JPH0412390B2 - - Google Patents

Info

Publication number
JPH0412390B2
JPH0412390B2 JP58069243A JP6924383A JPH0412390B2 JP H0412390 B2 JPH0412390 B2 JP H0412390B2 JP 58069243 A JP58069243 A JP 58069243A JP 6924383 A JP6924383 A JP 6924383A JP H0412390 B2 JPH0412390 B2 JP H0412390B2
Authority
JP
Japan
Prior art keywords
air
low
temperature
cooled
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58069243A
Other languages
Japanese (ja)
Other versions
JPS59195084A (en
Inventor
Takashi Nagamura
Takao Yamamoto
Shunichi Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teisan KK
Original Assignee
Teisan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teisan KK filed Critical Teisan KK
Priority to JP6924383A priority Critical patent/JPS59195084A/en
Publication of JPS59195084A publication Critical patent/JPS59195084A/en
Publication of JPH0412390B2 publication Critical patent/JPH0412390B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は、液化天然ガス(以下LNGという。)
の寒冷を利用した空気液化分離方法に関するもの
であり、とくに原料空気をLNGの寒冷によつて
冷却し、原料空気の圧縮に低温圧縮を利用するこ
とにより動力費の低減をはかることを目的とする
ものである。
[Detailed Description of the Invention] The present invention relates to liquefied natural gas (hereinafter referred to as LNG).
This relates to an air liquefaction separation method using the refrigeration of LNG, and its purpose is to reduce power costs by cooling feed air with the refrigeration of LNG and using low-temperature compression to compress the feed air. It is something.

従来から、空気の液化分離工程中にLNGの寒
冷利用工程をとり入れて製品(酸素、窒素等)の
コスト低下をはかる方法は種々提案されている
が、それらは空気液化分離工程に寒冷を補給する
循環窒素系にLNGの寒冷を利用しているものが
多く、コスト(動力費)の低下には自ずと限度が
あつた。
Various methods have been proposed to reduce the cost of products (oxygen, nitrogen, etc.) by incorporating LNG refrigeration during the air liquefaction separation process, but these methods involve supplementing the air liquefaction separation process with refrigeration. Many systems use LNG refrigeration for their nitrogen-circulating systems, and there are limits to how much cost (power costs) can be reduced.

そのため、さらに動力費を低下させるために原
料空気をLNGの寒冷を利用して冷却し、その圧
縮に低温圧縮を導入する方法も提案されている。
このような原料空気の冷却にLNGの寒冷を利用
した方法の一つが、特願昭56−1773号(特開昭57
−115663号)に開示されている(以下これに開示
された技術を先行技術と称することとする)。先
行技術においては、空気液化分離装置における原
料空気をまず中間圧力まで圧縮した後、切換使用
される吸着手段によつて含有水分を吸着除去し、
ついでLNGの寒冷を利用して炭酸ガスが凝固析
出する温度付近まで冷却し、さらにこの低温空気
を圧縮して所定圧とした後に、再生式熱交換器に
導入して炭酸ガスを除去し、精留工程に送るよう
にしている。
Therefore, in order to further reduce power costs, a method has been proposed in which the feed air is cooled using the refrigeration of LNG and low-temperature compression is introduced for the compression.
One of the methods that utilizes the refrigeration of LNG to cool raw air is disclosed in Japanese Patent Application No. 1773-1983 (Japanese Patent Application No. 56-1773).
-115663) (hereinafter, the technology disclosed therein will be referred to as prior art). In the prior art, the raw air in the air liquefaction separation device is first compressed to an intermediate pressure, and then the moisture contained therein is adsorbed and removed by an adsorption means that is used in a switching manner.
Next, the cold air of LNG is used to cool the air to around the temperature at which carbon dioxide solidifies and precipitates, and this low-temperature air is compressed to a specified pressure, and then introduced into a regenerative heat exchanger to remove carbon dioxide and purify it. I send it to the retention process.

