JPH0412379B2 - - Google Patents

Info

Publication number
JPH0412379B2
JPH0412379B2 JP58128303A JP12830383A JPH0412379B2 JP H0412379 B2 JPH0412379 B2 JP H0412379B2 JP 58128303 A JP58128303 A JP 58128303A JP 12830383 A JP12830383 A JP 12830383A JP H0412379 B2 JPH0412379 B2 JP H0412379B2
Authority
JP
Japan
Prior art keywords
metal hydride
heat
pressure side
equilibrium pressure
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58128303A
Other languages
Japanese (ja)
Other versions
JPS6020089A (en
Inventor
Koji Gamo
Yoshio Moriwaki
Minoru Tagashira
Tadayasu Mitsumata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12830383A priority Critical patent/JPS6020089A/en
Priority to US06/612,784 priority patent/US4589479A/en
Publication of JPS6020089A publication Critical patent/JPS6020089A/en
Publication of JPH0412379B2 publication Critical patent/JPH0412379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/12Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type using desorption of hydrogen from a hydride
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は金属水素化物と水素ガスとの可逆的な
結合と解離にともなう熱の出入りを利用した給湯
器に関し、給湯はもちろんのこと、家庭暖房用あ
るいは産業用など広く熱を利用する分野全般に利
用できるものである。 従来例の構成とその問題点 従来、電気、ガス、石油などを燃料とする各種
の給湯器が広く実用化されている。たとえば75℃
の給湯のためのボイラー、暖房用ボイラー、発電
用ボイラーなど、各種用途、燃料に応じて開発さ
れている。これらは比較的安価で、しかも便利で
あるが、燃料の高価格時代とともに熱効率の向上
が今後ますます要求される。しかしながら、たと
えば燃焼などによつて与えられた熱量の約90%が
有効な熱量として利用できるのみであり、従来技
術では、100%以上はあり得なかつた。 一方、最近、電動圧縮式や吸収式などのヒート
ポンプ技術も進んで利用されるようになつた。こ
れらを用いれば、外気熱や地熱などの比較的低温
の熱源から熱をくみ上げ、比較的高温の熱とする
ことによつて、利用価値を高め、有効熱量の増加
が可能となつて、上記の効率が理論上、100%以
上となり得る。ところが上記のような電動圧縮式
やエンジン圧縮式ヒートポンプ、または連続式の
吸収式ヒートポンプは熱媒や吸収液を循環させる
ため、ポンプや制御装置が複雑、高価となり、ま
た圧縮式では騒音があるなどの欠点が残されてい
る。 そこで、上記の欠点を改善するために本発明者
らは先に構造が比較的簡単で、加えた熱量以上の
有効熱量が得られ、省エネルギー型である金属水
素化物を用いたヒートポンプを提案している。た
だ、この型は、装置の心臓部である金属水素化物
として高価なLaNi5などの稀土類系合金水素化物
を用いていた。これは利用可能な移動水素量が少
なく、反応速度も遅いため、ある一定の能力を得
るためには、多量の材料と大きな熱効換器が必要
であるから、装置全体として大型となり、高価で
あつた。また、従来のものは、経済性を考慮して
少量におさえようとすれば、低圧側金属水素化物
を約200℃以上に加熱しなければならず、水素平
衡圧も10気圧以上に上昇するため、システムとし
ての安全性や信頼性の点でも問題があつた。 発明の目的 本発明は、金属水素化物利用ヒートポンプ式給
湯器に最適な金属水素化物を用いることによつて
前記従来装置における安全性、信頼性、経済性な
どの問題点を解決し、省エネルギー性が高く小型
低価格で、安全性の面でも優れた金属水素化物利
用給湯器を提供するものである。 発明の構成 本発明は、金属水素化物を封入され、互いに水
素平衡圧の異なる容器と、前記容器を相互に連結
する手段と、低平衡圧側金属水素化物を間けつ的
に加熱する手段と、前記容器と貯湯槽間を熱結合
させる熱媒回路を設け、前記容器の一方に少なく
ともC14型ラーバス相構造を有するTiとMnを含
有する金属水素化物を用いた給湯器である。 実施例の説明 金属水素化物と水素ガスとの反応は、可逆的で
あり、反応には大量の熱の出入りが伴ない、熱の
授受によつて平衡が容易に移動することはよく知
られている。本発明者らは、先にこの反応熱を利
用した金属水素化物ヒートポンプ式給湯器を提案
したが、実験を重ねた結果、金属水素化物とし
て、安価で、水素利用量が大きく、反応速度が大
きく、低圧力で安全なC14型ラーバス相構造を有
するTiとMnを含有した合金の水素化物を用いた
ヒートポンプ式給湯器が、非常に優れた特長を有
することを見出した。 本発明は、このように、ヒートポンプ式給湯器
として最適な金属水素化物の水素吸収、放出反応
に伴なう反応熱を利用するもので、反応速度が大
きく、熱交換部の熱伝導が高く、従つて、システ
ムとして高い給湯能力を有する給湯器が可能であ
る。さらに、給湯温度は75℃と高く、従来のヒー
トポンプでは60℃までであり、従つて利用可能分
野が広いといえる。当然、本願は省エネルギー性
を最大の特長としたものであり、空気熱源からの
熱も奪うため、熱効率100%以上であつて低平衡
圧側の顕熱も利用するため、従来のものより熱利
用率は高い。作用例の実例を記せば、例えば、バ
ーナの燃焼を間欠的に行ない、燃焼時には加熱さ
れていない高平衡圧側の金属水素化物容器中で発
生する水素吸収熱を利用し、燃焼を中断した時
は、加熱側の金属水素化物と容器の顕熱および水
素ガスが再び戻つてきて、低平衡圧側に吸収され
ることによる水素吸収熱を利用し、従つて加熱は
間欠であるが、得られる給湯は、約75℃で連続的
であつて、燃料の大幅な減少が可能となる。 次の具体的実施例について説明する。第1図a
は、本発明に使用する金属水素化物の一例として
示した低圧用と高圧用の2種類の金属水素化物の
水素平衡圧−水素化物組成等温線図であり、低圧
用金属水素化物M1HはTi0.3Zr0.7Mn1.2−Cr0.6
Co0.2H3.1で高圧用金属水素化物M2HはTi0.6Zr0.4
Mn0.4Cr0.4Co0.2H2.8である。また第1図bは従来
使用していた稀土類系合金水素化物の水素平衡圧
−水素化物組成等温線図である。いま、外気温10
℃の時に、低圧側金属水素化物を180℃まで加熱
し、75℃の温水を連続的に取出す場合を考えれ
ば、その時の動作状態は、第1図のようになる。
同図に見られるように発熱能力や必要な合金量に
大きく影響を与える有効利用可能水素量は、水素
原子/合金原子の比で本願使用材料は約0.8であ
るのに対し、従来のものは約0.35であつて、従つ
て本願は同量の金属水素化物を使用しても、約
2.3倍も大きい発熱量を得ることが出来る。しか
も同重量なる価格も1/3以下となる。この理由は
本願材料が水素吸収圧と水素放出圧の差、すなわ
ちヒステリシスが著しく小さく、そして水素平衡
圧の平坦性が良好であつてしかも、低圧側M1H
と高圧側M2Hの組合せがヒートポンプ式給湯器
として最適であるからである。 また、第1図aに見られるように、低平衡圧側
金属水素化物の75℃における水素平衡圧が1気圧
以下であり、かつ高平衡圧側金属水素化物の75℃
における水素放出平衡圧が1気圧以上である組合
せは、装置として反応速度が速く、しかも金属水
素化物容器の耐圧性の点で、特に望ましい組合せ
である。更に、前記のような好ましい組合せは本
願合金において低圧側に含有するZrのTiに対す
る割合が、高圧側に含有するZrのTiに対する割
合よりも大きいものを選択的に用いた場合に、容
易に成遂げることが出来る。 第2図に、Ti−Zr−Mn−Cr−M(M=Co,
Cu,Ni,Fe,V,Nb,Mo)5元系合金水素化
物Aと、従来の稀土類系合金Bの20℃における水
素吸収反応速度の一例を比較して示す。同図に見
られるように、発明の実施例に使用した材料の反
応速度は500〜600ml/g.minで従来物より5倍
以上速く従つて単位時間当りの発熱能力は5倍以
上も大きい。 以上のようにC14型ラーバス相を有し、少なく
ともTiとMnを含有する合金、好ましくはTiとZr
とMn、より好ましくはTiとZrとMnとCrとを含
有した合金は、ヒートポンプ式給湯器として必要
な特性をほとんど具備し、よつてこれを用いたヒ
ートポンプ式給湯器は従来品と比べ、使い良さ、
性能、価格などの点で、著しく優れた性能を有す
