differentiating the detected rotation speed, and when sliding, this prediction term is output as is, and when idling,
This prediction term is combined with a slip detection control term that outputs an inverse characteristic, and is configured to be summed with the IM rotation speed.

そして従来の指令すベリ周波数とフィルタコンデンサ電
圧微分項とこの回転速度の検出する項の和により指令周
波数を得る。
Then, the command frequency is obtained by the sum of the conventional command frequency, the filter capacitor voltage differential term, and the term detected by this rotational speed.

滑走時はIMの回転速度検出の遅れ時間を回転速度予測
項の微分により補償することで実際に近い回転速度を予
測する。
During skidding, a rotation speed close to the actual rotation speed is predicted by compensating for the delay time in detecting the rotation speed of the IM by differentiating the rotation speed prediction term.

また空転時には回転速度が滑走時に比べ速くなる。とこ
ろが、すべり指令は一定なので回転速度の増加に伴い、
指令周波数も増加し回転をより加速させる。そのため、
空転時には指令周波数を減少させるように、回転速度予
測項を回転速度と逆特性に作用させ空転の助長を防ぐ。
Also, when spinning, the rotational speed is faster than when sliding. However, since the slip command is constant, as the rotation speed increases,
The command frequency also increases to further accelerate the rotation. Therefore,
In order to reduce the command frequency at the time of idling, the rotational speed prediction term acts on a characteristic opposite to the rotational speed to prevent further idling.

遅れ時間を補正することで第4図に示したように遅れの
すべりと実際のすベリの違いが原因の台車の固有振動の
助長(共振現象)を防止させることができる。また、回
転周波数を検知する場合、カウントする時間が長い程回
転数検出の誤差が少なくなる。これは、短かい時間で検
出した時にカウントのミスが起きれば一定時間のカウン
トにより求めてるので長い時間に比べ非常に誤差が大き
くなる。この予測により遅れ時間が長くても、遅れを補
正でき、誤差の少ない回転速度を制御へ利用できる。
By correcting the delay time, it is possible to prevent the natural vibration (resonance phenomenon) of the bogie caused by the difference between the delay slip and the actual slip as shown in FIG. 4 to be prevented. Furthermore, when detecting the rotational frequency, the longer the counting time, the smaller the error in rotational speed detection. This is because if a counting error occurs when detecting in a short period of time, the error will be much larger than in the case of a long period of time because it is calculated by counting over a certain period of time. With this prediction, even if the delay time is long, the delay can be corrected and a rotation speed with less error can be used for control.

空転検知時は、空転による指令以上の回転速度を検知す
るが空転制御項により指令周波数を回転させないように
作用し、空転を悪化させない。
When idling is detected, a rotation speed higher than the command due to idling is detected, but the idling control term acts to prevent the command frequency from rotating, so that the idling does not worsen.

このように滑走時は遅れ時間を補正し空転時は空転を悪
化させない。
In this way, the delay time is corrected when skidding, and when the vehicle is idling, it does not worsen.

回転数をパルスセンサでカウントしている誘導電動機以
外を用いている電気車の速度演算方式に利用しても同様
の効果が得られる。
A similar effect can be obtained even when used in a speed calculation method for an electric vehicle that uses a motor other than an induction motor whose rotational speed is counted by a pulse sensor.

〔発明の効果〕〔Effect of the invention〕

滑走時はIMの回転速度の遅れを補正し、空転時には空
転の悪化を防止するように回転速度を予測する。これに
より、遅れのない制御が得られる。
When skidding, the IM's rotational speed delay is corrected, and when it is idling, the rotational speed is predicted to prevent the IM from getting worse. This provides control without delay.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の制御ブロック図、第2図は電力変換装
置にインバータを用いた主回路構成図、第3図は三相誘
導電動機の回転磁界説明図、第4図は従来のブロック図
、第5図は遅れのあるすべり説明図である。 1・・・パンタグラフ、 2・・・入力直流フィルタリアクトル、3・・・入力直
流フィルタコンデンサ、4・・・インバータ回路、 5・・・三相かご形誘導電動機。
Fig. 1 is a control block diagram of the present invention, Fig. 2 is a main circuit configuration diagram using an inverter as a power converter, Fig. 3 is an explanatory diagram of the rotating magnetic field of a three-phase induction motor, and Fig. 4 is a conventional block diagram. , FIG. 5 is an explanatory diagram of a slip with a delay. 1... Pantograph, 2... Input DC filter reactor, 3... Input DC filter capacitor, 4... Inverter circuit, 5... Three-phase squirrel cage induction motor.

Claims (1)

【特許請求の範囲】[Claims] 誘導電動機を用いた車両用電力変換装置において、パル
スセンサにより負荷の三相かご形誘導電動機の回転速度
を検出する際に生じる遅れ時間をパルスセンサ入力の微
分で補償する回転速度予測項とこの予測項により空転時
に空転を助長させないために設ける空転制御項とで回転
速度変動分を予測し、従来の遅れ時間のある回転速度と
の和によりリアルタイムの回転速度を予測する。回転速
度検出を特徴とする車両用電力変換装置の制御方法。
In a vehicle power converter using an induction motor, a rotation speed prediction term that compensates for the delay time that occurs when a pulse sensor detects the rotation speed of a three-phase squirrel cage induction motor as a load by differentiating the pulse sensor input, and this prediction The rotational speed fluctuation is predicted by the term and the idling control term provided to prevent idling during idling, and the real-time rotational speed is predicted by the sum with the conventional rotational speed with a delay time. A method for controlling a power converter for a vehicle characterized by rotational speed detection.
JP2241208A 1990-09-13 1990-09-13 Controlling method for power converter of vehicle Pending JPH04125090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2241208A JPH04125090A (en) 1990-09-13 1990-09-13 Controlling method for power converter of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2241208A JPH04125090A (en) 1990-09-13 1990-09-13 Controlling method for power converter of vehicle

Publications (1)

Publication Number Publication Date
JPH04125090A true JPH04125090A (en) 1992-04-24

Family

ID=17070810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2241208A Pending JPH04125090A (en) 1990-09-13 1990-09-13 Controlling method for power converter of vehicle

Country Status (1)

Country Link
JP (1) JPH04125090A (en)

Similar Documents

Publication Publication Date Title
EP1729407B1 (en) Controller of permanent magnet synchronous motor
EP0022267B1 (en) Control system for induction motor-driven car
JP2008167566A (en) High-response control device of permanent magnet motor
WO2015122019A1 (en) Control device
JP2008086082A (en) Controller of permanent magnet motor
JPH0612954B2 (en) Synchronous motor control method
JPWO2020137219A1 (en) Drive device and drive method for rotary electric machines
KR0134984B1 (en) Motor control apparatus
JPH04125090A (en) Controlling method for power converter of vehicle
JPH1080180A (en) Control method and equipment of synchronous motor
JP4144446B2 (en) Power converter
JPH09140187A (en) Power converter
JPH08208140A (en) Controller for elevator
JPH11150977A (en) Speed control equipment of series connected motors
JPH01198292A (en) Variable speed controller for induction motor
JP3255839B2 (en) AC elevator control device
JPH07203697A (en) Compensating method for slip in squirrel-cage induction motor
JP3364289B2 (en) Brushless Excitation Controller for Variable Speed Synchronous Motor
JPH0458782A (en) Ac motor driver
JPH0937582A (en) Variable-speed control equipment for induction motor
JPH0158759B2 (en)
JPH10338427A (en) Drive controller of elevator
JP2003070291A (en) Motor controller
JP2000166008A (en) Electric vehicle controller
JPS63314193A (en) Method of controlling flux of motor