JPH04123418A - Electron beam lithography equipment and lithography process - Google Patents

Electron beam lithography equipment and lithography process

Info

Publication number
JPH04123418A
JPH04123418A JP24233590A JP24233590A JPH04123418A JP H04123418 A JPH04123418 A JP H04123418A JP 24233590 A JP24233590 A JP 24233590A JP 24233590 A JP24233590 A JP 24233590A JP H04123418 A JPH04123418 A JP H04123418A
Authority
JP
Japan
Prior art keywords
electromagnetic field
electron beam
electron
lithography
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24233590A
Other languages
Japanese (ja)
Inventor
Yasunari Hayata
康成 早田
Hideo Todokoro
秀男 戸所
Hiroyuki Shinada
博之 品田
Hiroyuki Ito
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24233590A priority Critical patent/JPH04123418A/en
Publication of JPH04123418A publication Critical patent/JPH04123418A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration in positional accuracy due to variable electromagnetic fields by providing a lithography equipment with an electron gun for measuring variable electromagnetic fields. CONSTITUTION:This invention is an electron beam lithography equipment comprising an electron gun 11 for measuring variable electromagnetic fields and an electron-position detector 13 in addition to a lithography electron gun 1: for example, the electron gun is a field emission type electron gun whose electron source is TiW. When electrons for measuring variable electromagnetic fields are kept detected by the detector 13, electromagnetic fields, if generated, other than those for deflection appear in the form of a positional deviation of an electron beam and can be sensed immediately. The intensity of electromagnetic fields can be estimated from the amount of positional deviation, and the distribution of intensity can be realized with a plurality of electron beams. Therefore, processing by estimation and correction of influences of these variable electromagnetic fields on lithography electron orbits allow high-accuracy electron beam lithography.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 電子線描画装置とそれを用いた描画方法に係り、特に高
精度な描画に適した描画装置に関する。 【従来の技術】 電子線描画装置は与えられたデータに従ってウェハ上の
決められた位置に電子線を照射する装置である。その位
置の精度は偏向の精度によって決まり、定期的な校正を
行なうことにより精度の向上を図っている。しかし偏向
精度は描画電子のみを測定手段としているため描画中に
は校正を行なうことができない。従って「ジャーナル 
オブバキューム サイエンス アント テクノロジー(
Journal of Vcuumm 5cience
 and Technology)B7(6)、Nov
、/Dec、 1989 P、1532−P、1535
J等で明らかなように、描画中に制御用の電磁場とは異
なる電磁場が生じると偏向の精度が低下し描画の位置精
度の低下の原因となる。
[Industrial Application Field 1] The present invention relates to an electron beam lithography device and a lithography method using the same, and particularly to a lithography device suitable for highly accurate lithography. 2. Description of the Related Art An electron beam lithography system is a device that irradiates an electron beam onto a predetermined position on a wafer according to given data. The accuracy of the position is determined by the accuracy of the deflection, and the accuracy is improved by performing periodic calibration. However, since the deflection accuracy is measured only by drawing electrons, it is not possible to calibrate the deflection accuracy during drawing. Therefore, “Journal
Obvacuum Science Ant Technology (
Journal of Vcuumm 5science
and Technology) B7 (6), Nov.
,/Dec, 1989 P, 1532-P, 1535
J, etc., if an electromagnetic field different from the control electromagnetic field is generated during drawing, the accuracy of deflection decreases, causing a decrease in the positional accuracy of drawing.

