JPS59169239A - Optical modulating circuit - Google Patents

Optical modulating circuit

Info

Publication number
JPS59169239A
JPS59169239A JP58043100A JP4310083A JPS59169239A JP S59169239 A JPS59169239 A JP S59169239A JP 58043100 A JP58043100 A JP 58043100A JP 4310083 A JP4310083 A JP 4310083A JP S59169239 A JPS59169239 A JP S59169239A
Authority
JP
Japan
Prior art keywords
circuit
signal
output
light emitting
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58043100A
Other languages
Japanese (ja)
Inventor
Masaru Nakamura
優 中村
Osamu Kinoshita
修 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58043100A priority Critical patent/JPS59169239A/en
Publication of JPS59169239A publication Critical patent/JPS59169239A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To stabilize and improve the optical output of a light emitting element for an optical modulating circuit containing a light emission output stabilizing function, by transmitting a part of the modulated signal through a delay circuit before supplying it to a difference signal detecting circuit. CONSTITUTION:A delay circuit 10 containing an optical connecting circuit consisting of a semiconductor laser 12 and a photodetecting element 13 is set on a signal route before a part of the modulated signal supplied from a terminal 1 is supplied to a difference signal detecting circuit 7. Therefore the output signal of the circuit 7 produces no undesired error signal due to a difference of delay time by applying a signal waveform showing the optical output of a semiconductor laser 4. Thus the optical output of the laser 4 can be extremely stabilized and improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、半導体発光素子等の変調に有用な発光出力
安定化機能を備えた光変調回路VC関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical modulation circuit VC having a light emission output stabilizing function useful for modulating semiconductor light emitting devices and the like.

〔発明の技術的背景とその問題点3 発光ダイオードや半導体レーザ等の半導体発光素子をパ
ルス通信用光源に使用する場合、通常この半導体発光素
子のしきい電流値近傍のバイアスットワーク、特にスタ
ー構成若しくはバス構成の光ネットワークで半導体レー
ザを光源として使用する場合にも、通常待機状態として
半導体レーザにはバイアス電流が印加されている。
[Technical background of the invention and its problems 3 When a semiconductor light emitting device such as a light emitting diode or a semiconductor laser is used as a light source for pulse communication, the bias current value of the semiconductor light emitting device in the vicinity of the threshold current value, especially the star configuration, is usually Alternatively, even when a semiconductor laser is used as a light source in an optical network having a bus configuration, a bias current is normally applied to the semiconductor laser in a standby state.

従って、このような元ネットワークでは信号送信中の局
以外の複数局の半導体レーザに印加されたバイアス電流
により生ずるパイプ哀光は、光ネットワークで加算され
て増大し、信号を受信する受信局での散射雑音(ショッ
ト雑音)を増加させ著しいψ劣化を招いていた。
Therefore, in such an original network, the pipe light generated by the bias current applied to the semiconductor lasers of multiple stations other than the one transmitting the signal is added up and increased in the optical network, and the light emitted from the pipe at the receiving station that receives the signal increases. This increased scattering noise (shot noise) and caused significant ψ deterioration.

このジ張劣化を減少させるには、半導体レーザにバイア
ス電流を印加せず、パルス電流を直接印加する零バイア
ス駆動法が、好ましい。
In order to reduce this dielectric deterioration, it is preferable to use a zero-bias driving method in which a pulse current is directly applied without applying a bias current to the semiconductor laser.

しかしながら半導体レーザの出力の温度依存性を抑制す
るには、通常使用されている方法、即ちバイアス亀流を
印加しこのバイアスに流によるバイアス光を検出し半導
体レーザの光出力の制御を可能としていた方法は、零バ
イアス駆動法ではバイアス電流を印加しないために有効
でなくなる。
However, in order to suppress the temperature dependence of the output of a semiconductor laser, a commonly used method has been used, namely, applying a bias current and detecting the bias light caused by this bias current, making it possible to control the optical output of the semiconductor laser. The method becomes ineffective in the zero-bias driving method because no bias current is applied.