る。 第3図に、ガスバーナを熱源とし、2種類の金
属水素化物を用いた給湯器の一実施例の断面概略
図を示す。図中1は低圧側金属水素化物(M1H)
2としてTi0.3Zr0.7Mn1.2Cr0.6Co0.2を約1.8Kg入れ
た金属水素化物容器であり、3は高圧側金属水素
化物(M2H)4として、Ti0.6Zr0.4Mn1.2Cr0.4
Co0.2を約3.8Kg入れた金属水素化物容器である。
これら容器1および2の内部には、それぞれ熱交
換器12および13が配設され、熱交換器12の
中にはシリコーンオイル14が、熱交換器13の
中には水15が、各々熱媒体として流れる。シリ
コーンオイル14の流路は、3方切換弁8と8′
によつて、加熱槽6側と貯湯槽7側に間欠的に切
換えられる。加熱槽6には、都市ガス16を熱源
とし、バーナ5によつて、間欠的あるいは連続的
に、約180°に加熱されたオイルが満たされ、この
オイルによつて、低圧側金属水素化物2を間欠的
に加熱している。10,11は共に熱媒体環境用
ポンプであり、ポンプ10は加熱槽6あるいは貯
湯槽7へ熱媒体を輸送しまたポンプ11は高圧用
金属水素化物が発熱反応を行なつている時のみ、
貯湯槽7へ熱媒体を輸送する。金属水素化物容器
1と3中の水素は低圧側金属水素化物の温度の上
下に対応して、可逆的に水素移動管9を通つて移
動する。またフアン21は水素が高圧側金属水素
化物4から低圧側金属水素化物2へ移動する際に
のみ動作し、水素化物4の吸熱効果による温度の
低下を抑制している。また22,22′は多孔質
フイルターで、金属水素化物粉末が流失するのを
防止している。17と18は共に貯湯槽7中に設
けられた熱交換器で、市水導入口19から入つた
水を交互に加熱する働きをしている。このように
導入された市水は、主として2種類の金属水素化
物により、交互に加熱されて約75℃の湯となつて
貯湯され、必要時に、温水供給口20から、外部
へ供給される。なお、第3図においては貯湯槽に
熱交換器を2個用いているが2つの容器に共通の
熱交換を用いることもできる。 第4図は、第3図で示したシステム図中で使用
した金属水素化物の作動状態を示した水素圧−温
度線図である。バーナから180℃の熱を供給し、
低圧側金属水素化物(M1H)と高圧側金属水素
化物(M2H)から、約75℃の温水を連続的に得
る反応を示している。 第5図は、本実施例の各部の運転モードの一例
を示した図である。ガスバーナの燃焼は約30秒間
隔であり、180/hの連続給湯で20℃の水が何
度まで上昇するかを調べた。結果は、図のように
低圧金属水素化物側と高圧金属水素化物側とを交
互に切換えることにより、約75℃の湯が連続的に
得られた。なお、熱交換器部17と18の温度は
脈動し、この上下温度差は加熱槽の温度、装置の
熱容量、熱効換能力、流水量、金属水素化物の量
と種類、反応速度などシステム全体で決定され
る。しかし、実用上、この温度の上下は、貯湯槽
7によつて、均一化されるから、問題ではなく温
水供給口20からは均一な約75℃の湯が連続的に
取り出せた。 本実施例では、金属水素化物の全量が約5.6Kg、
金属水素化物容器1と3の容積が各々560c.c.と620
c.c.であり、非常に小型化が達成できた。 本実施例では、TiとMnを含有するC14型ラバ
ース相合金水素化物を用いたため、金属水素化物
の全量が約5.6Kgと少なく、従来品と比べ約1/4と
なり、また、金属水素化物容器1と3の容積が
各々560c.c.と620c.c.であり、非常に小型化が達成で
きた。さらに、本給湯器を約1000時間繰返し使用
した場合の性能比較において、本発明は金属水素
化物の性能にほとんど劣化が見られず、給湯能力
も低下しなかつたが、従来の稀土類合金等を使用
したものは、給湯能力が約30%低下した。また、
燃焼させた都市ガスの総発熱量に対して、給湯と
して利用できる熱量との比(COP)は、約1.2と
なり、通常のガスボイラーの成績係数(COP)
が約0.8であるので、1.5倍の省エネルギーが達成
された。 次表に、6方晶系C14型ラーバス相を有するTi
−Mn系合金水素化物を用いた場合の給湯器の性
能を、従来の代表的な合金の水素化物と比較して
示す。なお、性能評価の項目としては、加えた熱
エネルギーに対する給湯能力の比(COP)、使用
しなければならない合金の重量比、および使用し
た合金の価格比を、同一の給湯能力を得る場合と
いう条件で示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a water heater that utilizes the heat exchange caused by the reversible bonding and dissociation of metal hydrides and hydrogen gas, and is applicable not only to hot water supply but also to a wide range of heat applications such as home heating and industrial applications. It can be used in all fields of use. Conventional configurations and their problems Conventionally, various types of water heaters that use electricity, gas, oil, etc. as fuel have been widely put into practical use. For example 75℃
Boilers have been developed for various uses and fuels, including boilers for hot water supply, heating boilers, and power generation boilers. These are relatively inexpensive and convenient, but with the era of high fuel prices, there will be an increasing demand for improved thermal efficiency. However, only about 90% of the heat given by combustion, for example, can be used as effective heat, and with the prior art, it was impossible to achieve more than 100%. On the other hand, recently, heat pump technologies such as electric compression type and absorption type have been increasingly used. By using these, heat can be pumped up from a relatively low-temperature heat source such as outside air heat or geothermal heat and turned into relatively high-temperature heat, thereby increasing the utility value and increasing the effective amount of heat. The efficiency can theoretically be 100% or more. However, electric compression heat pumps, engine compression heat pumps, or continuous absorption heat pumps as mentioned above circulate the heat medium and absorption liquid, making the pumps and control devices complicated and expensive, and the compression type is noisy. drawbacks remain. Therefore, in order to improve the above-mentioned drawbacks, the present inventors first proposed a heat pump using metal hydride, which has a relatively simple structure, can obtain an effective amount of heat greater than the amount of added heat, and is energy-saving. There is. However, this type used an expensive rare earth alloy hydride such as LaNi 5 as the metal hydride, which is the heart of the device. This means that the available amount of transferred hydrogen is small and the reaction