JPH04123307A - Magneto-resistance effect type head - Google Patents

Magneto-resistance effect type head

Info

Publication number
JPH04123307A
JPH04123307A JP24234490A JP24234490A JPH04123307A JP H04123307 A JPH04123307 A JP H04123307A JP 24234490 A JP24234490 A JP 24234490A JP 24234490 A JP24234490 A JP 24234490A JP H04123307 A JPH04123307 A JP H04123307A
Authority
JP
Japan
Prior art keywords
magnetoresistive
film
pair
magnetoresistive film
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24234490A
Other languages
Japanese (ja)
Inventor
Hidetoshi Moriwaki
森脇 英稔
Hisano Tokida
常田 久乃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24234490A priority Critical patent/JPH04123307A/en
Publication of JPH04123307A publication Critical patent/JPH04123307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a magneto-resistance effect type magnetic head which has the gap narrowed in a track part and is free from short-circuit in a step part by giving a difference between the thickness of an insulating layer in the track part and that in the other part. CONSTITUTION:This head is provided with a magneto-resistance effect film 4a, a pair of conductor parts 5, shield layers 2 and 7 on and under the film 4a, and an insulator layers between shield layers 2 and 7 and the film 4a. The gap between the pair of conductor parts 5 is used as the track part where the magnetic flux signal from a magnetic recording medium is detected, and the thickness of insulator films 6a and 6b in the track part is made different from that in the other part. Thus, insulating layers 6a and 6b whose film thickness accords with design values are thinly accumulated on and under the track part of a magneto-resistance effect element to obtain the magnetic head coping with a high recording density, and short-circuit between a conductor and shield members in the step part is prevented because the film thickness of insulating layers 6a and 6b in the part other than the track part is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は媒体に磁気的に記録された情報を読取るための
専用の感磁素子に係る。さらに詳しくは強磁性体膜の磁
気抵抗効果を利用した高感度の磁気抵抗効果型ヘッドに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dedicated magnetically sensitive element for reading information magnetically recorded on a medium. More specifically, the present invention relates to a highly sensitive magnetoresistive head that utilizes the magnetoresistive effect of a ferromagnetic film.

〔従来の技術〕[Conventional technology]

従来の磁気抵抗効果型ヘッドは、例えば特開昭50−6
5213号公報において記載されている6第4図に上記
従来の磁気抵抗効果型磁気ヘッドの構造を示す。基板1
上に下部シールド部材2を形成し、その上に絶縁層3を
基板上で全面に約2000人程度の厚さに均一な膜厚と
なるように堆積する。
A conventional magnetoresistive head is, for example, disclosed in Japanese Patent Application Laid-Open No. 50-6
FIG. 6, which is described in Japanese Patent No. 5213, shows the structure of the conventional magnetoresistive magnetic head. Board 1
A lower shield member 2 is formed thereon, and an insulating layer 3 is deposited over the entire surface of the substrate to a uniform thickness of about 2,000 layers.

その上に200〜500人の厚さの磁気抵抗効果素子4
を形成した後、その両端に電極5を接続する。再び絶縁
層6を基板全面で均一な膜厚となるように堆積した後、
上部シールド部材7を形成する。
On top of that is a magnetoresistive element 4 with a thickness of 200 to 500 people.
After forming, electrodes 5 are connected to both ends thereof. After depositing the insulating layer 6 again to a uniform thickness over the entire surface of the substrate,
An upper shield member 7 is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

磁気記録密度の増加の要求にともなって記録ビット長を
減少させる必要が生じる。磁気抵抗効果型磁気ヘッドを
用いて再生を行う場合、前後に隣接した記録信号の影響
を除去し、ノイズを低減するためにはトラック部におけ
る上部シールド部材と下部シールド部材の間隔を記録ビ
ット長以下に狭めなけ九ばならない。そのためには、磁
気抵抗効果素子と絶縁層の膜厚を薄くする必要がある。
With the demand for increased magnetic recording density, it becomes necessary to reduce the recording bit length. When performing reproduction using a magnetoresistive magnetic head, in order to eliminate the influence of adjacent recorded signals and reduce noise, the distance between the upper shield member and lower shield member in the track section must be equal to or less than the recording bit length. We have to narrow it down to nine. For this purpose, it is necessary to reduce the film thickness of the magnetoresistive element and the insulating layer.