このため、半導体レーザの光出力の安定化ループの速度
がより高速になるような素子により構成した高速出力安
定化回路(以下FA8T−APCと略称する)が考案さ
れている。
For this reason, a high-speed output stabilization circuit (hereinafter abbreviated as FA8T-APC) has been devised, which is composed of elements that increase the speed of the stabilization loop for the optical output of a semiconductor laser.

このFAST−APCは、第1図に示すように端子(1
)よシ入力した変Hq 18号の一部が加算器(2)に
入力し、この加算器(2)の出力信号はさらに駆動回路
(3)に入力し半導体レーザ(4)全発光させている。
This FAST-APC has a terminal (1
) A part of the input variable Hq No. 18 is input to the adder (2), and the output signal of this adder (2) is further input to the drive circuit (3), which causes the semiconductor laser (4) to fully emit light. There is.

また、半導体レーザ(4)の光出力の一部を光検出素子
(5)で受光検出し、この検出信号は増幅器(6)を経
た後、原信号である変調信号の他部と共に差信号検出回
路(7)に入力する。
In addition, a part of the optical output of the semiconductor laser (4) is received and detected by the photodetecting element (5), and this detection signal is passed through the amplifier (6), and then a difference signal is detected together with the other part of the modulation signal which is the original signal. Input to circuit (7).

さらに差信号検出回路(力の出力信号、即ち検出信号と
変調信号とを比較した場合に得られる誤差信号は前記加
算回路(2)に入力し半導体レーザ(4)に帰還されて
いる。
Further, an error signal obtained by comparing a difference signal detection circuit (force output signal, that is, a detection signal and a modulation signal) is input to the addition circuit (2) and fed back to the semiconductor laser (4).

原理的にはこのような回路構成により半導体レーザ(4
)の光出力を変調信号に忠実な相似波形とすることがで
きる。
In principle, this circuit configuration allows semiconductor lasers (4
) can be made into a similar waveform that is faithful to the modulation signal.

しかしながら、前述のように半導体レーザ(4)にはバ
イアス電流を印加しない零バイアス駆動法を採っている
ため、やはりパルス信号である変調信号に対して光検出
器(5)の検出信号が遅延を生ずる。
However, as mentioned above, since the semiconductor laser (4) uses a zero-bias driving method in which no bias current is applied, the detection signal of the photodetector (5) is delayed relative to the modulation signal, which is a pulse signal. arise.

この半導体レーザの入カバルス信号に対する光出力の遅
延に関する定量式はよく知られておりp で与えられる。
The quantitative expression regarding the delay of the optical output with respect to the input cabling signal of the semiconductor laser is well known and is given by p.

ここで、Tはパルス遅延時間、 Tsは半導体レーザ内
のキャリアライフタイム、工pは入力パルス電流値、I
thは半導体レーザのしきい電流値である。
Here, T is the pulse delay time, Ts is the carrier lifetime in the semiconductor laser, p is the input pulse current value, and I
th is the threshold current value of the semiconductor laser.

この場合、例えばI t h = 50 ma 、 T
s=5ns、’ I−〇mAとするとT = 9nsと
なり、即ちしきい電流値が50 m h  の半導体レ
ーザではそのパルス遅延時間は約9nsとなる。
In this case, for example, I th = 50 ma, T
If s=5 ns and 'I-0 mA, then T=9 ns, that is, in a semiconductor laser with a threshold current value of 50 m h, the pulse delay time is about 9 ns.

また、光検出素子に関しても、上述の半導体レーザ程で
はないが僅かに遅延を生じさせる原因となっている。
Furthermore, the photodetector also causes a slight delay, although not as much as the above-mentioned semiconductor laser.

次に、このFAsT−APCの各部における信号波形を
示す第2図を参照して説明する。
Next, a description will be given with reference to FIG. 2 showing signal waveforms at each part of this FAsT-APC.

