JPH04123482A - Light transmitter - Google Patents

Light transmitter

Info

Publication number
JPH04123482A
JPH04123482A JP2242506A JP24250690A JPH04123482A JP H04123482 A JPH04123482 A JP H04123482A JP 2242506 A JP2242506 A JP 2242506A JP 24250690 A JP24250690 A JP 24250690A JP H04123482 A JPH04123482 A JP H04123482A
Authority
JP
Japan
Prior art keywords
signal
pulse
semiconductor laser
circuit
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2242506A
Other languages
Japanese (ja)
Other versions
JP3140763B2 (en
Inventor
Hideto Furuyama
英人 古山
Hiroshi Hamazaki
浩史 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02242506A priority Critical patent/JP3140763B2/en
Publication of JPH04123482A publication Critical patent/JPH04123482A/en
Application granted granted Critical
Publication of JP3140763B2 publication Critical patent/JP3140763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce a rising jitter due to a zero-bias modulation by a simple addition element by forming a rise differentiated signal of a pulse signal to be input to a semiconductor laser, combining the signal with the pulse signal to be input to the laser, and pulse-signal-modulating the laser by the combined signal. CONSTITUTION:A differentiator 3 generates a differentiated signal of an input pulse signal. and is set to a time constant of a minimum pulse width or less by using a CR circuit, an LR circuit, etc. A half-wave rectifier 4 outputs part of the input pulse differentiated signal, and outputs a differentiated signal of a polarity corresponding to the rise of the input pulse. A driver 2 is a drive signal generator of a semiconductor laser, and converts the pulse signal to a signal of a driving level of the laser. When the drive signal responsive to the pulse signal is generated, the output of the rectifier 4 is simultaneously combined and produced. The differentiated signal is combined with the input pulse to drive the laser. Thus, the current width of the rise is increased, shortening of an oscillation delay time due to a zero-bias modulation is facilitated, and a rising jitter due to a pattern effect can be suppressed to a minimum.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は低コスト化を図ったディジタル光伝送装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a digital optical transmission device that achieves cost reduction.

(従来の技術) 光伝送装置は高速、長距離通信装置として重要な地位を
占めている。特に光源として半導体レーザを用いた場合
、電気による信号伝送では実用化困難な数ギガビットの
伝送が数十キロメートル以上の距離で実用化できるに至
うている。
(Prior Art) Optical transmission devices occupy an important position as high-speed, long-distance communication devices. In particular, when a semiconductor laser is used as a light source, it has become possible to carry out multi-gigabit transmission over distances of tens of kilometers or more, which would be difficult to achieve with electrical signal transmission.

近年、このような光伝送装置の高速性や、あるいは本来
の特徴の一つである耐電磁障害性等に着目し、近距離の
信号伝送においても光伝送を適用しようとする試みがな
されている。例えば高速ディジタル機器等のボード間や
架間等に光伝送を導入し、主要処理部門をギカビットク
ラスで信号伝達させる試みがある。このような信号伝送
では伝送距離がそれほど長くはなく、例えば架間伝送の
場合で最長10m −100m程度と光伝送装置の能力
からはほとんど問題の生じない距離である。電気による
信号伝送においても、このような高速伝送は不可能では
ないが、しかしながら数ギガピットの信号をlOm程度
伝送する場合であっても容易に実用できる技術ではない
。これは即ち、電気による信号伝送では信号線路の損失
や誘導雑音、又は接地線を接続するこによるループ雑音
等が問題となり安く、また、ギヤビットクラス伝送の可
能な電気ケーブルが大型化するため接続ライン数や実装
形態に制限が加わり易い等の理由による。
In recent years, efforts have been made to apply optical transmission to short-distance signal transmission, focusing on the high speed of such optical transmission equipment and its resistance to electromagnetic interference, which is one of its original characteristics. . For example, there are attempts to introduce optical transmission between boards and frames of high-speed digital equipment, etc., and to transmit signals in the gigabit class in the main processing departments. In such signal transmission, the transmission distance is not very long, for example, in the case of inter-frame transmission, the maximum length is about 10 m to 100 m, which is a distance that hardly causes any problems in terms of the performance of the optical transmission equipment. Although such high-speed transmission is not impossible in electrical signal transmission, it is not a technology that can be easily put to practical use even when transmitting several gigabit signals over a distance of about 10m. This means that electrical signal transmission suffers from problems such as loss in the signal line, induced noise, and loop noise caused by connecting the ground wire, making it less expensive to transmit signals, and also because the electrical cables capable of gear bit class transmission become larger. This is due to the fact that restrictions tend to be imposed on the number of lines and the mounting form.

このような事情により、高速コンピュータ画像情報処理
機器等の高速ディジタル機器においてほとんど必然的に
光伝送装置の導入が検討されている。しかしながらこの
ような目的で光伝送装置を導入しようとした場合、その
装置価格が大きな障害となっている。以下、従来の光伝
送装置について価格低減が困難な事情を説明する。
Under these circumstances, it is almost inevitable that optical transmission devices be introduced into high-speed digital equipment such as high-speed computer image information processing equipment. However, when attempting to introduce optical transmission equipment for this purpose, the cost of the equipment poses a major obstacle. Below, circumstances that make it difficult to reduce the price of conventional optical transmission equipment will be explained.