しかし、磁気抵抗効果素子として一般に用いられている
NiFe合金等は、膜厚が約40nm以下になると表面
の構造が不均一になり、磁気特性が急激に低下する。そ
のため、磁気抵抗効果膜の膜厚限界は制限されてしまう
。そこで、絶縁層の膜厚を出来る限り薄くしなければな
らない、しかし。
However, when the film thickness of NiFe alloys and the like commonly used as magnetoresistive elements becomes less than about 40 nm, the surface structure becomes non-uniform and the magnetic properties rapidly deteriorate. Therefore, the thickness limit of the magnetoresistive film is limited. Therefore, the thickness of the insulating layer must be made as thin as possible.

上述した磁気抵抗効果型磁気ヘッドでは、絶縁層の膜厚
が基板全面で均一となるように基板面にほぼ垂直な方向
から堆積されている。そのため、磁気抵抗効果素子と電
極の接続部41や、電極が磁気抵抗効果素子に乗り上げ
る部分42などに生じる段差では、絶縁層の膜厚が薄く
なってしまい電極と上下シールド間で短絡するおそれが
あった。
In the above-described magnetoresistive magnetic head, the insulating layer is deposited in a direction substantially perpendicular to the substrate surface so that the thickness of the insulating layer is uniform over the entire surface of the substrate. Therefore, the thickness of the insulating layer becomes thinner at the step 42 where the magnetoresistive element and the electrode connect, or the part 42 where the electrode rides on the magnetoresistive element, and there is a risk of a short circuit between the electrode and the upper and lower shields. there were.

本発明の目的は、上記従来技術における問題点を解消す
るものであって、トラック部における狭ギャップ化を図
りつつ、段差部において短絡しない磁気抵抗効果型磁気
ヘッドを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a magnetoresistive magnetic head that does not short-circuit at step portions while achieving a narrow gap at the track portion.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明を達成するために、本発明は磁気抵抗効果膜
と、該磁気抵抗効果膜に電流を流す為に上記磁気抵抗効
果膜に接続された一対の導体部と。
In order to achieve the above-mentioned present invention, the present invention includes a magnetoresistive film, and a pair of conductor portions connected to the magnetoresistive film for flowing current through the magnetoresistive film.

上記磁気抵抗効果膜の上下に設けられたシールド層と、
該シールド層と上記磁気抵抗効果膜の間に設けられた絶
縁体層を有し、上記一対の導体部の間隔を磁気記録媒体
からの磁束信号を検出するトラック部とした磁気抵抗効
果型ヘッドにおいて、上記トラック部における絶縁体膜
の厚さと、トラック部以外の絶縁体膜の厚さが異なる磁
気抵抗効果型ヘッドとして構成される。
A shield layer provided above and below the magnetoresistive film;
A magnetoresistive head including an insulating layer provided between the shield layer and the magnetoresistive film, the distance between the pair of conductor portions being a track portion for detecting a magnetic flux signal from a magnetic recording medium. The head is constructed as a magnetoresistive head in which the thickness of the insulating film in the track portion is different from the thickness of the insulating film other than the track portion.

〔作用〕[Effect]

磁気抵抗効果素子のトラック部の上下には設計値に従っ
た膜厚の絶縁層を薄く堆積でき、高記録密度化に対応し
た磁気ヘッドを作製できる。そして、トラック部以外の
部分では絶縁層の膜厚を厚くできるため、断差部におけ
る導線とシールド部材の短絡を防止できる。
A thin insulating layer having a film thickness according to a design value can be deposited above and below the track portion of the magnetoresistive element, and a magnetic head compatible with high recording density can be manufactured. Furthermore, since the thickness of the insulating layer can be made thicker in parts other than the track part, it is possible to prevent a short circuit between the conducting wire and the shield member in the difference part.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、図面に基づいてさらに
詳細に説明する。
An embodiment of the present invention will be described below in more detail based on the drawings.