【発明が解決しようとする課題1 本発明の目的は上記のような変動電磁場による位置精度
の低下を防ぐことにある。 【課題を解決するための手段1 上記課題は変動電磁場測定用の電子銃を描画装置に設け
ることにより解決できる。 【作用】 変動電磁場測定用の電子を位置検出可能な検出器により
検出しておくと、偏向用電磁場以外の電磁場が発生すれ
ば電子線の位置のずれとなって現われ即座に検知ができ
る。又位置ずれの量から電磁場の強度を見積もることが
可能であり、複数の電子線を用いれば強度分布を知る事
ができる。従ってこの変動電磁場の描画電子軌道への影
響を見積もり補正して描画を行なえば、精度の良い電子
線描画が可能となる。 特に測定用電子の加速電圧が低ければ描画電子以上に変
動電磁場の影響を受けるので高感度の検出が可能である
。また電子は如何なる電磁場の作用も受けるため渦電流
やチャージアップなどの装置内で発生する変動電磁場の
みならず装置外からの漏洩磁場の影響にも対処可能であ
る。
Problem 1 to be Solved by the Invention An object of the present invention is to prevent the deterioration of position accuracy due to the above-mentioned fluctuating electromagnetic field. [Means for solving the problem 1] The above problem can be solved by providing the drawing apparatus with an electron gun for measuring a fluctuating electromagnetic field. [Operation] If electrons for measuring a fluctuating electromagnetic field are detected by a detector capable of position detection, if an electromagnetic field other than the deflection electromagnetic field is generated, it will appear as a shift in the position of the electron beam and can be detected immediately. Furthermore, it is possible to estimate the strength of the electromagnetic field from the amount of positional shift, and by using a plurality of electron beams, the strength distribution can be determined. Therefore, if the influence of this fluctuating electromagnetic field on the drawn electron trajectory is estimated and corrected before drawing, accurate electron beam drawing becomes possible. In particular, if the accelerating voltage of the measuring electrons is low, they will be affected by the fluctuating electromagnetic field more than the drawing electrons, so highly sensitive detection is possible. Furthermore, since electrons are affected by any electromagnetic field, it is possible to deal with not only the fluctuating electromagnetic fields generated within the device such as eddy currents and charge-up, but also the influence of leakage magnetic fields from outside the device.