一般の幹線系、光伝送装置においてはギガビット毎秒ク
ラスの信号伝送に光源として半導体レーザがもちいられ
ている。ギガビットの信号伝送は発光ダイオード(Li
ght Emiting Diode、以下LEDと記
す)によっても可能であるが、LEDにおいては応答速
度の主支配要素かキャリアの寿命時間である、このキャ
リア寿命を短縮するために高濃度の不純物添加等の操作
を行う必要がある。この場合キャリア寿命が短くなるた
め必然的にその発光効率は低下する。また、キャリア寿
命の短縮化操作は再現性の確保が困難であり、LEDを
用いた場合の実用的システムは数百メガビット毎秒程度
の伝送速度になっている。一方、半導体レーザを用いた
場合、誘導放出による応答速度向上が容易であり、数ギ
ガビット毎秒の光伝送装置では半導体レーザを光源とす
るのが一般的である。しかしながら半導体レーザを光源
とする場合その装置価格の低減が困難であり、前述した
ような高速ディジタル機器への適用が難しい。その主な
原因として、半導体レーザの特性不安定性がある。第7
図に半導体レーザの特性例を示す。図の特性折れ曲り点
はしきい電流と呼ばれ、半導体レーザが動作を開始する
境界点である。
In general trunk systems and optical transmission equipment, semiconductor lasers are used as light sources for gigabit per second class signal transmission. Gigabit signal transmission uses light emitting diodes (Li
This is also possible with a light emitting diode (hereinafter referred to as LED), but in LEDs, the main controlling factor for response speed is the carrier lifetime, and operations such as adding high concentrations of impurities are used to shorten the carrier lifetime. There is a need to do. In this case, since the carrier lifetime becomes short, the luminous efficiency inevitably decreases. Furthermore, it is difficult to ensure reproducibility in the carrier life shortening operation, and practical systems using LEDs have a transmission speed of about several hundred megabits per second. On the other hand, when a semiconductor laser is used, response speed can be easily improved by stimulated emission, and a semiconductor laser is generally used as a light source in an optical transmission device of several gigabits per second. However, when a semiconductor laser is used as a light source, it is difficult to reduce the cost of the device, and it is difficult to apply it to high-speed digital equipment as described above. The main reason for this is the instability of semiconductor laser characteristics. 7th
The figure shows an example of the characteristics of a semiconductor laser. The characteristic bending point in the figure is called the threshold current, and is the boundary point at which the semiconductor laser starts operating.

半導体レーザは温度によりそのしきい電流が変動し易く
、一般には自動的に光出力を制御するAPC(^cto
ma+ic Powe「Control 、以下APC
と記す)回路が必要であり、モニタフォトダイオード、
比較較正回路等を必要とする。また半導体レーザは自己
の発した光が反射により帰還されると動作の不安定性を
引き起こし易い。このような特性不安定性により半導体
レーザを用いた装置ではAPC回路のような付加機構や
、光学系の無反射処理等の特別な付加部品を必要とし、
また、これらの組立て調整を精密に行う必要があるため
半導体レーザ素子の価格に比し周辺部及びその組立て調
整費用が膨大な価格となる。
The threshold current of semiconductor lasers tends to fluctuate depending on the temperature, and generally APC (^cto) is used to automatically control the optical output.
ma+ic Power "Control", hereinafter referred to as APC
) circuit is required, including a monitor photodiode,
Requires comparison/calibration circuit, etc. Further, semiconductor lasers tend to cause instability in operation when the light emitted by the semiconductor laser is reflected back. Due to such unstable characteristics, devices using semiconductor lasers require special additional components such as additional mechanisms such as APC circuits and anti-reflection treatment of the optical system.
Furthermore, since these assembly adjustments must be performed precisely, the costs for the peripheral parts and their assembly and adjustment become enormous compared to the price of the semiconductor laser element.

ここで前述したような高速ディジタル機器への適用を目
的とした場合、その伝送距離が短いことを考慮した低価
格化が可能である。即ち、短距離伝送の場合送信光出力
が幹線系光伝送装置はど大きい必要はなく、従って光学
系の大幅な簡略化が可能であり、また、半導体レーザの
出力光を一部だけ光ファイバに導入すれば良いため、半
導体レーザと光ファイバを直接結合させて用いることが
可能になる。このため、光学系に特別なレンズ等を用い
る必要がなく、半導体レーザと光ファイノくを適度な距
離をおいて直接結合させれば良いため光学部品コスト及
びその調整コストの大幅な低減が可能になる。また、半
導体レーザからの出力光は20°〜30°程度の拡がり
角をもつため光ファイバの位置合せトレランスに大きな
許容幅が得られるようになる。このため精密な位置合せ
が不要になり、組立時の調整が粗調整で良いため組立コ
ストの低減も可能になる。
When the present invention is intended to be applied to high-speed digital equipment as described above, it is possible to reduce the price by taking into consideration the short transmission distance. In other words, in the case of short-distance transmission, the transmitted light output does not need to be large in the trunk optical transmission equipment, and therefore the optical system can be significantly simplified, and only a portion of the output light from the semiconductor laser can be transferred to the optical fiber. Since it is only necessary to introduce the semiconductor laser and the optical fiber, it becomes possible to directly couple the semiconductor laser and the optical fiber. Therefore, there is no need to use special lenses in the optical system, and the semiconductor laser and optical fiber can be directly coupled at a suitable distance, making it possible to significantly reduce the cost of optical components and their adjustment costs. Become. Further, since the output light from the semiconductor laser has a divergence angle of about 20° to 30°, a wide tolerance can be obtained for the alignment tolerance of the optical fiber. This eliminates the need for precise positioning and only requires rough adjustment during assembly, which also makes it possible to reduce assembly costs.