(実施例1) 第1図(a)、(b)は、本実施例において例示する磁
気抵抗効果型磁気ヘッドの概略を示す。
(Example 1) FIGS. 1(a) and 1(b) schematically show a magnetoresistive magnetic head exemplified in this example.

第2図は本実施例において例示する磁気抵抗効果型磁気
ヘッドの製造工程を示す図である。
FIG. 2 is a diagram showing the manufacturing process of the magnetoresistive magnetic head exemplified in this embodiment.

本実施例においては、非磁性基板1上にNi−Fe合金
などの軟磁性体膜よりなる磁気シールド2を0.5〜3
μmの厚さに、真空蒸着法やスパッタ法などの手段で積
層し、ホトリソグラフィの手法により、所定の形状にパ
ターニングした。その上に絶縁層3aとなる5in2や
AQ、O,を0.05〜0.5μmの厚さに、スパッタ
法を用いて積層した。
In this embodiment, a magnetic shield 2 made of a soft magnetic material film such as Ni-Fe alloy is placed on a non-magnetic substrate 1 with a thickness of 0.5 to 3
The layers were laminated to a thickness of μm by means such as vacuum evaporation or sputtering, and patterned into a predetermined shape by photolithography. On top of that, 5in2, AQ, and O, which will become the insulating layer 3a, are laminated to a thickness of 0.05 to 0.5 μm using a sputtering method.

磁気抵抗効果膜4aとなるNi−Fe合金膜とNbなど
からなるシャント膜4bを真空蒸着法やスパッタ法など
を用いて絶縁層3aの上に積層した後、ホトリソグラフ
ィの手法により所定の形状にパターニングした。なお、
磁気抵抗効果膜4aとしてはNi−Fe合金のほかに、
例えばNi−C0合金など磁気抵抗効果をもつ他の合金
系材料を使用してもなんら差し支えない。
After laminating a Ni-Fe alloy film, which will become the magnetoresistive film 4a, and a shunt film 4b made of Nb or the like on the insulating layer 3a using a vacuum evaporation method or a sputtering method, they are formed into a predetermined shape using a photolithography method. patterned. In addition,
As the magnetoresistive film 4a, in addition to Ni-Fe alloy,
For example, there is no problem in using other alloy-based materials that have a magnetoresistive effect, such as a Ni-C0 alloy.

次に絶縁層3bとなるS i O,やAl2O,を、0
.05〜0.5μmの厚さに磁気抵抗効果素子4以外の
部分に堆積する。このとき、磁気抵抗効果素子4の上に
マスクとしてレジストパターンを形成してからS i 
O,やAl2O,などをイオンビームスパッタ法を用い
て堆積し、その後レジストパターンを有機溶剤などで除
去するりフトオフ法を用いる。
Next, SiO, Al2O, which will become the insulating layer 3b, is
.. The film is deposited on parts other than the magnetoresistive element 4 to a thickness of 0.05 to 0.5 μm. At this time, a resist pattern is formed as a mask on the magnetoresistive element 4, and then Si
A lift-off method is used in which O, Al2O, or the like is deposited using an ion beam sputtering method, and then the resist pattern is removed using an organic solvent or the like.

そして引き続き、磁気抵抗効果膜4aとシャント膜4b
の端部に検出電流を流すための導体部5と絶縁層6aを
、CuやAu、Agなどの良導体を0 、1〜0 、5
 p mの厚さに、Sin、やAQ、O。
Then, the magnetoresistive film 4a and the shunt film 4b
The conductor part 5 and the insulating layer 6a for passing a detection current through the end of the
Sin, AQ, O to the thickness of pm.

などの絶縁材料を0.1〜1μmの厚さに連続して積層
し、ホトリソグラフィの手法により2層同時にパターニ
ングして作製した。ここで、2本の導体部5の間隔すな
わちトラックliTwは5μmとした。また、導体部5
の材料としてCuを用いた場合には、酸化防止のために
Cr層を上下に設けると良い。
The insulating materials were successively laminated to a thickness of 0.1 to 1 μm, and the two layers were simultaneously patterned using photolithography. Here, the interval between the two conductor parts 5, that is, the track liTw was set to 5 μm. In addition, the conductor portion 5
When Cu is used as the material, it is preferable to provide Cr layers above and below to prevent oxidation.