この先行技術では、原料空気中の含有水分は低
温圧縮前に除去し、含有炭酸ガスは低温圧縮後に
再生式熱交換器で除去している。そのため、低温
圧縮後の原料空気の温度があまり低いと固体炭酸
ガスの析出により再生式熱交換器の切換弁の作動
に不都合が生ずるおそれがあるので、第1実施例
ではLNGの寒冷による冷却を炭酸ガスの凝固析
出温度より高いところで抑え、第2実施例では−
120℃まで冷却しているが、低温圧縮後の冷却原
料空気を熱交換器によつて12℃付近まて加温して
から再生式熱交換器に導入することが記載されて
いる。
In this prior art, the moisture contained in the feed air is removed before low-temperature compression, and the carbon dioxide contained in the raw air is removed by a regenerative heat exchanger after low-temperature compression. Therefore, if the temperature of the raw air after low-temperature compression is too low, there is a risk that the precipitation of solid carbon dioxide will cause problems with the operation of the switching valve of the regenerative heat exchanger. In the second embodiment, -
Although it is cooled to 120°C, it is described that the cooled raw material air after low-temperature compression is heated to around 12°C by a heat exchanger before being introduced into a regenerative heat exchanger.

このように、先行技術においては、低温圧縮に
よる動力費低下が十分にはかられているとは言え
ない。
As described above, in the prior art, it cannot be said that the power cost reduction due to low temperature compression is sufficiently taken into account.

本発明の方法は、このような先行技術の不利を
除去するためにされたもので、液化精留工程に先
立つ原料空気の精製段階において、原料空気を中
間圧まで圧縮する予備圧縮工程、中間圧空気に含
有される水分及び炭酸ガスを切換え使用される吸
着手段により除去する精製工程、精製原料空気の
圧縮低温空気により冷却する予冷工程、予冷原料
空気の液化天然ガスによつて冷却された他の冷媒
により冷却する冷却工程、冷却原料空気を低温圧
縮により所定圧まで圧縮する低温圧縮工程、低温
圧縮された圧縮低温空気を前記予冷工程の寒冷源
として用いる加温工程に順次かけることによつて
目的を達することができる。
The method of the present invention has been made to eliminate the disadvantages of the prior art, and includes a pre-compression step for compressing the feed air to an intermediate pressure, a pre-compression step for compressing the feed air to an intermediate pressure, and an intermediate pressure A purification process in which moisture and carbon dioxide contained in the air are removed by adsorption means used, a pre-cooling process in which purified raw air is cooled with compressed low-temperature air, and other processes in which the pre-cooled raw air is cooled with liquefied natural gas. The purpose is to sequentially perform a cooling process in which the cooled air is cooled with a refrigerant, a low-temperature compression process in which the cooled raw material air is compressed to a predetermined pressure by low-temperature compression, and a heating process in which the low-temperature compressed air is used as a cold source in the pre-cooling process. can be reached.

以下、図面により本発明の方法をさらに詳細に
説明する。
Hereinafter, the method of the present invention will be explained in more detail with reference to the drawings.