rate is slow, so in order to achieve a certain level of performance, a large amount of materials and a large heat exchanger are required, making the entire device large and expensive. It was hot. In addition, with conventional methods, if you try to keep the amount small from economic considerations, the metal hydride on the low-pressure side must be heated to over 200°C, and the hydrogen equilibrium pressure will also rise to over 10 atmospheres. There were also problems with the safety and reliability of the system. Purpose of the Invention The present invention solves the problems of safety, reliability, economy, etc. in the conventional devices by using the most suitable metal hydride for a heat pump type water heater using metal hydrides, and improves energy saving. The present invention provides a metal hydride water heater that is compact, inexpensive, and has excellent safety. Composition of the Invention The present invention comprises containers sealed with metal hydrides and having different hydrogen equilibrium pressures, means for interconnecting the containers, means for intermittently heating the metal hydride on the lower equilibrium pressure side, and This water heater is provided with a heat medium circuit that thermally connects a container and a hot water storage tank, and uses a metal hydride containing Ti and Mn having at least a C14 type larvae phase structure in one of the containers. Description of Examples It is well known that the reaction between a metal hydride and hydrogen gas is reversible and involves the exchange of a large amount of heat, and that the equilibrium is easily shifted by the exchange of heat. There is. The present inventors previously proposed a metal hydride heat pump type water heater that utilizes this reaction heat, but as a result of repeated experiments, we found that metal hydride is inexpensive, uses a large amount of hydrogen, and has a high reaction rate. We have discovered that a heat pump water heater using an alloy hydride containing Ti and Mn, which has a C14-type larvae phase structure and is safe at low pressures, has very excellent features. As described above, the present invention utilizes the reaction heat accompanying the hydrogen absorption and release reactions of metal hydride, which is ideal for a heat pump type water heater. Therefore, a water heater having a high hot water supply capacity as a system is possible. Furthermore, the hot water supply temperature is as high as 75°C, whereas conventional heat pumps can reach up to 60°C, so it can be used in a wide range of fields. Naturally, the main feature of this application is energy saving, and since it also removes heat from the air heat source, it has a thermal efficiency of over 100% and also uses sensible heat on the low equilibrium pressure side, so it has a higher heat utilization rate than conventional ones. is expensive. To give an example of how it works, for example, when the burner burns intermittently and combustion is interrupted by utilizing the heat of hydrogen absorption generated in the metal hydride container on the high equilibrium pressure side that is not heated during combustion. , the metal hydride on the heating side, the sensible heat of the container, and the hydrogen gas return again and are absorbed on the low equilibrium pressure side, making use of the hydrogen absorption heat.Thus, although heating is intermittent, the resulting hot water supply is is continuous at approximately 75°C, allowing for a significant reduction in fuel consumption. The following specific example will be described. Figure 1a
is a hydrogen equilibrium pressure-hydride composition isotherm diagram of two types of metal hydrides, one for low pressure and one for high pressure, shown as an example of the metal hydride used in the present invention, and the metal hydride for low pressure M 1 H is Ti 0.3 Zr 0.7 Mn 1.2 −Cr 0.6
Co 0.2 H 3.1 High Pressure Metal Hydride M 2 H Ti 0.6 Zr 0.4
Mn 0.4 Cr 0.4 Co 0.2 H 2.8 . FIG. 1b is a hydrogen equilibrium pressure-hydride composition isotherm diagram of a conventionally used rare earth alloy hydride. Right now, the outside temperature is 10