次に、絶縁層6bとなるSiO□やAJxOaを基板全
面で均一に形成するためにスパッタ法などにより0.0
5〜1.0μmの厚さに積層した。
Next, in order to uniformly form SiO□ or AJxOa, which will become the insulating layer 6b, on the entire surface of the substrate, a sputtering method or the like is used to
The layers were laminated to a thickness of 5 to 1.0 μm.

最後に、Ni−Fe合金などの軟磁性体膜よりなる磁気
シールド7を0.5〜3μmの厚さに。
Finally, the magnetic shield 7 made of a soft magnetic film such as Ni-Fe alloy is made to have a thickness of 0.5 to 3 μm.

真空蒸着法やスパッタ法などの手段で積層し、ホトリソ
グラフィの手法により、所定の形状にパタニングした。
The layers were laminated by means such as vacuum evaporation or sputtering, and patterned into a predetermined shape by photolithography.

なお、本実施例においては、バイアス印加手段としてシ
ャントl[4b (Nb膜りを設ける場合を示したが、
その他に電流線あるいは永久磁石などを用いても本発明
の効果は変わらない、また、磁気シールド2,7に軟磁
性体膜を使用する例を挙げたが、これの代りにバルクの
軟磁性体を用いても上記と同様の効果が得られることは
言うまでもない。
In addition, in this example, the case where a shunt l[4b (Nb film) is provided is shown as a bias application means, but
The effect of the present invention does not change even if other current wires or permanent magnets are used. Also, although the example of using a soft magnetic material film for the magnetic shields 2 and 7 has been given, instead of this, a bulk soft magnetic material can be used. It goes without saying that the same effect as above can be obtained by using .

(実施例2) 第3図は第2の実施例である磁気抵抗効果型磁気ヘッド
の製造工程を示す図である。
(Example 2) FIG. 3 is a diagram showing a manufacturing process of a magnetoresistive magnetic head according to a second example.

本実施例においては、非磁性基板1上にNi−Fe合金
などの軟磁性体膜よりなる磁気シールド2を0.5〜3
μmの厚さに、真空蒸着法やスパッタ法などの手段で積
層し、ホトリソグラフィの手法により、所定の形状にパ
ターニングした。その上に絶縁層3aとなるSiO,や
A Q a Oxを0.05〜0.5μmの厚さに、ス
パッタ法を用いて積層した後、次の工程で形成する磁気
抵抗効果膜4aの幅と同等以上の部分をイオンミリング
法などを用いて除去した。
In this embodiment, a magnetic shield 2 made of a soft magnetic material film such as Ni-Fe alloy is placed on a non-magnetic substrate 1 with a thickness of 0.5 to 3
The layers were laminated to a thickness of μm by means such as vacuum evaporation or sputtering, and patterned into a predetermined shape by photolithography. After laminating SiO or AQ a Ox to a thickness of 0.05 to 0.5 μm on top of the insulating layer 3a using a sputtering method, the width of the magnetoresistive film 4a to be formed in the next step is determined. A portion equivalent to or larger than that was removed using ion milling method.

次にJl!縁層3bとなるS i O2やAρ、03を
、スパッタ法などにより0.05〜1.0μmの厚さに
積層した。ついで、磁気抵抗効果膜4aとなるNi−F
e合金膜とNbよりなるに=Mシャント膜4bを真空蒸
着法やスパッタ法などを用いて絶縁層3bの上に積層し
た後、ホトリソグラフィの手法により所定の形状にパタ
ーニングした。なお、磁気抵抗効果膜4aとしてはN 
i −F e合金のほかに、例えばNi−Co合金など
磁気抵抗効果をもつ他の合金系材料を使用してもなんら
差し支えない。
Next Jl! S i O 2 and Aρ,03, which will become the edge layer 3b, are laminated to a thickness of 0.05 to 1.0 μm by sputtering or the like. Next, Ni-F, which becomes the magnetoresistive film 4a, is
An =M shunt film 4b made of an e-alloy film and Nb was laminated on the insulating layer 3b using a vacuum evaporation method or a sputtering method, and then patterned into a predetermined shape using a photolithography method. Note that the magnetoresistive film 4a is made of N.
In addition to the i-Fe alloy, there is no problem in using other alloy-based materials that have a magnetoresistive effect, such as a Ni-Co alloy.