第2図は、第1図における帰還ループの一点(■)を開
放した。いわゆる開ループ状態に於ける各部の信号波形
(第2図(a)乃至(e))をタイムチャートで示した
ものである。
In FIG. 2, one point (■) of the feedback loop in FIG. 1 is opened. The signal waveforms (FIGS. 2(a) to 2(e)) of each part in a so-called open loop state are shown as time charts.

まず、端子(1)より入力した変調信号(第2図(a)
)に対し駆動回路(3)の出力信号(第2図(b))は
、殆んど遅延することなく伝わり半導体レーザ(4)を
発光させる。
First, the modulated signal input from terminal (1) (Fig. 2 (a)
), the output signal of the drive circuit (3) (FIG. 2(b)) is transmitted with almost no delay and causes the semiconductor laser (4) to emit light.

しかし半導体レーザ(4)の光出力は、例えば上述のパ
ルス遅延時間α)分だけ遅れ、光検出器(5)の検出信
号(第2図(C))は駆動回路(3)の出力信号(第2
図(b))に対しTだけ遅れた波形となる。
However, the optical output of the semiconductor laser (4) is delayed by, for example, the above-mentioned pulse delay time α), and the detection signal of the photodetector (5) (Fig. 2 (C)) is delayed by the output signal of the drive circuit (3) ( Second
The waveform is delayed by T compared to the waveform shown in FIG.

次に差信号出力回路(7)では、第2図(a)および(
bJに示すごとく、半導体レーザ(4)の出力波高値が
設定すべき所定の波高値と同じであっても、その出力信
号(第2図(d))は大きな誤差を有する信号となる。
Next, in the difference signal output circuit (7), FIGS. 2(a) and (
As shown in bJ, even if the output peak value of the semiconductor laser (4) is the same as the predetermined peak value to be set, the output signal (FIG. 2(d)) is a signal with a large error.

この誤差を有する出力信号(第2図(d> )が加算器
(2)に加えられるため、この加算器(2)の出力は号
(第2図(e))は不要に変動し、半導体レーザ(4)
の出力安定化を低減させていた。
Since the output signal (Fig. 2(d)) having this error is applied to the adder (2), the output signal of this adder (2) will fluctuate unnecessarily (Fig. 2(e)). Laser (4)
The output stabilization was reduced.

またさらには、バイアス亀流を印加しないために、バイ
アス光検出により半導体゛レーザ出力の温度依存性を抑
制することができず、従って前述のパルス遅延時間が変
動し半導体レーザ(4)の出力安走化をさらに低減させ
る原因となっていた。
Furthermore, since no bias current is applied, it is not possible to suppress the temperature dependence of the semiconductor laser output by bias light detection, and therefore the above-mentioned pulse delay time fluctuates and the output of the semiconductor laser (4) becomes unstable. This caused further reduction in chemotaxis.

〔発明の目的〕[Purpose of the invention]

この発明は上述の問題点を考慮してなされたものであり
、その目的とするところは発光素子の零バイアス駆動に
適した発光出力安定化ループを有する光変調回路を提供
することにある。
The present invention has been made in consideration of the above-mentioned problems, and its object is to provide an optical modulation circuit having a light emission output stabilizing loop suitable for zero-bias driving of a light emitting element.

〔発明の概要〕[Summary of the invention]

この発明は、発光素子の光出力の一部を光検出素子で受
光検出し、この検出信号を発光素子の駆動部に負帰還す
る発光出力安定化ループを有する光変調回路であって、
発光素子を駆動する変調信号を、前記発光素子および光
検出素子と同様の特性を有する発光素子および光検出素
子からなる光結合回路を有する遅延回路部で遅延させ、
さらにこの遅延回路部の出力信号と検出信号とを差信号
検出回路に加え、この差信号検出回路の出力猶号と前記
変調信号とを加算回路に入力し、この加算回路の出力信
号により発光素子を駆動させるように構成した光変調回
路である。
The present invention is an optical modulation circuit having a light emission output stabilization loop that receives and detects a part of the light output of a light emitting element by a photodetector and feeds back this detection signal negatively to a drive section of the light emitting element,
A modulation signal for driving a light emitting element is delayed by a delay circuit section having an optical coupling circuit including a light emitting element and a photodetecting element having characteristics similar to those of the light emitting element and the photodetecting element,
Furthermore, the output signal and the detection signal of this delay circuit section are added to a difference signal detection circuit, the output signal of this difference signal detection circuit and the modulation signal are inputted to an addition circuit, and the output signal of this addition circuit is used to control the light emitting element. This is an optical modulation circuit configured to drive.