添付図面は、本発明の方法の1実施例を示すフ
ローシートである。原料空気は、管路1から空気
圧縮機2に送られて任意の中間圧力まで圧縮され
て管路3に送出される。この空気はアフタークー
ラ4で冷却水等により冷却され、ついで吸着塔5
に導入されて含有水分、炭酸ガス吸着除去され
る。吸着塔5は、たとえばモレキユラーシーブの
ような吸着剤が充填されており、複数本を切換え
使用するようにしている。精製された中圧空気は
管路6を通つて第1熱交換器7に導入され、ここ
で後記する低温の圧縮空気と間接熱交換して予冷
され管路8に送出される。管路8の予冷空気は、
ついで第2熱交換器9に送られ、ここで管路10
から導入され、管路11に排出される冷媒によつ
て十分に冷却される。管路10から導入される冷
媒は、図示しない熱交換器において、LNGによ
り冷却されており、LNGの寒冷はこのようにし
て、冷媒を介して原料空気の冷却に利用される。
冷媒としてはフロン、窒素及びアルゴン等の不活
性ガスの低温液化ガス又は低温ガスを使用するこ
とができる。LNGを管路10から導入して原料
空気を冷却することは、安全対策上好ましくない
ので、このようにLNGの寒冷を一旦不活性な冷
媒に移し、この低温冷媒によつて原料空気を冷却
することが行われている。低温原料空気は管路1
2に送出され、次に圧縮機13で、中間圧力から
所定の最終圧力(たとえば5Kg/cm2G)まで低温
圧縮され、管路14に送出される。管路14の低
温の圧縮空気は前記のように第1熱交換器7に送
られて、中圧原料空気を予冷し、自らは加温され
て管路15に送出された後、低温液化分離部16
に送られ、常法により低温液化、精留され、液体
及び気体の酸素、窒素を製品として製出するので
ある。
The accompanying drawing is a flow sheet illustrating one embodiment of the method of the invention. Raw material air is sent from a pipe line 1 to an air compressor 2, compressed to an arbitrary intermediate pressure, and sent to a pipe line 3. This air is cooled by cooling water etc. in an aftercooler 4, and then adsorption tower 5
The water contained therein is adsorbed and removed by carbon dioxide gas. The adsorption tower 5 is filled with an adsorbent such as a molecular sieve, and a plurality of adsorbents are used selectively. The purified medium-pressure air is introduced into the first heat exchanger 7 through the pipe line 6, where it is precooled by indirect heat exchange with low-temperature compressed air, which will be described later, and then sent to the pipe line 8. The precooled air in pipe 8 is
It is then sent to a second heat exchanger 9, where it is transferred to a conduit 10.
It is sufficiently cooled by the refrigerant introduced from the pipe line 11 and discharged into the pipe line 11. The refrigerant introduced from the pipe line 10 is cooled by LNG in a heat exchanger (not shown), and the cooling of the LNG is thus used to cool the raw material air via the refrigerant.
As the refrigerant, a low-temperature liquefied gas or low-temperature gas of an inert gas such as chlorofluorocarbon, nitrogen, and argon can be used. Since it is not desirable for safety reasons to introduce LNG through the pipe 10 to cool the feed air, the cold temperature of the LNG is first transferred to an inert refrigerant, and the feed air is cooled by this low-temperature refrigerant. things are being done. Low-temperature raw air is pipe 1
2, and then low-temperature compressed by a compressor 13 from an intermediate pressure to a predetermined final pressure (for example, 5 kg/cm 2 G), and delivered to a pipe line 14. The low-temperature compressed air in the pipe line 14 is sent to the first heat exchanger 7 as described above to pre-cool the medium-pressure raw material air, and after being heated and sent to the pipe line 15, it is subjected to low-temperature liquefaction separation. Part 16
It is then sent to the plant, where it is liquefied at low temperatures and rectified using conventional methods, producing liquid and gaseous oxygen and nitrogen products.

このように、本発明の方法では、吸着塔5で原
料空気中の含有水分、炭酸ガスを除去しているの
で、先行技術のような再生式熱交換器に送られる
低温空気中の炭酸ガスによるトラブルを考慮する
必要はない。したがつて、第2熱交換器9におい
て、中間の原料空気をLNGの寒冷を利用して十
分に冷却できるので空気液化分離装置の始動時か
ら冷却が可能であり、したがつて圧縮機13には
常時低温空気が送られ、始動時から低温圧縮を行
なうことができるのである。
As described above, in the method of the present invention, since moisture and carbon dioxide contained in the feed air are removed in the adsorption tower 5, carbon dioxide in the low-temperature air sent to the regenerative heat exchanger as in the prior art is removed. No need to worry about trouble. Therefore, in the second heat exchanger 9, the intermediate raw material air can be sufficiently cooled using the cold of LNG, so cooling is possible from the start of the air liquefaction separation device, and therefore, the air is cooled in the compressor 13. Low-temperature air is constantly supplied to the engine, making it possible to perform low-temperature compression from the time of startup.

また低温圧縮された低温空気は、第1熱交換器
7で原料空気を予冷して自身は0℃以上にまで加
温される。この加温空気は液化精留工程で常法に
より再び冷却され、その大部分は空気分離装置の
精留塔下部の熱源であるリボイラー・ガスとして
使用しなければならないが、本発明の方法によれ
ばリボイラー・ガスとして適した温度への冷却が
常法によつて容易かつ自由に行えるのである。す
なわち、LNGによる冷却後に加温することによ
り、リボイラー・ガスとして利用できる温度とは
無関係に第2熱交換器9における冷却が行えるの
で、原料空気が液化しない程度の温度までLNG
の寒冷を最大限利用して冷却できる。
Further, the low-temperature compressed low-temperature air is heated to 0° C. or higher by pre-cooling the raw material air in the first heat exchanger 7. This heated air is cooled again by a conventional method in the liquefaction rectification process, and most of it must be used as reboiler gas, which is the heat source at the bottom of the rectification column of the air separation device. It can be easily and freely cooled to a temperature suitable for boiler gas using conventional methods. In other words, by heating after cooling with LNG, cooling in the second heat exchanger 9 can be performed regardless of the temperature that can be used as reboiler gas.
can be cooled by making maximum use of the cold temperature.