このように短距離用光伝送装置では光学系に関する低価
格化が可能であるが、しかし依然として温度による特性
変動は解決されていない。そこで温度による特性変動を
抑圧する方法として、半導体レーザのしきい電流を非常
に小さくして駆動電流をしきい電流に対して相対的に大
きくする方法が試みられている。例えば半導体レーザの
しきい電流を5 m A以下まで低減し、駆動電流を5
0m A以上とすればしきい電流の温度による変動は実
質的に無視することができる。この方法では前述したA
PC回路等の付加部品を削減でき、またそれ;こ什r(
う回路的調整作業を省くことができる。このように低し
きい値電流の半導体レーザを用い、短距離伝送に用途を
限定した光伝送装置が実用化されれば従来の光伝送装置
にはない大幅な低コスト化が図れ、超高速ディジタル機
器の実現が容易となって産業上の貢献は非常に大きい。
Although it is possible to reduce the cost of the optical system in a short-distance optical transmission device as described above, the characteristic fluctuation due to temperature still remains unsolved. Therefore, as a method of suppressing characteristic fluctuations due to temperature, attempts have been made to make the threshold current of the semiconductor laser very small and increase the drive current relatively to the threshold current. For example, the threshold current of a semiconductor laser can be reduced to 5 mA or less, and the drive current can be reduced to 5 mA or less.
If the value is 0 mA or more, the fluctuation of the threshold current due to temperature can be substantially ignored. In this method, the above-mentioned A
Additional parts such as PC circuits can be reduced;
This eliminates circuit-like adjustment work. If an optical transmission device using a semiconductor laser with a low threshold current and limited to short-distance transmission is put into practical use, it will be possible to achieve a significant cost reduction that is not possible with conventional optical transmission devices, and it will be possible to realize ultra-high-speed digital transmission. The device has become easier to implement and has made a huge contribution to industry.

しかしながら上記のような光伝送装置では実用士別の問
題が生じるという困難があった。即ち、低しきい値電流
の半導体レーザを用いてAPC回路専の付加回路を省い
た場合、必然的に半導体し・−スのバイアス制御ができ
なくなり、所謂零バイ2メス変調を行わなければならな
い。この零バイアス変調においてはよく知られた発振遅
れ時間が問題2号なる。第8図は半導体レーザのパルス
変調光111力を模式的;こ示したものであり、破線で
示した波形はしきい電流近傍又はそれ以上に直流バイア
ス電流を加えた場合の一般的変調波形、実線は直流バイ
アス電流を加えない場合の変調波形である。
However, the above-mentioned optical transmission device has the difficulty of causing problems depending on the practitioner. That is, if a semiconductor laser with a low threshold current is used and an additional circuit dedicated to the APC circuit is omitted, bias control of the semiconductor laser inevitably becomes impossible, and so-called zero-by-two-female modulation must be performed. . In this zero bias modulation, the second problem is the well-known oscillation delay time. FIG. 8 schematically shows the pulse modulated light 111 power of a semiconductor laser, and the waveform shown by the broken line is a general modulation waveform when a DC bias current is applied near or above the threshold current. The solid line is the modulation waveform when no DC bias current is applied.

図から分かるように所謂零バイアス変調においてはl、
きい電流値及び駆動電流値及び駆動電流値が関与した立
上り部での発振遅れを生しる。この発振遅れはしきい電
流値相当のキャリア充満が行われるまでの時間と考えれ
ば良く、単一パルスによる変調の場合はぼ同じ値となる
。実際の信号の場合、パルス列の並びはランダムとみな
す必要がありパルス列のパターンによって発振遅れ時間
が変動することも知られている。この原因は前のパルス
が“0”が“1”かにより半導体レーザ内に残る残留キ
ャリアのレベルが変動することにある。
As can be seen from the figure, in so-called zero bias modulation, l,
This causes an oscillation delay at the rising edge that is related to the threshold current value, the drive current value, and the drive current value. This oscillation delay can be considered as the time until carrier filling corresponding to the threshold current value is performed, and in the case of modulation by a single pulse, it has approximately the same value. In the case of actual signals, the arrangement of pulse trains must be regarded as random, and it is also known that the oscillation delay time varies depending on the pattern of the pulse train. The reason for this is that the level of residual carriers remaining in the semiconductor laser varies depending on whether the previous pulse is "0" or "1".