そして引き続き、磁気抵抗効果膜4aの端部に検出電流
を流すための導体部5としてCuやAu。
Subsequently, Cu or Au is used as the conductor portion 5 for flowing a detection current to the end of the magnetoresistive film 4a.

Agなどの良導体を、絶縁層6aとして5in2やAJ
20.などの絶縁材料を連続して積層し、ホトリソグラ
フィの手法によりパターニングして作製した。ここで、
2本の導体部5の間隔すなわちトラック幅Twは5μm
とした。また、導体部5の材料としてCuを用いた場合
には、酸化防止のためにCr層を上下に設けると良い。
A good conductor such as Ag is used as the insulating layer 6a for 5in2 or AJ.
20. It was fabricated by successively laminating insulating materials such as and patterning them using photolithography. here,
The distance between the two conductor parts 5, that is, the track width Tw is 5 μm.
And so. Further, when Cu is used as the material for the conductor portion 5, it is preferable to provide upper and lower Cr layers to prevent oxidation.

次に、絶縁層6bとなる5i02やAfi、O,を基板
全面で均一に形成するためにスパッタ法などにより0.
05〜1.0μmの厚さに積層した。
Next, in order to uniformly form 5i02, Afi, and O, which will become the insulating layer 6b, on the entire surface of the substrate, a sputtering method or the like is used.
The layers were laminated to a thickness of 0.05 to 1.0 μm.

最後に、Ni−Fe合金などの軟磁性体膜よりなる磁気
シールド7を0.5〜3μmの厚さに、真空蒸着法やス
パッタ法などの手段で積層し、ホトリソグラフィの手法
により、所定の形状にパターニングした。
Finally, a magnetic shield 7 made of a soft magnetic material film such as Ni-Fe alloy is laminated to a thickness of 0.5 to 3 μm by means such as vacuum evaporation or sputtering, and a predetermined shape is formed by photolithography. Patterned into a shape.

なお、本実施例においても、バイアス印加手段としてシ
ャント膜4b(Nb膜)を設ける場合を示したが、その
他に電流線あるいは永久磁石などを用いても本発明の効
果は変わらない、また、磁気シールド2,7に軟磁性体
膜を使用する例を挙げたが、これの代わりにバルクの軟
磁性体を用いても上記と同様の効果が得られることは言
うまでもない。
Although this embodiment also shows the case where the shunt film 4b (Nb film) is provided as the bias applying means, the effect of the present invention does not change even if a current wire or a permanent magnet is used in addition. Although an example has been given in which soft magnetic films are used for the shields 2 and 7, it goes without saying that the same effect as described above can be obtained even if a bulk soft magnetic material is used instead.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく本発明の磁気抵抗効果型磁気
ヘッドは、磁気抵抗効果素子のトラック部の上下には設
計値に従った膜厚の絶縁層を堆積でき、高記録密度化に
対応した磁気ヘッドを作製できる。そして、トラック部
以外の部分では絶縁層の膜厚を厚くできるため、断差部
における導線とシールド層の短絡を防止できる効果があ
る。
As explained in detail above, the magnetoresistive magnetic head of the present invention is capable of depositing an insulating layer with a film thickness according to the design value above and below the track portion of the magnetoresistive element, and has a magnetic head that supports high recording density. Heads can be made. Furthermore, since the thickness of the insulating layer can be made thicker in parts other than the track part, short circuits between the conducting wire and the shield layer in the difference part can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明の磁気抵抗効果型磁気ヘ
ッドの概略を示す斜視図と断面図、第2図は本発明の磁
気抵抗効果型ヘッドの製造工程を示した断面図、第3図
は本発明の磁気抵抗効果型磁気ヘッドの他の製造工程を
示した断面図、第4図は従来の磁気抵抗効果型磁気ヘッ
ドの概略を示す斜視図である。 ’f)+  凹 (メ〕 猶 図
1(a) and (b) are a perspective view and a cross-sectional view schematically showing the magnetoresistive head of the present invention, and FIG. 2 is a cross-sectional view showing the manufacturing process of the magnetoresistive head of the present invention. 3 is a sectional view showing another manufacturing process of the magnetoresistive magnetic head of the present invention, and FIG. 4 is a perspective view schematically showing a conventional magnetoresistive magnetic head. 'f) + concave (me)