【実施例】【Example】

実施例1 第1図に本発明の一実施例を示す。描画用の電子銃1の
他に変動電磁場測定用の電子銃11と電子の位置検出器
13を備えた電子線描画装置である。たとえば電子銃は
TiWを電子源とする電界放射(FE)型電子銃である
。描画用電子銃の加速電圧を50KV、I’l定用の電
子銃の加速電圧を2KVとした。位置検出器は半導体装
置検出器を用いた。測定用電子は対物レンズの漏洩磁場
により偏向されるがこれは定常的な磁場であるため測定
上の問題とはならない。 まずこの装置でステップアンドリピート描画を行なう。 ステージ12の材料はリン青銅である。 ステージは最高100mm/seeの速さで移動し、開
口径30mmの対物レンズからの漏洩磁場により渦電流
が生じる。測定用電子はウェハ11上1mmの所を水平
に移動するため、渦電流が発生すればそれによる磁場を
感じ軌道が曲がる。 レンズ中心から200mm離れた場所に検出器を設けこ
の軌道変化を計測する。上記の移動速度では電子は検出
器上で最大2mmの位置変化を示した。この時の磁場は
平均で0.5G程度と見積もられ、50kVの描画電子
はウェハ上で4μm程度の位置ずれを起こす。検出器の
位置分解能は1μmであるのでウェハ上で1nmの位置
ずれまでモニターできる。ステップアンドリピート描画
では移動中に描画することはないが、渦電流が収まりそ
の磁場の描画への影響が無視できるようになるまで描画
を待つ必要がある。 第2図はウェハ停止前後での測定電子の検出位置を示し
た。Oμsecがウェハの停止した時刻である。ウェハ
上の描画位置誤差を0.02μm以下にするにはウェハ
が停止した後も50μsec程度の描画の持ち時間が必
要であることが分かる。 実施例2 同様のステージを用いて連続移動描画を行なう場合は測
定した磁場を偏向器にフィードバックしなければならな
い。そのために第3図に示す大まかなステージ上の磁場
分布を計測するための6つの電子銃14と2つの検出器
16a、16bを設けた。これにより電子線は2 m 
m角のフィールド15をカバーすることが出来る。又本
実施例では渦電流の発生を抑えるために伝導率の低いT
iをステージ材料として用いている。 第4図にステージの移動中に発生した磁場を測定した結
果の1例を示す。渦電流の量はステージの移動速度や基
板材料により異なるが、本実施例ではT1のステージを
用いたため、磁場の強度は0.02G前後と小さい。こ
の磁場分布から描画電子への影響を計算することが出来
るのでそれを打ち消すように偏向量を制御すれば良い。 第5図は渦電流の影響をフィードバックした場合(b)
としない場合(a)の描画位置精度を比較した結果であ
る。フィードバックを行なわない場合は0.25μmの
位置ずれが生じているのに対してフィードバックにより
0.08μmにまで低減することが出来た。また等速度
移動の場合は磁場の分布自体は変化しないので1つの電
子銃のみてその強度を測り描画にフィードバックするこ
とも可能である。 実施例3 10Ωamの抵抗率を持つSiウェハに0.4μmのレ
ジストを塗布して描画を行なった。この時ウェハとアー
スピンとの間に接触抵抗が生じたためにウェハが僅かな
がらチャージアップした。 測定用電子はチャージアップによる電場のために偏向さ
れ、描画中は検出面上でQ、Q3mmの位置ずれが生じ
、ウェハ上1mmの所で3000(V / m )の電
場が生じていることが分かる。位置ずれの量が少ないが
検出器をもっと離すか電子軌道をウェハにもっと近づけ
れば感度を向上させることが出来る。この電場は電子が
ウェハから逃げるために速やかに消失し2QQnsec
以降は観測されない。この装置では露光は200nse
Cの間をあけて行なっているため実際の描画には影響が
なく、描画結果は良好であった。 この描画装置でこの後20枚を描画した所でアースピン
に不良が発生しチャージアップによる電場が増加し、ま
たその消失速度も遅くなった。この装置は200nse
C以上経過しても300(V/m)の電場が残留してい
る場合は電場の消失まで次の描画を待つため、20枚目
のウェハは描画時間が2倍となってしまった。しかし、
描画精度は良好であった。21枚目のウェハでは更にア
ースピンの接触が悪くなり、描画の持ち時間が500n
secを越えたため描画を途中で中止した。 これらのことによりチャージアップによる描画精度の低
下を未然に防ぐことが出来る。 実施例4 実施例2と同じく6つの電子銃を使用した。6つの電子
銃により残留している電場を測定して描画へフィードバ
ックする。測定した電場の1例を第6図に示す。直前に
描画した場所を中心として電場が拡がっている。電場は
非常に小さく補正量は0.02μmで良い。 実施例5 本発明は外部からの漏洩磁場にも有効である。 第7図は測定用電子の検出位置を時間と共に記録した結
果である。11時頃に瞬間的に位置が大きく動いている
。これはなんらかの原因で装置内に磁場が侵入したもの
と考えられる。描画は電子の位置ずれが3μmを越えた
ときに中止し3μm以内に復帰してから1分後に再開し
た。 実施例6 第8図の様に対物アパーチャー7の1mm上方に電子銃
11から電子線(図示略)を通した。これにより電磁偏
向器により発生するアパーチャー上の渦電流を計測する
ことが8来る。検出面13での位置ずれを検出すること
により、電磁偏向の開始から磁場が観測されなくなるま
での時間は約200μsecであることが分かった。こ
のことから本電磁偏向器の整定持ち時間を250μse
Cと定めた。 【発明の効果1 以上のように本発明による変動電磁場測定用の電子銃を
設けることにより、電子線描画の精度を低下させる渦電
流やチャージアップを検出することが可能となる。そし
てその影響を描画にフィードバックすることで、描画精
度を大きく向上させることができる。このことは電子線
描画装置により製作された製品の信頼性向上とスループ
ットの向上に大きく寄与することになる。
Example 1 FIG. 1 shows an example of the present invention. This is an electron beam drawing apparatus that includes an electron gun 1 for drawing, an electron gun 11 for measuring a fluctuating electromagnetic field, and an electron position detector 13. For example, the electron gun is a field emission (FE) type electron gun using TiW as an electron source. The accelerating voltage of the electron gun for drawing was 50 KV, and the accelerating voltage of the electron gun for I'l determination was 2 KV. A semiconductor device detector was used as a position detector. The measurement electrons are deflected by the leakage magnetic field of the objective lens, but since this is a constant magnetic field, it does not pose a problem in the measurement. First, use this device to perform step-and-repeat drawing. The material of the stage 12 is phosphor bronze. The stage moves at a maximum speed of 100 mm/see, and an eddy current is generated by a leakage magnetic field from an objective lens with an aperture diameter of 30 mm. Since the measuring electrons move horizontally at a distance of 1 mm above the wafer 11, if an eddy current is generated, the resulting magnetic field is felt and the trajectory is bent. A detector is installed at a location 200 mm away from the center of the lens to measure this trajectory