このため残留キャリアの多い場合は等価的に直流バイア
スを与えておいた場合に近くなり、発振遅れ時間が短く
なるのに対し、残留キャリアが少い場合純粋な零バイア
ス変調に近くなり発振遅れ時間が長くなる。この現象は
パターン効果と呼ばれ、零バイアス変調における立上り
ジッタとして知られている。この立上りジッタは伝送信
号の識別誤りを引き起こし、光伝送装置の信頼性を低下
させる大きな問題であった。
Therefore, when there are many residual carriers, the oscillation delay time becomes close to that equivalent to applying a DC bias, and the oscillation delay time becomes short, whereas when there are few residual carriers, the oscillation delay time becomes close to pure zero bias modulation, and the oscillation delay time becomes short. becomes longer. This phenomenon is called pattern effect and is known as rising jitter in zero bias modulation. This rise jitter causes identification errors in transmission signals, which is a major problem that lowers the reliability of optical transmission equipment.

従来、このような立上りジッタを防止するためパルス変
調信号の立上り部に短いパルスを付加する方法やパルス
変調信号の立下り部にアンダーシュートを加えて強制的
に残留キャリアを引出す方法がとられていた。しかしな
がら従来このような方法を用いるため半導体レーザの駆
動回路が複雑化し、結果として光伝送装置の価格を再び
上昇させるという逆効果を生じていた。
Conventionally, in order to prevent such rising jitter, methods have been used to add a short pulse to the rising edge of the pulse modulated signal, or to add an undershoot to the falling edge of the pulse modulated signal to forcibly draw out the residual carriers. Ta. However, conventional methods have had the adverse effect of complicating the semiconductor laser drive circuit and increasing the price of the optical transmission device again.

(発明が解決しようとする課題) 本発明はこのような従来技術の問題を考慮して成され、
非常に単純な付加要素により零バイアス変調による立上
りジッタを減少させ、また受信回路での立上りジッタの
影響を抑制して高品質信号伝送を可能としながら非常に
低価格な光伝送装置の提供を目的としている。
(Problems to be Solved by the Invention) The present invention has been made in consideration of the problems of the prior art,
The aim is to reduce the rising jitter caused by zero-bias modulation using very simple additional elements, and to provide an extremely low-cost optical transmission device that suppresses the effects of rising jitter on the receiving circuit, enabling high-quality signal transmission. It is said that

[発明の構成] (課題を解決するための手段) 本発明では半導体1ノーザの零バイアス変調を行う際、
半導体レーザへの入力パルスの立上り微分信号をパルス
に合成してパルス変調を行う。また、その光受信におい
ては光パルス立下り部での立下り微分信号を形成し、立
下り微分信号を用いC受信状態の設定を行うものである
[Structure of the Invention] (Means for Solving the Problems) In the present invention, when performing zero bias modulation of a semiconductor 1 noser,
Pulse modulation is performed by combining the rising differential signal of the input pulse to the semiconductor laser into a pulse. Further, in the optical reception, a falling differential signal is formed at the falling edge of the optical pulse, and the C reception state is set using the falling differential signal.

(作用) 本発明によれば非常に単純な付加要素により半導体レー
ザ零バイアス変調における立上りジッタを抑制するため
装置価格の上昇を抑えながら高性能な光伝送装置が実現
でき、また、光受信において光パルス立下り部の微分信
号を用いて受信状態の設定を行うためほぼ同等の装置価
格のままで半導体レーザ零バイアス変調による伝送品質
の低下を抑制することができる。
(Function) According to the present invention, a high-performance optical transmission device can be realized while suppressing a rise in device cost because the rise jitter in semiconductor laser zero-bias modulation is suppressed using very simple additional elements. Since the reception state is set using the differential signal of the pulse trailing edge, deterioration in transmission quality due to semiconductor laser zero bias modulation can be suppressed while keeping the device price approximately the same.