Claims (1)

【特許請求の範囲】 1、磁気記録媒体からの磁束信号を検出する磁気抵抗効
果素子と、該磁気抵抗効果素子に電流を流して同時にそ
の両端の電圧を読み取るため磁気抵抗効果素子に接続さ
れた2本の導体部と、上記磁気抵抗効果素子に接続した
2本の導体部の間隔をトラック部とし、さらに上記磁気
抵抗効果素子を磁気的にシールドするための一対の磁気
シールド部材と、該シールド部材と上記磁気抵抗効果素
子の間の絶縁層を有する磁気抵抗効果型ヘッドにおいて
、少なくともトラック部における絶縁層の厚さと、トラ
ック部以外の部分における絶縁層の厚さが異なることを
特徴とする磁気抵抗効果型ヘッド。 2、請求項1記載の磁気抵抗効果型ヘッドにおいて、導
体部が形成されている部分の磁気シールド部材の間隔は
トラック部における磁気シールド部材の間隔よりも広い
ことを特徴とする磁気抵抗効果型ヘッド。 3、請求項1または2記載の磁気抵抗効果型ヘッドにお
いて、その両側に薄膜あるいはバルクの磁気シールド部
材を設置したことを特徴とする磁気抵抗効果型ヘッド。 4、請求項1〜3のうちいずれかに記載の磁気抵抗効果
型ヘッドにおいて、バイアス印加手段としてシャント膜
や電流線あるいは永久磁石などを1つあるいは2つ以上
を組合せて用いたことを特徴とする磁気抵抗効果型ヘッ
ド。 5、磁気抵抗効果膜と、該磁気抵抗効果膜に電流を流す
為に上記磁気抵抗効果膜に接続された一対の導体部と、
上記磁気抵抗効果膜の上下に設けられたシールド層と、
該シールド層と上記磁気抵抗効果膜の間に設けられた絶
縁体層を有し、上記一対の導体部の間隔を磁気記録媒体
からの磁束信号を検出するトラック部とした磁気抵抗効
果型ヘッドにおいて、上記トラック部における絶縁体膜
の厚さと、トラック部以外の絶縁体膜の厚さが異なる磁
気抵抗効果型ヘッド。 6、磁気抵抗効果膜と、該磁気抵抗効果膜に電流を流す
為に上記磁気抵抗効果膜に接続された一対の導体部と、
上記磁気抵抗効果膜の上下に設けられたシールド層と、
該シールド層と上記磁気抵抗効果膜の間に設けられた絶
縁体層を有し、上記一対の導体部の間隔を磁気記録媒体
からの磁束信号を検出するトラック部とした磁気抵抗効
果型ヘッドにおいて、上記絶縁体層の厚さが不均一な磁
気抵抗効果型ヘッド。 7、磁気抵抗効果膜と、該磁気抵抗効果膜に電流を流す
為に上記磁気抵抗効果膜に接続された一対の導体部と、
上記磁気抵抗効果膜の上下に設けられたシールド層と、
該シールド層と上記磁気抵抗効果膜の間に設けられた絶
縁体層を有し、上記一対の導体部の間隔を磁気記録媒体
からの磁束信号を検出するトラック部とした磁気抵抗効
果型ヘッドにおいて、上記トラック部以外の部分で上記
シールド層と絶縁体層が平行となっている磁気抵抗効果
型ヘッド。 8、磁気抵抗効果膜と、該磁気抵抗効果膜に電流を流す
為に上記磁気抵抗効果膜に接続された一対の導体部と、
上記磁気抵抗効果膜の上下に設けられたシールド層と、
該シールド層と上記磁気抵抗効果膜の間に設けられた絶
縁体層を有し、上記一対の導体部の間隔を磁気記録媒体
からの磁束信号を検出するトラック部とした磁気抵抗効
果型ヘッドの製造方法において、絶縁物をマスクを用い
て複数回積層することによって上記絶縁体膜を形成し、
上記絶縁体膜の厚さを場所によって異ならせる磁気抵抗
効果型ヘッドの製造方法。 9、磁気抵抗効果膜と、該磁気抵抗効果膜に電流を流す
為に上記磁気抵抗効果膜に接続された一対の導体部と、
上記磁気抵抗効果膜の上下に設けられたシールド層と、
該シールド層と上記磁気抵抗効果膜の間に設けられた絶
縁体層を有し、上記一対の導体部の間隔を磁気記録媒体
からの磁束信号を検出するトラック部とした磁気抵抗効
果型ヘッドの製造方法において、上記磁気抵抗効果膜の
上に絶縁物を表面が平坦になるように堆積した後、少な
くともトラック部の一部の上記絶縁物に溝を設け、その
上に上記シールド層を形成する磁気抵抗効果型ヘッドの
製造方法。
[Claims] 1. A magnetoresistive element for detecting a magnetic flux signal from a magnetic recording medium, and a magnetoresistive element connected to the magnetoresistive element in order to flow a current through the magnetoresistive element and simultaneously read the voltage at both ends thereof. The distance between the two conductor parts and the two conductor parts connected to the magnetoresistive element is defined as a track part, and further a pair of magnetic shield members for magnetically shielding the magnetoresistive element, and the shield. A magnetoresistive head having an insulating layer between a member and the magnetoresistive element, characterized in that the thickness of the insulating layer at least in the track portion is different from the thickness of the insulating layer in a portion other than the track portion. Resistance effect head. 2. The magnetoresistive head according to claim 1, wherein the distance between the magnetic shield members in the portion where the conductor portion is formed is wider than the distance between the magnetic shield members in the track portion. . 3. A magnetoresistive head according to claim 1 or 2, characterized in that thin film or bulk magnetic shielding members are provided on both sides of the magnetoresistive head. 4. The magnetoresistive head according to any one of claims 1 to 3, characterized in that one or a combination of a shunt film, a current line, a permanent magnet, or the like is used as the bias applying means. Magnetoresistive head. 5. a magnetoresistive film; a pair of conductor portions connected to the magnetoresistive film to allow current to flow through the magnetoresistive film;
A shield layer provided above and below the magnetoresistive film;