〔発明の効果〕〔Effect of the invention〕

この発明により発光素子の零バイアス駆動に適し、発光
素子および光検出素子の遅延特性および温度特性による
影響を補償し、発光素子の光出力が安定かつ良好な光変
調回路を得ることができる。
According to the present invention, it is possible to obtain an optical modulation circuit that is suitable for zero-bias driving of a light emitting element, compensates for the effects of delay characteristics and temperature characteristics of the light emitting element and the photodetecting element, and has a stable and good optical output of the light emitting element.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を箱3図および第4図を参照
して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to Box 3 and FIG.

第3図は、この発明である光変調回路の実施例を示す構
成図である。
FIG. 3 is a configuration diagram showing an embodiment of the optical modulation circuit according to the present invention.

尚、第3図では第1図で示した回路と同一の部分には同
一符号が付しである。
In FIG. 3, the same parts as those in the circuit shown in FIG. 1 are given the same reference numerals.

この実施例は、第1図に示した回路構成図に於いて端子
(1)より入力した変調は号の一部が差信号検出回路(
7)に入力する前の1言号経路上に、遅延回路部tto
) tl−設けたものである。この遅延回路部(10)
の構成は、駆動回路u時と、この駆動回路u]>により
駆動する半導体レーザ(6)と、この半導体レーザ@の
光出力を検出する光検出素子(ハ)と、この検出した信
号を増幅する増幅器0→と、さらに増幅器αΦを経た信
号波形を整形する波形整形回路(至)がらなっている。
In this embodiment, in the circuit configuration diagram shown in FIG. 1, part of the signal of the modulation input from terminal (1) is the difference signal detection circuit (
7) On one word path before inputting to
) tl-provided. This delay circuit section (10)
The configuration consists of a drive circuit (u), a semiconductor laser (6) driven by the drive circuit (u), a photodetector (c) that detects the optical output of the semiconductor laser, and a photodetector (c) that amplifies the detected signal. The amplifier 0 → further comprises a waveform shaping circuit (to) that shapes the signal waveform that has passed through the amplifier αΦ.

従って、この遅延回路部10)は半導体レーザ@と光検
出素子C13とからなる光結合回路を有している。
Therefore, this delay circuit section 10) has an optical coupling circuit consisting of a semiconductor laser @ and a photodetecting element C13.

このような光変調回路の帰還ループの一点(0)を開放
した開ループ状態における各部の信号波形を第4図+a
)乃至(d)に示している。
Figure 4 + a shows the signal waveforms of various parts in an open loop state where one point (0) of the feedback loop of such an optical modulation circuit is open.
) to (d).

即ちこれは、変調信号(第4図(a))に対し、外部出
力用の半導体レーザ(4)の光出力を光検出素子(5)
により検出した信号波形(第4図(b))は遅延を生ず
るが、変調信号(:第4図(a))の一部を、半導体レ
ーザ@および光検出素子μ峰を用いて半導体レーザ(4
)の出力波形(第4図(b))が遅延したのと同様に遅
延させ、遅延信号(第4図(C))を得ている。
That is, this means that the optical output of the semiconductor laser (4) for external output is detected by the photodetector (5) in response to the modulated signal (Fig. 4(a)).
Although the detected signal waveform (Fig. 4 (b)) is delayed, a part of the modulated signal (Fig. 4 (a)) is detected by the semiconductor laser (Fig. 4 (a)) using the semiconductor laser @ and the photodetector μ peak. 4
) is delayed in the same way as the output waveform (FIG. 4(b)) is delayed to obtain a delayed signal (FIG. 4(C)).