change. At the above movement speed, the electrons showed a maximum position change of 2 mm on the detector. The magnetic field at this time is estimated to be about 0.5 G on average, and the 50 kV drawing electrons cause a positional shift of about 4 μm on the wafer. Since the positional resolution of the detector is 1 μm, it is possible to monitor positional deviations up to 1 nm on the wafer. In step-and-repeat drawing, drawing is not performed during movement, but it is necessary to wait until the eddy current subsides and the influence of the magnetic field on drawing can be ignored. FIG. 2 shows the detection positions of measurement electrons before and after the wafer is stopped. Oμsec is the time when the wafer stopped. It can be seen that in order to reduce the drawing position error on the wafer to 0.02 μm or less, a writing time of about 50 μsec is required even after the wafer stops. Example 2 When performing continuous movement writing using a similar stage, the measured magnetic field must be fed back to the deflector. For this purpose, six electron guns 14 and two detectors 16a and 16b were provided for measuring the rough distribution of the magnetic field on the stage shown in FIG. As a result, the electron beam is 2 m
It is possible to cover an m square field 15. In addition, in this example, in order to suppress the generation of eddy current, T
i is used as the stage material. FIG. 4 shows an example of the results of measuring the magnetic field generated during the movement of the stage. Although the amount of eddy current varies depending on the moving speed of the stage and the material of the substrate, in this example, since a T1 stage was used, the strength of the magnetic field is small, around 0.02G. Since the influence on the drawn electrons can be calculated from this magnetic field distribution, the amount of deflection can be controlled to cancel it. Figure 5 shows the case where the influence of eddy current is fed back (b)
This is the result of comparing the drawing position accuracy in the case (a) without the above. When no feedback was performed, a positional deviation of 0.25 μm occurred, but with feedback, it was possible to reduce it to 0.08 μm. Furthermore, in the case of constant velocity movement, the distribution of the magnetic field itself does not change, so it is possible to measure the intensity using only one electron gun and feed it back to drawing. Example 3 A 0.4 μm resist was applied to a Si wafer having a resistivity of 10 Ωam, and drawing was performed. At this time, contact resistance occurred between the wafer and the ground pin, so the wafer was slightly charged up. The measurement electrons are deflected by the electric field due to charge-up, and during writing, a positional shift of Q, Q3 mm occurs on the detection surface, and an electric field of 3000 (V/m) is generated at 1 mm above the wafer. I understand. Although the amount of positional deviation is small, sensitivity can be improved by moving the detector further apart or moving the electron trajectory closer to the wafer. This electric field disappears quickly as the electrons escape from the wafer, and
It is not observed after that. With this device, the exposure is 200nse.
Since the printing was performed with a gap between C, there was no effect on the actual drawing, and the drawing results were good. After 20 images were written using this drawing device, a defect occurred in the ground pin, the electric field due to charge-up increased, and the speed at which it disappeared slowed. This device is 200nse
If an electric field of 300 (V/m) remains even after C or more has elapsed, the next drawing waits until the electric field disappears, so the drawing time for the 20th wafer was doubled. but,
The drawing accuracy was good. On the 21st wafer, the ground pin contact became even worse, and the writing time was 500n.