If we consider the case where the metal hydride on the low pressure side is heated to 180°C and hot water at 75°C is taken out continuously, the operating state at that time will be as shown in Figure 1.
As seen in the figure, the amount of effectively usable hydrogen, which has a large effect on the heat generation capacity and the required amount of alloy, is approximately 0.8 in the ratio of hydrogen atoms/alloy atoms for the material used in this application, while for the conventional material. 0.35, and therefore, even if the same amount of metal hydride is used, the present application
It can generate 2.3 times more heat. Moreover, the price for the same weight is less than 1/3. The reason for this is that the material of the present invention has a significantly small difference between hydrogen absorption pressure and hydrogen release pressure, that is , hysteresis, and has good flatness of the hydrogen equilibrium pressure.
This is because the combination of M2H on the high pressure side and M2H on the high pressure side is optimal for a heat pump type water heater. In addition, as shown in Figure 1a, the hydrogen equilibrium pressure at 75°C of the metal hydride on the low equilibrium pressure side is 1 atm or less, and the hydrogen equilibrium pressure at 75°C of the metal hydride on the high equilibrium pressure side is 1 atm or less.
A combination in which the hydrogen release equilibrium pressure is 1 atm or more is a particularly desirable combination in terms of the high reaction rate of the device and the pressure resistance of the metal hydride container. Furthermore, the above-mentioned preferred combination can be easily achieved if the alloy of the present invention is selectively used in which the ratio of Zr to Ti contained in the low pressure side is larger than the ratio of Zr to Ti contained in the high pressure side. I can accomplish it. Figure 2 shows Ti-Zr-Mn-Cr-M (M=Co,
An example of the hydrogen absorption reaction rate at 20°C of the quinary alloy hydride A (Cu, Ni, Fe, V, Nb, Mo) and the conventional rare earth alloy B is shown in comparison. As seen in the figure, the reaction rate of the materials used in the examples of the invention was 500 to 600 ml/g. min, more than 5 times faster than the conventional product, and the heat generation capacity per unit time is more than 5 times greater. As mentioned above, an alloy having a C14 type larvous phase and containing at least Ti and Mn, preferably Ti and Zr.
An alloy containing Ti, Zr, Mn, and Cr, more preferably Ti, Zr, Mn, and Cr, has most of the characteristics necessary for a heat pump water heater, and therefore a heat pump water heater using this alloy is easier to use than conventional products. quality,
It has extremely superior performance in terms of performance and price. FIG. 3 shows a schematic cross-sectional view of an embodiment of a water heater using a gas burner as a heat source and using two types of metal hydrides. 1 in the figure is the metal hydride on the low pressure side (M 1 H)
2 is a metal hydride container containing about 1.8 kg of Ti 0.3 Zr 0.7 Mn 1.2 Cr 0.6 Co 0.2 , and 3 is a metal hydride on the high pressure side (M 2 H) 4, which is Ti 0.6 Zr 0.4 Mn 1.2 Cr 0.4
This is a metal hydride container containing approximately 3.8 kg of Co 0.2 .
Heat exchangers 12 and 13 are disposed inside these containers 1 and 2, respectively, and silicone oil 14 is in the heat exchanger 12, water 15 is in the heat exchanger 13, and the heat exchangers 12 and 13 are respectively heat media. flows as The flow path of the silicone oil 14 is connected to the three-way switching valves 8 and 8'.
As a result, the heating tank 6 side and the hot water storage tank 7 side are intermittently switched. The heating tank 6 uses city gas 16 as a heat source and is filled with oil heated to about 180° by the burner 5 intermittently or continuously. is being heated intermittently. Both 10 and 11 are pumps for the heat medium environment, and the pump 10 transports the heat medium to the heating tank 6 or the hot water storage tank 7, and the pump 11 is used only when the high-pressure metal hydride is undergoing an exothermic reaction.