従って、半導体レーザ(4)の光出力を示す信号波形(
第4図(b))と遅延信号(第4図(C))とを差信号
検出回路(力に加えると、この差信号検出回路(7)の
出力匿号(第4図(d))は、遅延時間差による不要な
誤差信号は生じなくなりこの光出力安定化ループは本来
の機能を果たせることになる。
Therefore, the signal waveform (
When the delay signal (Fig. 4(b)) and the delayed signal (Fig. 4(c)) are applied to the difference signal detection circuit (force), the output code of this difference signal detection circuit (7) (Fig. 4(d)) is obtained. In this case, unnecessary error signals due to delay time differences are no longer generated, and this optical output stabilization loop can perform its original function.

上述した変調信号(第4図(a〕)の一部を、半導体レ
ーザ(4)の出力波形(第4図(b))が遅延したのと
同様に遅延させることは、遅延回路部tloJを半導体
レーザ(4)および光検出素子(5)と同様の特性を有
する半導体レーザ(6)および光検出素子aΦとから構
成する光結合回路により実現することができる。
Delaying a part of the above-mentioned modulation signal (Fig. 4(a)) in the same way as the output waveform of the semiconductor laser (4) (Fig. 4(b)) is delayed by delaying the delay circuit section tloJ. This can be realized by an optical coupling circuit composed of a semiconductor laser (6) and a photodetector aΦ having characteristics similar to those of the semiconductor laser (4) and the photodetector (5).

さらには、遅延回路部U@の半導体レーザ04および光
検出素子(至)の温度特性は、半導体レーザ(4)およ
び光検出素子(5)の温度特性と同様であり、従って半
導体レーザ+4) 、 (12および光検出素子t5)
 、 u3の各光結合部の温度の影響による遅延時間の
変動も同様となり半導体レーザ@および光検出素子(l
■の温度補償を行なうことができる。
Furthermore, the temperature characteristics of the semiconductor laser 04 and the photodetection element (to) of the delay circuit unit U@ are the same as those of the semiconductor laser (4) and the photodetection element (5), so the semiconductor laser +4), (12 and photodetector t5)
, u3 The delay time changes due to the temperature of each optical coupling part of the semiconductor laser @ and the photodetection element (l
(2) Temperature compensation can be performed.

また遅延回路部JO)は、主に光結合回路と波形整形回
路(ト)から構成されているが、この波形成形回路Q5
は、変調信号(第4図(a))の一部の信号波形の遅延
のみを正確に行なうため、即ち遅延回路部(ICjIに
おける増幅器α→の出力信号の波形または波高値が変調
信号(第4図(a))の波形または波高値と等しくなる
ようにするためのものである。
The delay circuit section JO) is mainly composed of an optical coupling circuit and a waveform shaping circuit (G), and this waveform shaping circuit Q5
In order to accurately delay only a part of the signal waveform of the modulated signal (Fig. 4(a)), the waveform or peak value of the output signal of the amplifier α→ in the delay circuit section (ICjI) is This is to make the waveform or peak value equal to that shown in FIG. 4(a).

以上、半導体レーザ(4)および光検出素子(5)と同
様な特性を持つ半導体レーザ(6)および光検出素子q
東を用いた遅延回路部do)を有する回路構成により半
導体レーザ(4)および光検出素子(5)の遅延特性お
よび温度特性による影響を補償することができ。
As described above, the semiconductor laser (6) and the photodetector element q have the same characteristics as the semiconductor laser (4) and the photodetector element (5).
The influence of the delay characteristics and temperature characteristics of the semiconductor laser (4) and the photodetector element (5) can be compensated for by the circuit configuration having the delay circuit section (do) using a diode.

半導体レーザ(4)の光出力を安定かつ良好にすること
ができる。
The optical output of the semiconductor laser (4) can be made stable and good.

尚、先に半導体レーザのパルス遅延時間Tに関する式を
説明したが、このパルス遅延時間Tは。
The equation regarding the pulse delay time T of a semiconductor laser was explained earlier, and this pulse delay time T is as follows.