sec was exceeded, so drawing was stopped midway. These things can prevent a drop in drawing accuracy due to charge-up. Example 4 As in Example 2, six electron guns were used. The remaining electric fields are measured by six electron guns and fed back to the drawing process. An example of the measured electric field is shown in FIG. The electric field is expanding around the location drawn just before. The electric field is very small, and the correction amount may be 0.02 μm. Example 5 The present invention is also effective against leakage magnetic fields from the outside. FIG. 7 shows the results of recording the detection positions of measurement electrons over time. Around 11 o'clock, the position suddenly changed dramatically. This is thought to be due to a magnetic field entering the device for some reason. Drawing was stopped when the positional shift of electrons exceeded 3 μm, and resumed 1 minute after the positional shift of electrons returned to within 3 μm. Example 6 As shown in FIG. 8, an electron beam (not shown) was passed from an electron gun 11 1 mm above the objective aperture 7. This makes it possible to measure the eddy currents on the aperture generated by the electromagnetic deflector. By detecting the positional shift on the detection surface 13, it was found that the time from the start of electromagnetic deflection until the magnetic field was no longer observed was approximately 200 μsec. Therefore, the settling time of this electromagnetic deflector is 250 μsec.
It was set as C. Effect of the Invention 1 As described above, by providing the electron gun for measuring a fluctuating electromagnetic field according to the present invention, it becomes possible to detect eddy currents and charge-ups that degrade the accuracy of electron beam lithography. By feeding that influence back to drawing, drawing accuracy can be greatly improved. This greatly contributes to improving the reliability and throughput of products manufactured using electron beam lithography equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1を説明するための装置構成図
、第2図はステージ移動により発生する渦電流の磁場の
時間依存性の測定図、第3図は実施例2を説明するため
の電子銃の配置図、第4図はステージ移動により発生す
る渦電流の磁場分布図、第5図(a)、(b)はそれぞ
れ変動電磁場のフィードバックによる位置精度の向上を
表わした図、第6図はチャージアップにより発生した電
場分布図、第7図は外部からの漏洩磁場のIt測例を示
す図、第8図は実施例6を説明するための装置構成図で
ある。 符号の説明 1・・・描画用電子銃、2・第1アパーチヤー、3・・
・成形転写用レンズ、4・・成形転写用偏向器、5・・
第2アパーチヤー、6・・・縮小レンズ、7・・・対物
絞り、8・・・描画用偏向器、9・・・対物レンズ、1
0・・・ウェハ、11・・・測定用電子銃、12・・・
ステージ、13・・・電子位置検呂器、14・・・電磁
場分布測定用電子銃、15・・・描画フィールド、16
・・・大面積電−4ρ −2ρ ρ 2ρ ヂθ 時間(7t、5ec) 箔 ■ 蹟堝−〇) 位1)″れρ5)tyr フ暑−ドバックつし フィードバックあり 第 口 猶 鋳参J
Fig. 1 is an apparatus configuration diagram for explaining Embodiment 1 of the present invention, Fig. 2 is a measurement diagram of the time dependence of the magnetic field of eddy current generated by stage movement, and Fig. 3 is illustrating Embodiment 2. Figure 4 is a diagram of the magnetic field distribution of eddy currents generated by stage movement; Figures 5 (a) and (b) are diagrams showing the improvement in position accuracy due to feedback of the fluctuating electromagnetic field, respectively; FIG. 6 is a distribution diagram of an electric field generated by charge-up, FIG. 7 is a diagram showing an example of It measurement of a leakage magnetic field from the outside, and FIG. 8 is an apparatus configuration diagram for explaining the sixth embodiment. Explanation of symbols 1... Electron gun for drawing, 2. First aperture, 3...
・Lens for molding transfer, 4... Deflector for molding transfer, 5...
2nd aperture, 6... Reduction lens, 7... Objective aperture, 8... Deflector for drawing, 9... Objective lens, 1
0... Wafer, 11... Measurement electron gun, 12...
Stage, 13...Electronic position checker, 14...Electron gun for measuring electromagnetic field distribution, 15...Drawing field, 16
・・・Large area electricity −4ρ −2ρ ρ 2ρ ヂθ Time (7t, 5ec) Foil ■ Graduation pot −〇) Place 1)″Reρ5) tyr Futatsu − 2ρ ρ 2ρ ヂθ Time (7t, 5ec)