(実施例) 以下図面を参照しながら本発明実施例の説明を行ってい
く。
(Example) Examples of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の発明の光伝送装置の光伝送部を
示す構成ブロック図である。1は半導体レーザ、2は駆
動回路、3は微分回路、4は半波整流回路、5は入力バ
ッファー回路、6は信号入力端子である。それぞれの機
能としては、バッファー回路5は入力信号線路又は信号
発生回路に対して入力インピーダンスの整合を行い、駆
動回路2、微分回路3の影響を逆流させないためのもの
であり、例えばインピーダンス変換回路や緩衝増幅器を
用いる。微分回路3は入力パルス信号の微分信号を発生
させるものであり、CR回路、LR回路等を用いて最小
パルス幅以下の時定数、例えば最小パルス幅の1/4以
下の時定数に設定する。半波整流回路4は入力パルス微
分信号の一方を取出す回路でありダイオードやトランジ
スタのベース入力特性を利用して半導体レーザ入力パル
スの立上り部に相当する極性の微分信号を取り出す。駆
動回路2は半導体レーザの駆動信号発生器であり、入力
パルス信号を半導体レーザの駆動レベルの信号に変換す
る。また駆動回路2は入カルス信号に応じた駆動信号の
発生と同時に半波整流回路4の出力を合成して出力する
ように構成し、例えば差動増幅回路の一方の入力端子に
入力パルス信号を印加し、逆位相の入力端子又は定電流
発生部に半波整流回路出力を接続する。第2図は第1図
構成における主要部信号波形を模式的に示したものであ
る。第2図(a)は入力パルス波形又はバッファー回路
出力波形、同図(b)は半波整流回路4の出力波形で破
線は微分回路3の出力波形のうち半波整流回路で除去さ
れた波形、同図(c)は駆動回路2から出力される波形
、同図(d)は半導体レーザ1からの光出力波形である
FIG. 1 is a configuration block diagram showing an optical transmission section of an optical transmission apparatus according to a first aspect of the present invention. 1 is a semiconductor laser, 2 is a drive circuit, 3 is a differential circuit, 4 is a half-wave rectifier circuit, 5 is an input buffer circuit, and 6 is a signal input terminal. The buffer circuit 5 performs input impedance matching for the input signal line or signal generation circuit, and prevents the influence of the drive circuit 2 and the differentiation circuit 3 from flowing backward. For example, the buffer circuit 5 is used for an impedance conversion circuit or Use a buffer amplifier. The differentiating circuit 3 generates a differentiated signal of the input pulse signal, and uses a CR circuit, LR circuit, etc. to set the time constant to be less than the minimum pulse width, for example, less than 1/4 of the minimum pulse width. The half-wave rectifier circuit 4 is a circuit that takes out one side of the input pulse differential signal, and uses the base input characteristics of the diode or transistor to take out the differential signal of the polarity corresponding to the rising edge of the semiconductor laser input pulse. The drive circuit 2 is a drive signal generator for a semiconductor laser, and converts an input pulse signal into a signal at a drive level for the semiconductor laser. Further, the drive circuit 2 is configured to simultaneously generate a drive signal corresponding to the input callus signal and simultaneously synthesize and output the output of the half-wave rectifier circuit 4. For example, the input pulse signal is input to one input terminal of the differential amplifier circuit. and connect the half-wave rectifier circuit output to the opposite phase input terminal or constant current generator. FIG. 2 schematically shows the main signal waveforms in the configuration of FIG. 1. Figure 2 (a) shows the input pulse waveform or buffer circuit output waveform, Figure 2 (b) shows the output waveform of the half-wave rectifier circuit 4, and the broken line shows the waveform removed by the half-wave rectifier circuit from the output waveform of the differentiating circuit 3. , (c) in the same figure shows the waveform output from the drive circuit 2, and (d) in the same figure shows the optical output waveform from the semiconductor laser 1.

これらの図から明らかなように、本発明では入力パルス
に立上り微分信号を合成して半導体レーザの駆動を行う
。勿論このとき半導体レーザ1への直流バイアス電流は
与えず、バイアスフリーでの駆動を行う。この結果本発
明実施例の光伝送装置では半導体レーザ1の駆動がバイ
アスAPCを用いない駆動となり、しかも極簡単な回路
付加により半導体レーザ駆動信号の立上り部に短いパル
スを付加することができる。従って半導体レーザの立上
り部の電流拡幅が大きくなり零バイアス変調による発振
遅れ時間短縮が容易でありパターン効果による立上りジ
ッタを最小限に抑制することが可能となる。また、信号
立上り部に付加する短いパルスが微分信号であるため、
半導体レーザのキャリア寿命に起因する内部キャリア密
度の立上り時定数を打ち消すように微分信号時定数を設
定することが可能である。この場合、実質的な半導体レ
ーザ内部キャリア密度立上り時間を直流バイアス電流が
与えられている場合と同等にすることができる。ここで
第1図に示した本発明実施例が極簡単な回路付加により
実施できることを具体的に示す。第3図は第1図実施例
の微分回路3、半波整流回路4を具体化した回路構成図
である。第3図3の微分回路はCR微分器、4の半波整
流回路はダイオードで構成できる。これらの回路素子は
特に外部付けする必要がなく、集積化が容易な素子であ
るため駆動ICとして1つのICチップ内に設けること
ができる。また、バッファー回路5は通常の駆動回路に
おける入力バッファースイッチ回路をそのままま用いれ
ば良く、本発明のため特に新しく設けるのではなく、実
用的に用いられている通常の半導体レーザ駆動回路の一
部である。
As is clear from these figures, in the present invention, the semiconductor laser is driven by combining the rising differential signal of the input pulse. Of course, at this time, no DC bias current is applied to the semiconductor laser 1, and bias-free driving is performed. As a result, in the optical transmission device according to the embodiment of the present invention, the semiconductor laser 1 is driven without using bias APC, and a short pulse can be added to the rising edge of the semiconductor laser drive signal by adding an extremely simple circuit. Therefore, the current amplification at the rising portion of the semiconductor laser becomes large, the oscillation delay time can be easily shortened by zero bias modulation, and the rising jitter due to pattern effects can be suppressed to a minimum. Also, since the short pulse added to the rising edge of the signal is a differential signal,
It is possible to set the differential signal time constant so as to cancel out the rise time constant of the internal carrier density caused by the carrier life of the semiconductor laser. In this case, the substantial semiconductor laser internal carrier density rise time can be made equal to that when a DC bias current is applied. Here, it will be specifically shown that the embodiment of the present invention shown in FIG. 1 can be implemented by adding an extremely simple circuit. FIG. 3 is a circuit configuration diagram embodying the differentiator circuit 3 and half-wave rectifier circuit 4 of the embodiment shown in FIG. 3. The differentiating circuit shown in FIG. 3 can be constructed with a CR differentiator, and the half-wave rectifier circuit 4 can be constructed with a diode. These circuit elements do not particularly need to be externally attached, and since they are easy to integrate elements, they can be provided within one IC chip as a driving IC. In addition, the buffer circuit 5 may be an input buffer switch circuit in a normal drive circuit, and is not newly provided for the purpose of the present invention, but may be a part of a normal semiconductor laser drive circuit that is practically used. be.