詳細には印加する際のバイアス電流Idにも依存しその
関係式は となる。
In detail, it also depends on the bias current Id when applied, and the relational expression is as follows.

即ち、半導体ンーザの温度特性が一定であればパルス遅
延時間は、零バイアスで最も大きくまたしきい電流値で
零となる。
That is, if the temperature characteristics of the semiconductor laser are constant, the pulse delay time is greatest at zero bias and becomes zero at the threshold current value.

従って、半導体レーザ(4)および光検出素子(5)の
遅延時間が遅延回路部110)による遅延時間と僅かに
異なる場合またはその他の要因で遅延時間差を生ずる場
合は遅延回路部内半導体レーザのバイアス電流を微調す
ることにより制御し遅延時間を調整して一致させること
ができる。
Therefore, if the delay times of the semiconductor laser (4) and the photodetector (5) are slightly different from the delay time caused by the delay circuit section 110), or if a delay time difference occurs due to other factors, the bias current of the semiconductor laser in the delay circuit section By fine-tuning the delay time, the delay time can be adjusted and matched.

また、出力安定化ループ内には、一般に帯域制限因子が
入っており、増幅器(6)からの差信号検出回路への入
力信号は、完全な矩形ではない。これに対し遅延回路部
uO)を通過する信号は、はとんど帯域制限を受けない
ため矩形に近いものが得られる。
Furthermore, the output stabilization loop generally includes a band-limiting factor, and the input signal from the amplifier (6) to the difference signal detection circuit is not perfectly rectangular. On the other hand, the signal passing through the delay circuit unit uO) is almost not subject to band limitation, so that a nearly rectangular signal can be obtained.

従って、このような出力安定化ループの不完全な矩形信
号に対しては5例えば波形整形回路αυ内に、出力安定
化ループの場合と同等の帯域制限因子を入几ることで補
償することができる。
Therefore, it is possible to compensate for such an imperfect rectangular signal in the output stabilization loop by inserting a band-limiting factor equivalent to that in the output stabilization loop, for example, in the waveform shaping circuit αυ. can.

このよりにすれば半導体レーザ(4)および光検出素子
(5)の遅延特性および温度特性による影響を極めて正
確に補償することができ、半導体レーザ(4)の光出力
を極めて安定かつ良好にすることができる。
This makes it possible to extremely accurately compensate for the effects of the delay characteristics and temperature characteristics of the semiconductor laser (4) and the photodetector (5), making the optical output of the semiconductor laser (4) extremely stable and good. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の出力安定化回路を示す構成図、第2図(
a)乃至(e)は第1図に示す出力安定化回路の各部の
信号波形を示す図、第3図はこの発明の一実施例を示す
回路構成図、第4図は第3図に示す回路の各部の信号波
形を示す図である。
Figure 1 is a configuration diagram showing a conventional output stabilization circuit, and Figure 2 (
a) to (e) are diagrams showing signal waveforms of each part of the output stabilization circuit shown in FIG. 1, FIG. 3 is a circuit configuration diagram showing an embodiment of the present invention, and FIG. 4 is shown in FIG. FIG. 3 is a diagram showing signal waveforms at various parts of the circuit.

Claims (1)