Claims (1)

【特許請求の範囲】 1、描画用電子銃の他に描画用電子の軌道中の電磁場を
測定するための少なくとも1つの電子銃を有する電子線
描画装置。 2、描画用電子銃の他に設けた、描画用電子の軌道中の
電磁場を測定するための少なくとも1つの電子銃により
、描画電子を制御する電磁場以外の電磁場を測定し、描
画の制御を行なうことを特徴とする電子線描画方法。 3、測定用の電子銃の加速電圧が描画用の電子銃の加速
電圧より低いことを特徴とする請求項1記載の電子線描
画装置。 4、上記測定用電子銃から放射される電子線がウェハと
対物レンズの間を通ることを特徴とする請求項1もしく
は3記載の電子線描画装置。 5、上記描画電子を制御する電磁場以外の電磁場が、帯
電による電磁場であることを特徴とする請求項1記載の
電子線描画装置。 6、上記描画電子を制御する電磁場以外の電磁場が、偏
向用あるいは動的補正用電磁コイルを原因とする渦電流
により生じた電磁場であることを特徴とする請求項1記
載の電子線描画装置。 7、上記描画電子を制御する電磁場以外の電磁場が、ス
テージの移動に伴って生じる渦電流による電磁場である
ことを特徴とする請求項1記載の電子線描画装置。 8、上記描画電子を制御する電磁場以外の電磁場が、装
置外部からの漏洩磁場であることを特徴とする請求項1
記載の電子線描画装置。 9、上記描画電子の制御を行なう手段として、偏向量の
制御を行なう手段を設けてなることを特徴とする請求項
1もしくは3ないし8のいずれかに記載の電子線描画装
置。 10、上記描画制御が描画の持ち時間の制御であること
を特徴とする請求項2記載の電子線描画方法。 11、上記描画制御が描画の中止であることを特徴とす
る請求項2記載の電子線描画方法。 12、描画用電子の軌道中の電磁場を測定するための電
子銃として、加速電圧の異なる複数の電子銃を有するこ
とを特徴とする請求項1もしくは3ないし8のいずれか
に記載の電子線描画装置。 13、描画用電子の軌道中の電磁場を測定するための電
子銃として、レジストを感光しない電子銃を有すること
を特徴とする請求項1、3ないし8および12のいずれ
かに記載の電子線描画装置。
[Claims] 1. An electron beam lithography apparatus having at least one electron gun for measuring the electromagnetic field in the orbit of the lithography electrons in addition to the lithography electron gun. 2. At least one electron gun provided in addition to the drawing electron gun for measuring the electromagnetic field in the trajectory of the drawing electrons measures an electromagnetic field other than the electromagnetic field that controls the drawing electrons, and controls drawing. An electron beam lithography method characterized by the following. 3. The electron beam drawing apparatus according to claim 1, wherein the acceleration voltage of the electron gun for measurement is lower than the acceleration voltage of the electron gun for drawing. 4. The electron beam lithography apparatus according to claim 1 or 3, wherein the electron beam emitted from the measurement electron gun passes between the wafer and an objective lens. 5. The electron beam drawing apparatus according to claim 1, wherein the electromagnetic field other than the electromagnetic field for controlling the drawn electrons is an electromagnetic field caused by charging. 6. The electron beam drawing apparatus according to claim 1, wherein the electromagnetic field other than the electromagnetic field for controlling the drawn electrons is an electromagnetic field generated by an eddy current caused by a deflection or dynamic correction electromagnetic coil. 7. The electron beam drawing apparatus according to claim 1, wherein the electromagnetic field other than the electromagnetic field for controlling the drawing electrons is an electromagnetic field caused by an eddy current generated as the stage moves. 8. Claim 1, wherein the electromagnetic field other than the electromagnetic field that controls the drawn electrons is a leakage magnetic field from outside the apparatus.
The electron beam lithography device described above. 9. The electron beam drawing apparatus according to claim 1, further comprising means for controlling the amount of deflection as the means for controlling the drawing electrons. 10. The electron beam lithography method according to claim 2, wherein the lithography control is control of the duration of lithography. 11. The electron beam drawing method according to claim 2, wherein the drawing control is to stop drawing. 12. The electron beam lithography according to any one of claims 1 or 3 to 8, characterized in that the electron beam lithography comprises a plurality of electron guns having different acceleration voltages as the electron guns for measuring the electromagnetic field in the trajectory of the lithography electrons. Device. 13. The electron beam lithography according to any one of claims 1, 3 to 8, and 12, characterized in that the electron gun for measuring the electromagnetic field in the trajectory of electrons for lithography includes an electron gun that does not expose the resist to light. Device.
JP24233590A 1990-09-14 1990-09-14 Electron beam lithography equipment and lithography process Pending JPH04123418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24233590A JPH04123418A (en) 1990-09-14 1990-09-14 Electron beam lithography equipment and lithography process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24233590A JPH04123418A (en) 1990-09-14 1990-09-14 Electron beam lithography equipment and lithography process