このことは、LNGの寒冷利用の効果ばかりで
なく、低温圧縮の効果も一層高めることとなるの
である。
This not only enhances the effectiveness of cold use of LNG, but also the effectiveness of cold compression.

実施例 原料空気は低段圧縮機2によつて約1.5Kg/cm2
Gに圧縮され、さらにアフタークーラ4で常温に
冷却された後、吸着塔5において含有水分及び炭
酸ガスを除去される。このようにして精製された
中間圧力の原料空気は、ついで第1熱交換器7、
第2熱交換器9に導入され、第1熱交換器7では
低温の高圧空気、第2熱交換器9ではLNGによ
つて冷却された冷媒によつて約−150℃まで冷却
される。この低温原料空気は、高段圧縮機13に
よつて低温圧縮を受けて約5Kg/cm2に圧縮され、
第1熱交換器7で中間圧原料空気を冷却して、約
+2℃にまで加温された後、低温液化分離部16
に導入される。
Example Raw material air is approximately 1.5Kg/cm 2 by low stage compressor 2
After being compressed to G and further cooled to room temperature in an aftercooler 4, the contained moisture and carbon dioxide are removed in an adsorption tower 5. The intermediate pressure raw air thus purified is then passed through the first heat exchanger 7,
It is introduced into the second heat exchanger 9, and is cooled down to about -150°C by low-temperature high-pressure air in the first heat exchanger 7 and by LNG-cooled refrigerant in the second heat exchanger 9. This low-temperature raw material air is subjected to low-temperature compression by the high-stage compressor 13 and compressed to approximately 5 kg/cm 2 .
After the intermediate-pressure feed air is cooled in the first heat exchanger 7 and heated to approximately +2°C, the low-temperature liquefaction separation section 16
will be introduced in

このような本発明の方法の採用により、従来の
常温空気圧縮の動力費に比べて、(約5Kg/cm2
で圧縮の場合)、約20%の節約となり、従来法よ
り大幅なコスト低減が可能なばかりでなく、先行
技術に比しても(従来法より9%強の節減)さら
に大きな効果が認められるのである。
By adopting the method of the present invention, the power cost of conventional room-temperature air compression can be reduced by approximately 20% (when compressing up to approximately 5 kg/cm 2 ), resulting in a significant cost reduction compared to the conventional method. Not only is it possible, but it is even more effective than the prior art (more than 9% savings over the conventional method).

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明方法の1実施例を示すフロー
シートであり、図中、2は空気圧縮機、4はアフ
タークーラ、5は吸着塔、7は第1熱交換器、9
は第2熱交換器、13は圧縮器、16は低温液化
分離部、その他は何れも管路を示す。
The attached drawing is a flow sheet showing one embodiment of the method of the present invention, and in the drawing, 2 is an air compressor, 4 is an aftercooler, 5 is an adsorption tower, 7 is a first heat exchanger, and 9
1 is a second heat exchanger, 13 is a compressor, 16 is a low-temperature liquefaction separation section, and all others are pipes.

Claims (1)