【特許請求の範囲】 (1)  第1の発光素子を駆動するための駆動部と前
記第1の発光素子の出力光の一部を受光検出する第1の
光検出素子と、前記第1の発光素子を駆動する変調信号
の一部を取り出し、この取り出した変調信号を遅延させ
る遅延回路部と、この遅延−踏部の出力信号と前記第1
の光検出素子の出力信号との差を検出する差信号検出回
路と、この差信号検出回路の出力信号と前記変調信号と
を加算して前記第1の発光素子の駆動部に出力する加算
回路とから成り、前記遅延回路部が第2の発光素子とこ
の第2の発光素子の出力光を受光検出する第2の光検出
素子とからなる光結合回路を有することを特徴とする光
変調回路。 (2)  第2の発光素子および第2の光検出素子は前
記第1の発光素子および第1の光検出素子と略同様の遅
延特性を有することを特徴とする特許請求の範囲第1項
記載の光変調回路。 (3j  第1および第2の発光素子は半導体レーザで
あることを特徴とする特許請求の範囲第1項記載の光変
調回路。 (4)遅延回路部は前記第2の光検出素子からの出力信
号を波形整形する回路を有することをtPf徴とする特
許請求の範囲第1項記載の光変調回路。
[Scope of Claims] (1) A driving section for driving a first light emitting element, a first light detecting element for receiving and detecting a part of the output light of the first light emitting element, and a delay circuit section that extracts a part of the modulation signal that drives the light emitting element and delays the extracted modulation signal; an output signal of the delay-tread section and the first
a difference signal detection circuit that detects a difference between the output signal of the photodetector and an adder circuit that adds the output signal of the difference signal detection circuit and the modulation signal and outputs the result to the drive section of the first light emitting element. an optical modulation circuit, characterized in that the delay circuit section has an optical coupling circuit comprising a second light emitting element and a second photodetecting element that receives and detects the output light of the second light emitting element. . (2) The second light emitting element and the second photodetecting element have substantially the same delay characteristics as the first light emitting element and the first photodetecting element, as set forth in claim 1. optical modulation circuit. (3j) The optical modulation circuit according to claim 1, wherein the first and second light emitting elements are semiconductor lasers. (4) The delay circuit section outputs the output from the second photodetecting element. 2. The optical modulation circuit according to claim 1, wherein the optical modulation circuit has a tPf characteristic that includes a circuit that shapes the waveform of a signal.
JP58043100A 1983-03-17 1983-03-17 Optical modulating circuit Pending JPS59169239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58043100A JPS59169239A (en) 1983-03-17 1983-03-17 Optical modulating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58043100A JPS59169239A (en) 1983-03-17 1983-03-17 Optical modulating circuit

Publications (1)

Publication Number Publication Date
JPS59169239A true JPS59169239A (en) 1984-09-25

Family

ID=12654411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58043100A Pending JPS59169239A (en) 1983-03-17 1983-03-17 Optical modulating circuit

Country Status (1)

Country Link
JP (1) JPS59169239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358654A (en) * 1991-05-10 1992-12-11 Tokyo Electric Co Ltd Printing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358654A (en) * 1991-05-10 1992-12-11 Tokyo Electric Co Ltd Printing device

Similar Documents

Publication Publication Date Title
US5293545A (en) Optical source with reduced relative intensity noise
US5706117A (en) Drive circuit for electro-absorption optical modulator and optical transmitter including the optical modulator
US4611352A (en) Optical transmission apparatus
US5315426A (en) Optical transmitter
US7680421B2 (en) Multimode optical fibre communication system
US4796266A (en) Laser driver circuit with dynamic bias
US5012475A (en) Analog compensation system for linear lasers
US5325225A (en) Method of optical transmission and optical transmitter used in the same
JPS5851435B2 (en) Light emitting element driving method
US5140452A (en) Long-distance high-speed optical communication scheme
US5646560A (en) Integrated low-power driver for a high-current laser diode
CA1281075C (en) Semiconductor laser modulation control system
US6178026B1 (en) Analog optical transmission apparatus
JPS59169239A (en) Optical modulating circuit
US6373610B1 (en) Optical surge suppressing apparatus
CN101237283B (en) There is directly modulation or the externally modulated laser optical transmission system of feed-forward noise elimination
US7130546B2 (en) Optical receiver
EP0422852B1 (en) Method of producing a semiconductor laser adapted for use in an analog optical communications system
CN101277154B (en) For generation of the optical launcher of the optical modulation for being transferred to remote receiver via optical fiber link
JP3140763B2 (en) Optical transmission equipment
JPH10221656A (en) Optical transmitter and optical transmitting method
US5648863A (en) Optical communication system
JPS5979647A (en) Optical modulating circuit
JPS6245085A (en) Laser diode drive circuit
JPH11223802A (en) Optical modulating element driving circuit and optical transmission device