A magnetoresistive head including an insulating layer provided between the shield layer and the magnetoresistive film, the distance between the pair of conductor portions being a track portion for detecting a magnetic flux signal from a magnetic recording medium. . A magnetoresistive head in which the thickness of the insulating film in the track portion is different from the thickness of the insulating film other than the track portion. 6. a magnetoresistive film; a pair of conductor portions connected to the magnetoresistive film to allow current to flow through the magnetoresistive film;
A shield layer provided above and below the magnetoresistive film;
A magnetoresistive head including an insulating layer provided between the shield layer and the magnetoresistive film, the distance between the pair of conductor portions being a track portion for detecting a magnetic flux signal from a magnetic recording medium. , a magnetoresistive head in which the thickness of the insulating layer is non-uniform. 7. a magnetoresistive film; a pair of conductor portions connected to the magnetoresistive film to allow current to flow through the magnetoresistive film;
A shield layer provided above and below the magnetoresistive film;
A magnetoresistive head including an insulating layer provided between the shield layer and the magnetoresistive film, the distance between the pair of conductor portions being a track portion for detecting a magnetic flux signal from a magnetic recording medium. . A magnetoresistive head, wherein the shield layer and the insulator layer are parallel to each other in a portion other than the track portion. 8. a magnetoresistive film; a pair of conductor portions connected to the magnetoresistive film to allow current to flow through the magnetoresistive film;
A shield layer provided above and below the magnetoresistive film;
A magnetoresistive head comprising an insulating layer provided between the shield layer and the magnetoresistive film, the distance between the pair of conductor parts being a track part for detecting a magnetic flux signal from a magnetic recording medium. In the manufacturing method, the insulator film is formed by laminating the insulator multiple times using a mask,
A method of manufacturing a magnetoresistive head in which the thickness of the insulating film is varied depending on the location. 9. a magnetoresistive film; a pair of conductor portions connected to the magnetoresistive film to allow current to flow through the magnetoresistive film;
A shield layer provided above and below the magnetoresistive film;
A magnetoresistive head comprising an insulating layer provided between the shield layer and the magnetoresistive film, the distance between the pair of conductor parts being a track part for detecting a magnetic flux signal from a magnetic recording medium. In the manufacturing method, after depositing an insulator on the magnetoresistive film so that the surface thereof is flat, a groove is provided in the insulator in at least a part of the track portion, and the shield layer is formed thereon. A method for manufacturing a magnetoresistive head.
JP24234490A 1990-09-14 1990-09-14 Magneto-resistance effect type head Pending JPH04123307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24234490A JPH04123307A (en) 1990-09-14 1990-09-14 Magneto-resistance effect type head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24234490A JPH04123307A (en) 1990-09-14 1990-09-14 Magneto-resistance effect type head