Publications (1)

Publication Number Publication Date
JPH04123418A true JPH04123418A (en) 1992-04-23

Family

ID=17087668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24233590A Pending JPH04123418A (en) 1990-09-14 1990-09-14 Electron beam lithography equipment and lithography process

Country Status (1)

Country Link
JP (1) JPH04123418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403807B1 (en) * 1997-06-30 2004-01-14 삼성전자주식회사 Method for manufacturing panel type field emitter using insulating pattern
WO2017099087A1 (en) * 2015-12-07 2017-06-15 株式会社ニコン Exposure device, exposure device control method, and device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403807B1 (en) * 1997-06-30 2004-01-14 삼성전자주식회사 Method for manufacturing panel type field emitter using insulating pattern
WO2017099087A1 (en) * 2015-12-07 2017-06-15 株式会社ニコン Exposure device, exposure device control method, and device manufacturing method
JPWO2017099087A1 (en) * 2015-12-07 2018-09-20 株式会社ニコン Exposure apparatus, exposure apparatus control method, and device manufacturing method

Similar Documents

Publication Publication Date Title
JP4905504B2 (en) Electron beam adjustment method, charged particle optical system controller, and scanning electron microscope
Maile et al. Sub-10 nm linewidth and overlay performance achieved with a fine-tuned EBPG-5000 TFE electron beam lithography system
US6222195B1 (en) Charged-particle-beam exposure device and charged-particle-beam exposure method
US20020053643A1 (en) Convergent charged particle beam apparatus and inspection method using same
JP4305421B2 (en) Electron beam adjustment method, charged particle optical system controller, and scanning electron microscope
US4443703A (en) Method and apparatus of deflection calibration for a charged particle beam exposure apparatus
JP4506588B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
CA1103813A (en) Apparatus for electron beam lithography
JP2001052642A (en) Scanning electron microscope and micro-pattern measuring method
JP2960746B2 (en) Beam irradiation method, electron beam drawing method, beam irradiation apparatus, and electron beam drawing apparatus
US20150364291A1 (en) Lithography apparatus, and method of manufacturing article
KR101090639B1 (en) Electron beam dimension measuring device and electron beam dimension measuring method
JPH04123418A (en) Electron beam lithography equipment and lithography process
US6352799B1 (en) Charged-particle-beam pattern-transfer methods and apparatus including beam-drift measurement and correction, and device manufacturing methods comprising same
JPH0628232B2 (en) Charged beam exposure system
US6737659B2 (en) Devices and methods for monitoring respective operating temperatures of components in a microlithography apparatus
US20130148091A1 (en) Lithography apparatus and method, and method of manufacturing article
US5843603A (en) Method of evaluating shaped beam of charged beam writer and method of forming pattern
JPH04304615A (en) Charged particle beam lithography device and method
US8922774B2 (en) Method of manufacturing device, and substrate
JP3683369B2 (en) Charged particle exposure method and apparatus
JP4095218B2 (en) Charged beam exposure method and exposure apparatus
JP2012160346A (en) Deflection amplifier evaluation method and charged particle beam lithography method
JP3256648B2 (en) Method for evaluating shaped beam of charged beam writing apparatus and charged beam writing method
JPH11297601A (en) Electron beam aligner