従って、本発明の実施には回路設計の際、受動素子をわ
ずかに付加するだけで良く、大幅な回路変更等は不要で
ある。
Therefore, in order to implement the present invention, it is only necessary to add a few passive elements during circuit design, and there is no need for major circuit changes.

次に、本発明の第2の発明について実施例を示す。第4
図は本発明光伝送装置の光受信部を示す構成ブロック図
である。7は受光素子でたとえばPINフォトダイオー
ド、8は前置増幅器で例えばトランスインピーダンスア
ンプ、9は主増幅器、1Gはディジタル信号再生のため
の識別回路、11は微分回路、12は半波整流回路、1
3は受信レベル検出回路で識別回路IOのしきい信号レ
ベルを制御する機能をもつ。またI4はデータ出力端子
である。
Next, an example will be shown regarding the second aspect of the present invention. Fourth
The figure is a configuration block diagram showing an optical receiving section of the optical transmission device of the present invention. 7 is a light receiving element such as a PIN photodiode; 8 is a preamplifier such as a transimpedance amplifier; 9 is a main amplifier; 1G is an identification circuit for reproducing digital signals; 11 is a differentiation circuit; 12 is a half-wave rectifier circuit;
3 is a reception level detection circuit which has a function of controlling the threshold signal level of the identification circuit IO. Further, I4 is a data output terminal.

この実施例では13のレベル検出回路と10の識別回路
により識別レベルを自動制御する所謂自動しきい値制御
(Aulom*jiw Threshold Col+
ol 、以下ATCと記す)回路として機能することが
できる。
In this embodiment, 13 level detection circuits and 10 discrimination circuits are used to automatically control the discrimination level.
ol, hereinafter referred to as ATC) circuit.

このとき微分回路11及び半波整流回路12はレベル検
出回路のレベル検出タイミングを発生するものであり、
受信光パルスの立下り部で入力パルスの微分信号を抽出
する。13のレベル検出回路は半波整流回路12の出力
に同期してレベル検出を行うようにする。このとき半波
整流回路出力は光信号の“ON”状態から“OFF”状
態に変化するときに発生するためそのままでは“ON”
状態のレベル検出ができない。そこでレベル検出回路1
3ては例えば小信号パルス周期より短いサンプリング周
期(例えば最小信号パルス周期の1/4)でピークホー
ルドを行い、半波整流回路I2がらの出力があった時点
のホールド値で識別しきい値を決定、出力するようにす
れば良い。このように構成、機能させることにより、識
別しきい値が光信号の立下り直前の値で決定され、以下
のように利点が現われる。即ち、第8図実線で示したよ
うに、半導体レーザの零バイアス変調を行った場合では
前述した発振遅れ時間の他に発振立上り部での光出方の
振動現象が現れ易い。これは半導体レーザ内部で所謂Q
スイッチングが行われ、キャリア密度及び光子密度の急
激な変動が起り、キャリア密度と光子密度の相互作用に
よる所謂緩和振動が現われるためである。この緩和振動
はキャリア寿命程度の時間で収束しておさまるが、この
間先出カがスパイク状に増大することが多い。従ってこ
の緩和振動の現われている時間内に受信レベルの検出を
行うことは誤った受信レベルの検出を行うことが多く、
半導体レーザの零バイアス変調における大きな問題の1
つになっている。第4図に示した本発明実施例では光パ
ルスの立上り部をさけ、光パルス立下り部をトリガとし
て受信レベルの検出を行う。このため本発明の光伝送装
置では半導体レーザが零バイアス変調であることによる
受信誤りを抑制し、通常のバイアスを用いた変調方式と
同等の伝送品質を確保することができる特徴をもってい
る。第5図は第4図実施例による信号波形を模式的に示
したものであり、ランダムなパターンを重ね合わせた所
謂アイパターンで示しである。
At this time, the differentiator circuit 11 and the half-wave rectifier circuit 12 generate the level detection timing of the level detection circuit.
A differential signal of the input pulse is extracted at the falling edge of the received optical pulse. The level detection circuit 13 performs level detection in synchronization with the output of the half-wave rectification circuit 12. At this time, the half-wave rectifier circuit output occurs when the optical signal changes from the "ON" state to the "OFF" state, so if it is left as it is, it will remain "ON".
Condition level cannot be detected. Therefore, level detection circuit 1
3. For example, peak hold is performed at a sampling period shorter than the small signal pulse period (for example, 1/4 of the minimum signal pulse period), and the discrimination threshold is determined by the hold value at the time of the output from the half-wave rectifier circuit I2. All you have to do is decide and output it. By configuring and functioning in this way, the discrimination threshold value is determined by the value immediately before the fall of the optical signal, and the following advantages appear. That is, as shown by the solid line in FIG. 8, when a semiconductor laser is subjected to zero-bias modulation, in addition to the oscillation delay time described above, an oscillation phenomenon in the direction of light output at the rising edge of oscillation tends to occur. This is the so-called Q inside the semiconductor laser.
This is because switching occurs, causing rapid fluctuations in carrier density and photon density, and so-called relaxation oscillations appear due to the interaction between carrier density and photon density. This relaxation oscillation converges and subsides in a time approximately equal to the carrier life, but during this time the initial output power often increases in a spike-like manner. Therefore, detecting the reception level during the time when this relaxation oscillation is occurring often results in incorrect reception level detection.
One of the major problems in zero-bias modulation of semiconductor lasers
It has become. In the embodiment of the present invention shown in FIG. 4, the reception level is detected using the falling part of the optical pulse as a trigger while avoiding the rising part of the optical pulse. Therefore, the optical transmission device of the present invention has the feature of suppressing reception errors due to zero-bias modulation of the semiconductor laser and ensuring transmission quality equivalent to a modulation method using a normal bias. FIG. 5 schematically shows the signal waveform according to the embodiment shown in FIG. 4, and is shown as a so-called eye pattern in which random patterns are superimposed.