The heat medium is transported to the hot water storage tank 7. The hydrogen in the metal hydride vessels 1 and 3 moves reversibly through the hydrogen transfer tube 9 in response to the rise and fall of the temperature of the low-pressure side metal hydride. Further, the fan 21 operates only when hydrogen moves from the high-pressure side metal hydride 4 to the low-pressure side metal hydride 2, and suppresses a decrease in temperature due to the endothermic effect of the hydride 4. Further, 22 and 22' are porous filters that prevent the metal hydride powder from being washed away. Both 17 and 18 are heat exchangers provided in the hot water tank 7, and serve to alternately heat the water that enters from the city water inlet 19. The city water introduced in this manner is heated alternately mainly by two types of metal hydrides and stored as hot water at approximately 75°C, and is supplied to the outside from the hot water supply port 20 when necessary. In addition, in FIG. 3, two heat exchangers are used in the hot water storage tank, but a common heat exchanger can also be used for the two containers. FIG. 4 is a hydrogen pressure-temperature diagram showing the operating state of the metal hydride used in the system diagram shown in FIG. The burner supplies 180℃ heat,
This shows a reaction to continuously obtain hot water at approximately 75°C from a low-pressure metal hydride (M 1 H) and a high-pressure metal hydride (M 2 H). FIG. 5 is a diagram showing an example of the operation mode of each part of this embodiment. The gas burner burns at approximately 30 second intervals, and we investigated how high the temperature of 20°C water would rise during continuous hot water supply at 180/h. As a result, by alternately switching between the low-pressure metal hydride side and the high-pressure metal hydride side as shown in the figure, hot water at approximately 75°C was continuously obtained. Note that the temperature of the heat exchanger sections 17 and 18 pulsates, and this temperature difference between the upper and lower temperatures affects the entire system, including the temperature of the heating tank, the heat capacity of the device, the heat exchange capacity, the flow rate, the amount and type of metal hydride, and the reaction rate. determined by However, in practice, this temperature rise and fall is equalized by the hot water storage tank 7, so this is not a problem and hot water at a uniform temperature of about 75° C. can be continuously taken out from the hot water supply port 20. In this example, the total amount of metal hydride was approximately 5.6 kg,
The volumes of metal hydride containers 1 and 3 are 560 c.c. and 620 c.c., respectively.
cc, making it extremely compact. In this example, since a C14 type rubber phase alloy hydride containing Ti and Mn was used, the total amount of metal hydride was small at about 5.6 kg, which was about 1/4 compared to the conventional product. The volumes of 1 and 3 were 560 c.c. and 620 c.c., respectively, making it extremely compact. Furthermore, in a performance comparison when this water heater was repeatedly used for approximately 1000 hours, the present invention showed almost no deterioration in the performance of the metal hydride, and the hot water supply capacity did not decrease, but compared to conventional rare earth alloys, etc. The hot water supply capacity of the ones we used decreased by about 30%. Also,
The ratio of the total calorific value of combusted city gas to the calorific value that can be used for hot water supply (COP) is approximately 1.2, which is the coefficient of performance (COP) of a normal gas boiler.
is approximately 0.8, so energy savings of 1.5 times were achieved. The following table shows Ti having a hexagonal C14 type larvae phase.
- The performance of water heaters using Mn-based alloy hydrides is shown in comparison with conventional typical alloy hydrides. The performance evaluation items include the ratio of hot water heating capacity to added thermal energy (COP), the weight ratio of the alloy that must be used, and the price ratio of the alloy used, under the conditions that the same hot water heating capacity is obtained. It was shown in

【表】 上表のように、本願合金系が給湯器として最適
である理由は、他の系に比べ 給湯器の作用温度(約75〜180℃)域で、水
素化−脱水素化の反応速度が速い。 水素化物の水素圧−組成等温線が平坦であ
る。 上記等温線の水素吸収と水素放出のヒステリ
シスが小さい。 給湯器の作用温度(約75〜180℃)が、利用
できる水素量が大きい。 原材料価格が最も安い。 ことなどによる。 前記実施例では、低圧側と高圧側各1種計2種
類の金属水素化物を各々1個の容器に入れて使用
したが、低圧側2個、高圧側2個、計4個で作動
させたり、あるいは中間の水素圧を有する第3の
種類の金属水素化物を使用し、低圧側と中間圧
側、中間圧側と高圧側を前記2種類の場合と同様
に作動させ、これらを組合せた金属水素化物ヒー
トポンプ式給湯器も、本願の展開として当然効果
大なるものである。また、貯湯槽において加熱さ
れた湯を直接あるいは間接的に用いて暖房するこ
ともできる。 発明の効果 以上のように本発明は従来のものと比べ受入れ
た熱量以上の有効熱量がより高効率で得られるの
で、極めて省エネルギー性の高い給湯器であり、
有効利用水素量が大きく、反応速度が大きい金属
水素化物を使用しているため小型軽量で簡単な構
造となり、信頼性も高く、かつ極めて経済的であ
る。また、高温でも比較的低い水素圧で作動する
ため安全性が高く、さらに可動部が少ないため、
音の静かな給湯器である。
[Table] As shown in the table above, the reason why the alloy system of the present invention is most suitable for water heaters is that compared to other systems, hydrogenation-dehydrogenation reactions occur in the working temperature range of water heaters (approximately 75 to 180℃). Fast speed. The hydrogen pressure-composition isotherm of the hydride is flat. The hysteresis between hydrogen absorption and hydrogen release in the above isotherm is small. The working temperature of the water heater (approximately 75 to 180 degrees Celsius) means that the amount of hydrogen that can be used is large. Raw material prices are the lowest. Depends on the matter. In the above example, two types of metal hydrides, one each on the low-pressure side and one on the high-pressure side, were placed in one container and used. Alternatively, a third type of metal hydride having an intermediate hydrogen pressure is used, and the low pressure side and the intermediate pressure side, and the intermediate pressure side and the high pressure side are operated in the same manner as in the case of the above two types, and a metal hydride that is a combination of these is produced. Naturally, heat pump type water heaters are also highly effective as a development of the present application. In addition, heating can be performed by directly or indirectly using hot water heated in a hot water storage tank. Effects of the Invention As described above, the present invention is a highly energy-saving water heater, as it can obtain an effective amount of heat that exceeds the amount of heat received with higher efficiency compared to conventional water heaters.
Because it uses a metal hydride that has a large amount of effectively utilized hydrogen and a high reaction rate, it has a small, lightweight, and simple structure, is highly reliable, and is extremely economical. In addition, it is highly safe because it operates with relatively low hydrogen pressure even at high temperatures, and there are fewer moving parts, so
It is a quiet water heater.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の一実施例の給湯器に使用し
た金属水素化物の水素平衡圧−水素化物組成等温
線図、第1図bは従来の給湯器に使用していた金
属水素化物の水素平衡圧−水素化物組成等温線
図、第2図は本発明の給湯器に使用する金属水素
化物の20℃における水素吸収速度を従来のものと
比較して示した図、第3図は本発明の一実施例の
給湯器の断面概略図、第4図は第3図に示す給湯
器における金属水素化物の作動状態を示した水素
圧−温度線図、第5図は第3図に示す給湯器の各
部の運転モード図である。 2……低温側金属水素化物、4……高圧側金属
水素化物、6……加熱槽、7……貯湯槽,12,
13,17,18……熱交換器。
Figure 1a is a hydrogen equilibrium pressure-hydride composition isotherm diagram of a metal hydride used in a water heater according to an embodiment of the present invention, and Figure 1b is a diagram of a metal hydride used in a conventional water heater. Hydrogen equilibrium pressure - hydride composition isotherm diagram, Figure 2 is a diagram showing the hydrogen absorption rate at 20°C of the metal hydride used in the water heater of the present invention compared with that of the conventional one, Figure 3 is the diagram of the water heater of the present invention. A schematic cross-sectional view of a water heater according to an embodiment of the invention, FIG. 4 is a hydrogen pressure-temperature diagram showing the operating state of metal hydride in the water heater shown in FIG. 3, and FIG. 5 is a diagram shown in FIG. 3. It is an operation mode diagram of each part of a water heater. 2... Low temperature side metal hydride, 4... High pressure side metal hydride, 6... Heating tank, 7... Hot water storage tank, 12,
13, 17, 18...heat exchanger.

Claims (1)

【特許請求の範囲】 1 水素平衡圧の異なる金属水素化物を内蔵した
複数個の容器を相互に連続管で結合し、外部熱源
を使つて、低平衡圧側金属水素化物を間欠的に加
熱し、その結果放出される水素を高平衡圧側金属
水素化物に移送して吸収させ、この時の水素吸収
反応熱と、非加熱時には前記低平衡圧側金属水素
化物の顕熱と高平衡圧側金属水素化物から逆移送
される水素の低平衡圧側金属水素化物での水素吸
収反応熱とを交互に利用する金属水素化物ヒート
ホンプを形成し、低平衡圧側金属水素化物加熱用
熱媒体管と、熱負荷への熱供給管を、低平衡圧側
金属水素化物収納容器内で共通とし、外部切換え
弁によつて、加熱側と熱負荷側に切換え、低平衡
圧側金属水素化物の間欠加熱によつて、熱負荷部
を連続的に加熱するよう構成したことを特徴とす
る給湯器。 2 低平衡圧側金属水素化物の75℃における水素
吸収平衡圧が1気圧以下であり、かつ高平衡圧側
金属水素化物の75℃における水素放出平衡圧が1
気圧以上であることを特徴とする特許請求の範囲
第1項記載の給湯器。 3 前記金属水素化物が少なくともTiとZrを含
有することを特徴とする特許請求の範囲第1項記
載の給湯器。 4 低平衡圧側金属水素化物に含有するZrのTi
に対する割合が項平衡圧側金属水素化物に含有す
るZrのTiに対する割合よりも大きいことを特徴
とする特許請求の範囲第3項記載の給湯器。
[Scope of Claims] 1. A plurality of containers containing metal hydrides with different hydrogen equilibrium pressures are connected to each other through continuous tubes, and the metal hydride on the lower equilibrium pressure side is intermittently heated using an external heat source, The hydrogen released as a result is transferred to the metal hydride on the high equilibrium pressure side and absorbed, and the heat of the hydrogen absorption reaction at this time is combined with the sensible heat of the metal hydride on the low equilibrium pressure side and the metal hydride on the high equilibrium pressure side when not heated. A metal hydride heat pump is formed which alternately utilizes the hydrogen absorption reaction heat in the metal hydride on the low equilibrium pressure side of the reversely transferred hydrogen, and a heat medium tube for heating the metal hydride on the low equilibrium pressure side and heat to the heat load are formed. The supply pipe is shared in the metal hydride storage container on the low equilibrium pressure side, and is switched between the heating side and the heat load side by an external switching valve, and the heat load section is controlled by intermittent heating of the metal hydride on the low equilibrium pressure side. A water heater characterized by being configured to heat continuously. 2 The hydrogen absorption equilibrium pressure at 75°C of the metal hydride on the low equilibrium pressure side is 1 atm or less, and the hydrogen release equilibrium pressure at 75°C of the metal hydride on the high equilibrium pressure side is 1 atm.
2. The water heater according to claim 1, wherein the water heater has a pressure equal to or higher than atmospheric pressure. 3. The water heater according to claim 1, wherein the metal hydride contains at least Ti and Zr. 4 Ti of Zr contained in metal hydride on low equilibrium pressure side
4. The water heater according to claim 3, wherein the ratio of Zr to Ti contained in the equilibrium pressure side metal hydride is larger than the ratio of Zr to Ti.
JP12830383A 1983-05-23 1983-07-13 Hot water supplier Granted JPS6020089A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12830383A JPS6020089A (en) 1983-07-13 1983-07-13 Hot water supplier
US06/612,784 US4589479A (en) 1983-05-23 1984-05-22 Hot water supply unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12830383A JPS6020089A (en) 1983-07-13 1983-07-13 Hot water supplier