Publications (1)

Publication Number Publication Date
JPH04123307A true JPH04123307A (en) 1992-04-23

Family

ID=17087804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24234490A Pending JPH04123307A (en) 1990-09-14 1990-09-14 Magneto-resistance effect type head

Country Status (1)

Country Link
JP (1) JPH04123307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701221A (en) * 1994-04-06 1997-12-23 Hitachi, Ltd. Magnetoresistive thin-film magnetic head and method of fabrication thereof
US5792546A (en) * 1993-11-22 1998-08-11 Fujitsu Limited Magneto-resistive head and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792546A (en) * 1993-11-22 1998-08-11 Fujitsu Limited Magneto-resistive head and method of producing the same
US5701221A (en) * 1994-04-06 1997-12-23 Hitachi, Ltd. Magnetoresistive thin-film magnetic head and method of fabrication thereof
US5897969A (en) * 1994-04-06 1999-04-27 Hitachi, Ltd. Method of fabricating a magnetoresistive thin-film magnetic head

Similar Documents

Publication Publication Date Title
US5446613A (en) Magnetic head assembly with MR sensor
JP2694806B2 (en) Magnetoresistive element and method of manufacturing the same
US5327313A (en) Magnetoresistance effect type head having a damage immune film structure
JP2004152334A (en) Magnetic sensor, its manufacturing method and magnetic recording and reproducing device employing the sensor
JP3263018B2 (en) Magnetoresistive element and method of manufacturing the same
JP2001155313A (en) Thin film magnetic head and its manufacturing method
JPH07296340A (en) Magnetoresistance effect device and thin film magnetic head utilizing the device
KR100267411B1 (en) Magnetoresistive head
JP2000113421A (en) Magnetic tunnel junction magneto-resistive head
JPH04123307A (en) Magneto-resistance effect type head
US6538860B1 (en) Spin-valve type magnetoresistive element capable of preventing barkhausen noise
JPH10163545A (en) Magnetoresistive effect element and manufacture thereof
EP0482642B1 (en) Composite magnetoresistive thin-film magnetic head
JPH08167123A (en) Production of magnetic head, substrate having magnetic head element group, and production of substrate having magnetic head element group
JP2718242B2 (en) Magnetoresistive head
JPH103617A (en) Magneto-resistive effect type magnetic head and its manufacture
JP2001250205A (en) Thin film magnetic head and of its manufacturing method
JPH11175928A (en) Magnetic reluctance effect head and magnetic recording and reproducing device
JPH05151533A (en) Magneto-resistance effect type thin-film magnetic head
JPH08249617A (en) Spin valve magnetoresistance effect element
JP2000207713A (en) Thin film magnetic head
JPH09231523A (en) Magneto-resistive head
JPH0817019A (en) Magneto-resistive head
JPH04298809A (en) Magnetic head
JPH02165408A (en) Magneto-resistance effect type magnetic head