第5図(a)は主増幅器からの出力波形、同図(b)は
半波整流器出力であり実線が出力波形、破線は除去され
た立上り部微分波形値同図(c)は14からの出力波形
である。第5図(a)かられかるように零バイアス変調
を行った半導体レーザ出力を受信した場合、光パルス立
上り部で発振遅れ時間のパターン効果による立上りジッ
タや緩和振動による信号スパイクが現われている。
Figure 5 (a) shows the output waveform from the main amplifier, Figure 5 (b) shows the output from the half-wave rectifier, the solid line shows the output waveform, and the broken line shows the removed rising edge differential waveform. This is the output waveform. As shown in FIG. 5(a), when a semiconductor laser output subjected to zero bias modulation is received, signal spikes due to relaxation oscillation and rising jitter due to the pattern effect of the oscillation delay time appear at the rising edge of the optical pulse.

この光パルス立上り部をさけてレベル検出することで適
正なレベル検出を行えることが理解されるであろう。な
お、第4図実施例では半波形整流回路12の出力をトリ
ガとしてレベル検出を行ったがこれは半波整流回路12
の出力を平均化して行ってもよい。また第5図(b)が
ら分がるように半波形整流回路12の出力は安定な周期
性をもっており、受信タイミングやクロック等の抽出に
利用することもできる。
It will be understood that appropriate level detection can be performed by detecting the level while avoiding the rising portion of the optical pulse. In the embodiment shown in FIG. 4, level detection was performed using the output of the half-wave rectifier circuit 12 as a trigger;
The output may be averaged. Further, as can be seen from FIG. 5(b), the output of the half-waveform rectifier circuit 12 has stable periodicity, and can be used for extracting reception timing, clock, etc.

第6図は本発明実施例の他の例を示す構成ブロック図で
あり、ここでは主増幅器9′の利得制御を第4図実施例
と同様な原理で行った実施例である。またこの実施例に
おいては微分回路11の出力を半波整流回路12と15
に分配し、全波整流回路15の出力をタイミング抽出回
路16へ入力して識別タイミングの抽出を行う例を付加
しである。
FIG. 6 is a block diagram showing another example of the embodiment of the present invention, in which the gain control of the main amplifier 9' is performed on the same principle as the embodiment of FIG. 4. Further, in this embodiment, the output of the differentiating circuit 11 is converted into half-wave rectifying circuits 12 and 15.
An example is added in which the output of the full-wave rectifier circuit 15 is input to the timing extraction circuit 16 to extract the identification timing.

このような構成ではクロックの再生も容易であり、クロ
ック出力端子17を設けることも可能である。
With such a configuration, it is easy to reproduce the clock, and it is also possible to provide the clock output terminal 17.

以上説明してきたように本発明では半導体レーザの零バ
イアス変調を行っても通常のバイアス方式の変調の場合
と同等の伝送品質の確保が可能であり、短距離光デイジ
タル伝送装置として前述した光学系の簡略化と合せて部
品コスト、組立てコスト、調整コストを大幅に削減して
非常に低価格な高速光伝送装置が実現できる特徴をもっ
ている。
As explained above, in the present invention, even when performing zero-bias modulation of a semiconductor laser, it is possible to ensure transmission quality equivalent to that of normal bias modulation, and the optical system described above can be used as a short-distance optical digital transmission device. In addition to the simplification of the system, the cost of parts, assembly, and adjustment can be significantly reduced, making it possible to realize an extremely low-cost high-speed optical transmission device.

なお、本発明は前記実施例に限定されるものではなく、
例えば第1、第2の発明を同時に併用できることは勿論
、それぞれの詳細回路、仕様部品等について各種の応用
が可能なことは述べるまでもないことである。
Note that the present invention is not limited to the above embodiments,
For example, it goes without saying that the first and second inventions can be used in combination at the same time, and that various applications are possible for detailed circuits, specification parts, etc. of each.