【特許請求の範囲】 1 空気液化分離方法において、原料空気を中間
圧まで圧縮する予備圧縮工程、中間圧空気に含有
される水分及び炭酸ガスを切換え使用される吸着
手段により除去する精製工程、精製原料空気を圧
縮低温空気により冷却する予冷工程、予冷原料空
気を液化天然ガスによつて冷却された他の冷媒に
より冷却する冷却工程、冷却原料空気を低温圧縮
により所定圧まで圧縮する低温圧縮工程、低温圧
縮された圧縮低温空気を前記予冷工程の寒冷源と
して用いる加温工程、加温された圧縮空気を導入
して行う液化精留工程とを含むことを特徴とする
空気液化分離方法。 2 前記他の冷媒が不活性ガスである特許請求の
範囲第1項記載の空気液化分離方法。 3 前記不活性ガスが窒素、アルゴン、これらを
主成分とする混合ガスからなる群から選ばれたガ
スである特許請求の範囲第2項記載の空気液化分
離方法。 4 前記他の冷媒がフロン系冷媒である特許請求
の範囲第1項記載の空気液化分離方法。
[Scope of Claims] 1. In the air liquefaction separation method, a preliminary compression step in which raw air is compressed to an intermediate pressure, a purification step in which moisture and carbon dioxide contained in the intermediate pressure air are removed by an adsorption means that is selectively used, and a purification step. A pre-cooling process in which raw air is cooled with compressed low-temperature air, a cooling process in which the pre-cooled raw air is cooled with another refrigerant cooled by liquefied natural gas, a low-temperature compression process in which the cooled raw air is compressed to a predetermined pressure by low-temperature compression, An air liquefaction separation method comprising: a heating step using low-temperature compressed air as a cold source in the pre-cooling step; and a liquefaction rectification step performed by introducing warmed compressed air. 2. The air liquefaction separation method according to claim 1, wherein the other refrigerant is an inert gas. 3. The air liquefaction separation method according to claim 2, wherein the inert gas is a gas selected from the group consisting of nitrogen, argon, and a mixed gas containing these as main components. 4. The air liquefaction separation method according to claim 1, wherein the other refrigerant is a fluorocarbon-based refrigerant.
JP6924383A 1983-04-21 1983-04-21 Method of liquefying and separating air Granted JPS59195084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6924383A JPS59195084A (en) 1983-04-21 1983-04-21 Method of liquefying and separating air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6924383A JPS59195084A (en) 1983-04-21 1983-04-21 Method of liquefying and separating air

Publications (2)

Publication Number Publication Date
JPS59195084A JPS59195084A (en) 1984-11-06
JPH0412390B2 true JPH0412390B2 (en) 1992-03-04

Family

ID=13397112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6924383A Granted JPS59195084A (en) 1983-04-21 1983-04-21 Method of liquefying and separating air

Country Status (1)

Country Link
JP (1) JPS59195084A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466437B2 (en) * 1997-09-24 2003-11-10 ジャパン・エア・ガシズ株式会社 Air separation equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124188A (en) * 1977-04-06 1978-10-30 Hitachi Ltd Utilizing method for chillness of liquefied natural gas in air separator
JPS57115663A (en) * 1981-01-09 1982-07-19 Nippon Oxygen Co Ltd Power reduction of air liquified separator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124188A (en) * 1977-04-06 1978-10-30 Hitachi Ltd Utilizing method for chillness of liquefied natural gas in air separator
JPS57115663A (en) * 1981-01-09 1982-07-19 Nippon Oxygen Co Ltd Power reduction of air liquified separator

Also Published As

Publication number Publication date
JPS59195084A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
CA2063928C (en) Process for low-temperature air fractionation
AU643007B2 (en) Process and apparatus for purifying air to be distilled by absorption
RU2008128818A (en) METHOD FOR DIVIDING AIR INTO COMPONENTS BY USING CRYOGENIC DISTILLATION
JPH05157448A (en) Cryogenic method separating supply air flow into component
EP0425738A1 (en) Process for the production of high pressure nitrogen with split reboil-condensing duty
EP1612496B1 (en) Air separator
JPH0310868B2 (en)
JPH06229668A (en) Method and equipment for manufacturing gaseous oxygen
GB2180923A (en) Process and apparatus for the production of pressurized nitrogen
JPH08254389A (en) Separating method of gas mixture by low-temperature distribution
US3110155A (en) Improved process for the separation of air to produce a desired separation product in the gaseous phase under pressure
US8191386B2 (en) Distillation method and apparatus
JPH0412390B2 (en)
JPH10170144A (en) Device and method for cleaning raw air of air liquefaction and separation device
GB2090160A (en) Process and Apparatus for Separating a Mixed Gas Such as Air
JP3447437B2 (en) High-purity nitrogen gas production equipment
US5787730A (en) Thermal swing helium purifier and process
JP2000271425A (en) Method of purifying and low temperature separating air without precooling and plant therefor
JP2873381B2 (en) Air liquefaction separation method and apparatus
JP3537199B2 (en) Air separation method and air separation device used in the method
JP3142669B2 (en) Air separation equipment
JP3385409B2 (en) Air liquefaction separation method and apparatus
JP2551461B2 (en) Pretreatment method of raw material air in air separation device
JP3322416B2 (en) Low-temperature separation method for air
JP2004085032A (en) Cooling method for air separation device