Publications (2)

Publication Number Publication Date
JPS6020089A JPS6020089A (en) 1985-02-01
JPH0412379B2 true JPH0412379B2 (en) 1992-03-04

Family

ID=14981444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12830383A Granted JPS6020089A (en) 1983-05-23 1983-07-13 Hot water supplier

Country Status (1)

Country Link
JP (1) JPS6020089A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6918430B2 (en) * 2002-08-14 2005-07-19 Texaco Ovonic Hydrogen Systems Llc Onboard hydrogen storage unit with heat transfer system for use in a hydrogen powered vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615772A (en) * 1979-06-21 1981-02-16 Ogasaka Ski Seisakusho Ski and its manufacture
JPS57115655A (en) * 1981-01-06 1982-07-19 Sekisui Chemical Co Ltd Heat pump apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615772A (en) * 1979-06-21 1981-02-16 Ogasaka Ski Seisakusho Ski and its manufacture
JPS57115655A (en) * 1981-01-06 1982-07-19 Sekisui Chemical Co Ltd Heat pump apparatus

Also Published As

Publication number Publication date
JPS6020089A (en) 1985-02-01

Similar Documents

Publication Publication Date Title
Jiang et al. Experimental study on a resorption system for power and refrigeration cogeneration
Critoph Rapid cycling solar/biomass powered adsorption refrigeration system
Willers et al. The two-stage metal hydride heat transformer
Sharma et al. Thermodynamic analysis of novel multi stage multi effect metal hydride based thermodynamic system for simultaneous cooling, heat pumping and heat transformation
Park et al. The operating characteristics of the compressor-driven metal hydride heat pump system
Kölbig et al. Review on thermal applications for metal hydrides in fuel cell vehicles: operation modes, recent developments and crucial design aspects
Zhang et al. Energy and exergy analyses of ammoniated salts based thermochemical sorption heat storage system
US4589479A (en) Hot water supply unit
Sharma et al. Ammoniated salt based solid sorption thermal batteries: A comparative study
EP0388132B1 (en) Thermal utilization system using hydrogen absorbing alloys
Sun Thermodynamic analysis of the operation of two-stage metal-hydride heat pumps
Groll et al. Metal hydride devices for environmentally clean energy technology
JPH0412379B2 (en)
JPH0419457B2 (en)
JP2568484B2 (en) Multi-effect heat pump device
JPS59215536A (en) Hot water supply device
Sheft et al. Evaluation of the Argonne multi-tube hydride heat exchanger
Nasako et al. The development of refrigeration systems using hydrogen-absorbing alloys
JPH0573984B2 (en)
JPS638393B2 (en)
JPS59219648A (en) Hot water supply system
Altinişik et al. Metal hydride heat pumps
JP3836739B2 (en) Water heater using hydrogen storage alloy
JPH04165271A (en) Cold-heat generating system
JP2000234820A (en) Solar heat driven freezing machine and its operation method