[発明の効果] 本発明は半導体レーザを光源とする高速光伝送装置の大
幅な低コスト化に有効であり、超高速°ディジタル機器
等の構築が容易となるための産業上の貢献度が高いとい
う効果をもっている。
[Effects of the Invention] The present invention is effective in significantly reducing the cost of high-speed optical transmission equipment that uses a semiconductor laser as a light source, and has a high degree of industrial contribution as it facilitates the construction of ultra-high-speed digital equipment, etc. It has this effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明実施例に関する図、第7図、
第8図は従来技術及び半導体レーザの−般的特性を説明
するための模式図である。 1・・・半導体レーザ、2・・・駆動回路、3.11・
・・微分回路、4.12・・・半波整流回路5、入力バ
ッファー回路、7・・・フォトダイオード、8、前置増
幅器、9.主増幅器、10.・・・識別回路13、・・
・レベル検出器
Figures 1 to 6 are diagrams relating to embodiments of the present invention; Figure 7;
FIG. 8 is a schematic diagram for explaining the prior art and the general characteristics of a semiconductor laser. 1... Semiconductor laser, 2... Drive circuit, 3.11.
...Differentiating circuit, 4.12... Half-wave rectifier circuit 5, input buffer circuit, 7... Photodiode, 8, Preamplifier, 9. Main amplifier, 10. ...Identification circuit 13, ...
・Level detector

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザを光源とし、該半導体レーザへの直
流バイアス電流を与えずにパルス信号変調を行う光伝送
装置において、前記半導体レーザへ入力するパルス信号
の立上り微分信号を形成するとともに該立上り微分信号
と前記半導体レーザへ入力するパルス信号を合成し、該
合成した信号により前記半導体レーザのパルス信号変調
を行うことを特徴とする光伝送装置。
(1) In an optical transmission device that uses a semiconductor laser as a light source and performs pulse signal modulation without applying a DC bias current to the semiconductor laser, a rising differential signal of a pulse signal input to the semiconductor laser is formed, and the rising differential signal is An optical transmission device characterized in that a signal and a pulse signal input to the semiconductor laser are combined, and the combined signal performs pulse signal modulation of the semiconductor laser.
(2)半導体レーザを光源とし、該半導体レーザへの直
流バイアス電流を与えずにパルス信号変調を行う光伝送
装置において、光受信部で光パルス立上り部に相当する
立下り微分信号を形成するとともに該立下り微分信号を
用いて受信条件の設定を行うことを特徴とする光伝送装
置。
(2) In an optical transmission device that uses a semiconductor laser as a light source and performs pulse signal modulation without applying a DC bias current to the semiconductor laser, the optical receiver forms a falling differential signal corresponding to the rising edge of the optical pulse, and An optical transmission device characterized in that reception conditions are set using the falling differential signal.
JP02242506A 1990-09-14 1990-09-14 Optical transmission equipment Expired - Fee Related JP3140763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02242506A JP3140763B2 (en) 1990-09-14 1990-09-14 Optical transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02242506A JP3140763B2 (en) 1990-09-14 1990-09-14 Optical transmission equipment

Publications (2)

Publication Number Publication Date
JPH04123482A true JPH04123482A (en) 1992-04-23
JP3140763B2 JP3140763B2 (en) 2001-03-05

Family

ID=17090118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02242506A Expired - Fee Related JP3140763B2 (en) 1990-09-14 1990-09-14 Optical transmission equipment

Country Status (1)

Country Link
JP (1) JP3140763B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998733B2 (en) 2002-05-07 2006-02-14 Renesas Technology Corp. Pulse current generation circuit
JP2013157779A (en) * 2012-01-30 2013-08-15 Nippon Telegr & Teleph Corp <Ntt> Optical transmission circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998733B2 (en) 2002-05-07 2006-02-14 Renesas Technology Corp. Pulse current generation circuit
JP2013157779A (en) * 2012-01-30 2013-08-15 Nippon Telegr & Teleph Corp <Ntt> Optical transmission circuit

Also Published As

Publication number Publication date
JP3140763B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US7970283B2 (en) High speed SFP transceiver
US6973107B2 (en) High-speed laser array driver
EP0917309B1 (en) Fiber-optic transceiver for long distance data communications
US9882651B2 (en) Methods, circuits and optical cable assemblies for optical transmission of high-speed data and low-speed data
US20020027689A1 (en) Fiber optic transceiver employing front end level control
US10469173B2 (en) High-speed low-power-consumption optical transceiver chip
US5175641A (en) Dual-mode laser diode transmitter
JP2004172237A (en) Optical transmission control unit
CA1281075C (en) Semiconductor laser modulation control system
US9497525B2 (en) Optical engines and optical cable assemblies having electrical signal conditioning
JPH04123482A (en) Light transmitter
JP3175132B2 (en) Optical transmitter
US9780886B2 (en) Circuit arrangement and method for receiving optical signals
GB2426880A (en) Control of peaking of laser driver currentto improve eye quality
US9148129B2 (en) Driver circuit with asymmetric boost
Hu et al. A $4\times25 $ Gb/s Optical Transmitter Using Low-Cost 10 Gb/s VCSELs in 40-nm CMOS
US4757508A (en) Tracking modulation limiter for lasers
Shi et al. Design techniques for signal reflection suppression in high-speed 25-Gb/s laser drivers in CMOS
JPH05300096A (en) Optical transmitter and optical receiver for optical parallel transmission and optical parallel transmitting system provided with them
JPH11223802A (en) Optical modulating element driving circuit and optical transmission device
JP2022010899A (en) Transmitter/receiver, terminal device and transmission/reception system
JP3125262B2 (en) High-speed laser diode drive circuit
JPH1168674A (en) Optical receiver
JPS59169239A (en) Optical modulating circuit
JPH04290483A (en) Laser diode driving circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees