JPH04123004A - Production of lens array - Google Patents

Production of lens array

Info

Publication number
JPH04123004A
JPH04123004A JP24492190A JP24492190A JPH04123004A JP H04123004 A JPH04123004 A JP H04123004A JP 24492190 A JP24492190 A JP 24492190A JP 24492190 A JP24492190 A JP 24492190A JP H04123004 A JPH04123004 A JP H04123004A
Authority
JP
Japan
Prior art keywords
lens
resin
shape
structural body
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24492190A
Other languages
Japanese (ja)
Other versions
JP3041916B2 (en
Inventor
Yoshitaka Ito
嘉高 伊藤
Shoichi Uchiyama
正一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2244921A priority Critical patent/JP3041916B2/en
Publication of JPH04123004A publication Critical patent/JPH04123004A/en
Application granted granted Critical
Publication of JP3041916B2 publication Critical patent/JP3041916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a lens body having excellent molding accuracy by forming a pseudo lens structural body made of a resin by using a mask for special patterning and deforming this resin structural body by heating. CONSTITUTION:An electromagnetic wave reactive resin having thermal deformability is applied on the surface of a transparent substrate and is exposed via a mask for patterning. The transmittance (OD value) of the mask is changed to 4 stages to approximate the lens shape at this time. The resin is subjected to development processing after the exposing, by which the pseudo lens structural body made of the resin changed in the resist thickness to 4 stages is obtd. In succession, this pseudo lens structural body is heat treated. The resin surface is put into a softened and molten state by this treatment and the sectional shape of the pseudo lens structural body is made into a lens-like circular shape. The lens structural body having the smooth surface is thus obtd. The property to control the shape of the lens is improved in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微少なレンズ体が規則的に配列してなるレン
ズアレイの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a lens array in which minute lens bodies are regularly arranged.

〔従来の技術〕[Conventional technology]

10〜数100μm程度のレンズ怪を有する微小レンズ
を集積化したレンズアレイは、ファクシミリや電子複写
機の結像光学系に、また、最近では固体撮像素子の集光
光学系などに応用されている。この種のレンズアレイの
製造方法は種々開発されているが、中でも、特開昭60
−60756、Applied  0ptics  (
アプライドオプティックス81頁( 1988年)等に
見られる熱変形樹脂の加熱変形を利用する方法(以下、
熱変形法とする)は、通常のフォトリソグラフィーの手
法を利用したl産性に富む方法として注目されている。
Lens arrays, which integrate microlenses with a lens diameter of about 10 to several 100 μm, have been applied to imaging optical systems for facsimiles and electronic copying machines, and recently to condensing optical systems for solid-state image sensors. . Various manufacturing methods for this type of lens array have been developed, among them,
-60756, Applied 0ptics (
A method that utilizes heat deformation of heat deformable resin, as seen in Applied Optics, p. 81 (1988) (hereinafter referred to as
The thermal deformation method) is attracting attention as a highly productive method that utilizes ordinary photolithography techniques.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記熱変形法は加熱時における樹脂の変形及び
流動を利用しているためレンズ形状の制御性に課題があ
り、特に曲率半径の大きい長焦点レンズを作製するのが
難しいという課題を有していた。また、加熱処理時に大
きな流動性を得ようとした場合、加熱処理の前後で樹脂
のパターン幅が変動する場合が多く、従って、レンズア
レイにおける個々のレンズ間距離を狭くすることが出来
ないという課題を有していた。
However, since the thermal deformation method described above utilizes the deformation and flow of the resin during heating, there are problems in controlling the lens shape, and in particular, it is difficult to produce long focal length lenses with a large radius of curvature. was. Additionally, when attempting to obtain high fluidity during heat treatment, the pattern width of the resin often changes before and after the heat treatment, resulting in the problem that it is not possible to narrow the distance between individual lenses in the lens array. It had

そこで、本発明は以上のような問題点を解決するもので
、その目的とするところは、レンズ形状の制御性に優れ
たレンズアレイの製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a lens array with excellent controllability of lens shapes.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明のレンズアレイの製造
方法は、透明基板の表面に熱変形性を有する電磁波反応
性樹脂を塗布した後、個々のレンズパターンにおいてレ
ンズ形状に対応して透過率が段階的に変化してなるパタ
ーニング用マスクを介して電磁波を照射し、該反応性樹
脂の現像後における残膜厚分布が疑似レンズ形状を成す
樹脂体を成形した後、該樹脂体を加熱変形することによ
りレンズ体を得ることを特徴とする。
In order to solve the above problems, the method for manufacturing a lens array of the present invention involves coating the surface of a transparent substrate with a heat-deformable electromagnetic wave-reactive resin, and then adjusting the transmittance of each lens pattern in accordance with the lens shape. Electromagnetic waves are irradiated through a stepwise patterning mask to form a resin body in which the residual film thickness distribution after development of the reactive resin forms a pseudo-lens shape, and then the resin body is heated and deformed. A lens body is obtained by this.

第1図に、本発明によるレンズアレイの製造方法の流れ
を示す。
FIG. 1 shows the flow of a method for manufacturing a lens array according to the present invention.

成膜工程11は、レンズアレイ基板上に電磁波反応性樹
脂を膜厚が均一になるように塗布する工程である。塗布
方法としては、スピンコード法が適しているが、ディッ
ピング法、ロールコート法等も利用できる。また、電磁
波反応性樹脂としては微細加工用の紫外線硬化樹脂が利
用し易いが、レンズ特性に因っては可視光、赤外光或は
電子線、X線等により感光される樹脂も使用できる。バ
ターング工程12は、パターニング用マスクを介して、
2次元的に強度分布を持つ電磁波を照射し、電磁波反応
性樹脂を露光する工程である。ここで、パターニング用
マスクは、所望するレンズ形状及び使用する電磁波反応
性樹脂の感度特性を考慮して、第2図に示すように透過
率が疑似レンズ形状的に段階的に変化したものを用いる
。現像工程13は、露光後の電磁波反応性樹脂を現像し
、積算露光量(エネルギー)に応じた残膜厚を得る工程
である。この工程を経た段階でレンズアレイ基板上の樹
脂体は疑似レンズ形状を成している。熱処理工程14は
疑似レンズ形状を成す樹脂体を軟化点温度以上に加熱し
、理想的なレンズ形状を有するレンズ体とする工程であ
る。以上の工程により所望するレンズ体がレンズアレイ
基板上に形成される。
The film forming step 11 is a step of applying electromagnetic wave-reactive resin onto the lens array substrate so that the film thickness is uniform. As a coating method, a spin code method is suitable, but a dipping method, a roll coating method, etc. can also be used. Furthermore, as the electromagnetic wave-reactive resin, ultraviolet curing resin for microfabrication is easy to use, but depending on the lens characteristics, resins that are sensitive to visible light, infrared light, electron beams, X-rays, etc. can also be used. . In the patterning step 12, through a patterning mask,
This is a process in which electromagnetic waves having a two-dimensional intensity distribution are irradiated to expose the electromagnetic wave-reactive resin. Here, the patterning mask used is one in which the transmittance changes stepwise in the shape of a pseudo lens, as shown in Figure 2, taking into account the desired lens shape and the sensitivity characteristics of the electromagnetic wave-responsive resin used. . The developing step 13 is a step of developing the electromagnetic wave-reactive resin after exposure to obtain a residual film thickness corresponding to the cumulative exposure amount (energy). After this process, the resin body on the lens array substrate has a pseudo lens shape. The heat treatment step 14 is a step in which the resin body forming the pseudo lens shape is heated to a temperature higher than its softening point to form a lens body having an ideal lens shape. Through the above steps, a desired lens body is formed on the lens array substrate.

〔作用〕[Effect]

レジストに代表される電磁波反応性樹脂においては、条
件を適当に設定することにより、電磁波(一般に光)の
照射量と露光、現像後のレジストの残膜厚との間に、あ
る特定の関係が成立する。
For electromagnetic wave-reactive resins such as resists, by appropriately setting conditions, a certain relationship can be established between the amount of electromagnetic waves (generally light) irradiation and the residual film thickness of the resist after exposure and development. To establish.

つまり、ある条件下では、電磁波の照射量によりレジス
トの残膜厚を制御することができる。従って、電磁波の
照射量をレンズ形状及び電磁波反応性樹脂の特性に合わ
せて2次元的に制御することにより、現像後の反応性樹
脂の残膜厚をレンズ形状に応じて局部的に変化させるこ
とができる。この場合、パターニング用マスクを用いて
電磁波の照射量を制御する方法が現実的である。つまり
、マスクのOD(光学温度)値の制御性及び製造の容易
さを考慮して、OD値を2〜10段階程段階箱囲で変化
させ、その分布状態を疑似レンズ様とする。
That is, under certain conditions, the remaining film thickness of the resist can be controlled by the amount of electromagnetic wave irradiation. Therefore, by controlling the amount of electromagnetic wave irradiation two-dimensionally according to the lens shape and the characteristics of the electromagnetic wave-reactive resin, the remaining film thickness of the reactive resin after development can be locally changed according to the lens shape. I can do it. In this case, a practical method is to use a patterning mask to control the amount of electromagnetic radiation. In other words, in consideration of the controllability of the OD (optical temperature) value of the mask and the ease of manufacturing, the OD value is changed in a box size of 2 to 10 steps, and the distribution state is made to resemble a pseudo lens.

上記パターニング用マスクにより形成された疑似レンズ
様樹脂(レジスト)構造体は、樹脂の軟化点温度以上に
加熱されることにより、軟化溶融され、表面張力によっ
て表面の凹凸形状がなくなり、その結果、表面が滑らか
なレンズ体となる。
The pseudo-lens-like resin (resist) structure formed by the patterning mask is heated above the softening point temperature of the resin to soften and melt, and the surface unevenness disappears due to surface tension. becomes a smooth lens body.

なお、この場合に使用する電磁波反応性樹脂としては熱
可塑性を有するものが望ましい。
Note that it is desirable that the electromagnetic wave-reactive resin used in this case be thermoplastic.

〔実施例〕〔Example〕

以下、実施例に基づき本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on Examples.

但し、本発明は以下の実施例に限定されるものではない
However, the present invention is not limited to the following examples.

[実施例1] 電磁波反応性樹脂としてポジ型UV硬化レジストを用い
た場合を例にとり本発明の第一の実施例に付いて説明す
る。
[Example 1] A first example of the present invention will be described by taking as an example a case where a positive UV curing resist is used as the electromagnetic wave-reactive resin.

透明ガラス基板上に、フエ・ノールノボラック系ポジ型
レジストをスピンコード法により、膜厚が約2.4μm
になるように成膜した。約90℃で20分間乾燥させた
後、パターニング用マスクを介して露光した。
On a transparent glass substrate, a film thickness of approximately 2.4 μm was applied using a spin-coding method to coat a Fe-norvolac positive resist.
The film was formed so that After drying at about 90° C. for 20 minutes, it was exposed to light through a patterning mask.

露光時におけるパターニング用マスクの透過率分布を第
2図に示す。図中の点線で描かれた形状が所望するレン
ズ形状であり、マスクの透過率(OD値)を4段階に変
化させレンズ形状を近似した。ここで用いたポジ型レジ
ストの積算露光量と残膜厚の関係を第3図に示す。第3
図に示す特性を考慮してマスクの透過率を決定した。
FIG. 2 shows the transmittance distribution of the patterning mask during exposure. The shape drawn by the dotted line in the figure is the desired lens shape, and the lens shape was approximated by changing the transmittance (OD value) of the mask in four stages. FIG. 3 shows the relationship between the cumulative exposure amount and the remaining film thickness of the positive resist used here. Third
The transmittance of the mask was determined by considering the characteristics shown in the figure.

露光後、所定の条件で現像処理を行うことにより、レジ
スト厚が4段階に変化した樹脂製の疑似レンズ構造体を
得た。続いて、この疑似レンズ構造体を210°Cで3
0分間熱処理した。この処理により、樹脂表面は軟化溶
融状態となり、溶融状態における表面張力の作用により
樹脂表面の不連続な凹凸形状は、連続的且つ滑らかな状
態に変化した。
After exposure, development was performed under predetermined conditions to obtain a resin pseudo-lens structure in which the resist thickness varied in four stages. Next, this pseudo lens structure was heated at 210°C for 3
Heat treatment was performed for 0 minutes. Through this treatment, the resin surface became softened and molten, and the discontinuous uneven shape of the resin surface changed to a continuous and smooth state due to the action of surface tension in the molten state.

熱処理後における樹脂構造体の断面形状を第4図に示す
、熱処理により、理想的な円型形状を有するレンズ体が
得られていることが判る。作製した凸型レンズの諸元は
、レンズ直径45μm、レンズ中心厚2.5μm、焦点
比H171μmであり、設計値に対して4%以内の誤差
(焦点距離に関して)で作製できた。さらに、レンズア
レイとしての諸元はアレイ寸法10 mm X 10 
mm、レンズ間ピッチ50μmであり、レンズアレイ内
におけるレンズ特性のばらつきは概ね5%以内と良好で
あった。
The cross-sectional shape of the resin structure after heat treatment is shown in FIG. 4, and it can be seen that a lens body having an ideal circular shape was obtained by the heat treatment. The specifications of the manufactured convex lens were a lens diameter of 45 μm, a lens center thickness of 2.5 μm, and a focal ratio H of 171 μm, and could be manufactured with an error within 4% (with respect to focal length) with respect to the design value. Furthermore, the specifications of the lens array are: array size 10 mm x 10
mm, and the inter-lens pitch was 50 μm, and the variation in lens characteristics within the lens array was generally within 5%, which was good.

[実施例2コ 実施例1の場合と同様に、透明ガラス基板上に、フェノ
ールノボラック系ポジ型レジストをスピンコード法によ
り、膜厚が約2.4μmになるように成膜した。適当な
条件下でプリベークした後、実施例1で用いたのと同種
のパターニング用マスクを介して露光し、続いて現像す
ることにより疑似レンズ構造体を得た。その後、パター
ニング時に使用したのと同じ光源を用いて、ガラス基板
を約5分間露光(照射露光量は約1200 mJ/ c
m2)し、残存樹脂(レジスト)層の改質を行った。こ
の後、実施例1の場合と同様に170℃で30分間熱処
理をすることにより、疑似レンズ構造体の断面形状をレ
ンズ様の円型形状とし、滑らかな表面を有するレンズ構
造体を得た。実施例1の場合と較べて、本実施例の熱処
理温度が低いのは、樹脂(レジスト)層の改質を行って
いるためであり、感光性樹脂の特性に合わせて照射する
光の波長を適当に選べば、樹脂の粘性や耐熱性等をある
程度制御することも可能である。この性質を利用するこ
とにより、曲率半径の大きい、焦点距離の長いレンズを
作製することが可能である。
[Example 2] As in Example 1, a phenol novolac positive type resist was formed on a transparent glass substrate by the spin code method to a film thickness of about 2.4 μm. After prebaking under appropriate conditions, exposure was performed through a patterning mask of the same type as used in Example 1, followed by development to obtain a pseudo lens structure. After that, using the same light source used during patterning, the glass substrate was exposed for about 5 minutes (irradiation exposure amount was about 1200 mJ/c).
m2) and the remaining resin (resist) layer was modified. Thereafter, heat treatment was performed at 170° C. for 30 minutes in the same manner as in Example 1, whereby the cross-sectional shape of the pseudo lens structure was made into a lens-like circular shape, and a lens structure having a smooth surface was obtained. The reason why the heat treatment temperature in this example is lower than that in Example 1 is because the resin (resist) layer is modified, and the wavelength of the irradiated light is adjusted to match the characteristics of the photosensitive resin. If selected appropriately, it is also possible to control the viscosity, heat resistance, etc. of the resin to some extent. By utilizing this property, it is possible to produce a lens with a large radius of curvature and a long focal length.

作製した凸型レンズの諸元は、レンズ直径55μm、レ
ンズ中心厚2.5μm、焦点距離250μmであり、設
計値に対して5%以内の誤差(焦点距離に関して)で作
製できた。さらに、レンズアレイとしての諸元はアレイ
寸法10mn+xlOmm、レンズ間ピッチ60μmで
あり、レンズアレイ内におけるレンズ特性のばらつきは
概ね5%以内と良好であった。
The specifications of the manufactured convex lens were a lens diameter of 55 μm, a lens center thickness of 2.5 μm, and a focal length of 250 μm, and the lens could be manufactured with an error within 5% (with respect to the focal length) with respect to the design value. Further, the specifications of the lens array were as follows: array size: 10 mm + xlO mm; inter-lens pitch: 60 μm; variation in lens characteristics within the lens array was generally within 5%, which was good.

上記実施例ではいづれも凸型円形レンズを作製したが、
使用するパターニング用マスクのレンズパターンの形状
及び電磁波の透過率分布を変えることにより、円形以外
にも楕円形状、刃型形状、レンチキュラー状等の各種レ
ンズや凹型レンズを作製できることは明かである。
In each of the above examples, convex circular lenses were manufactured, but
It is clear that by changing the shape of the lens pattern of the patterning mask used and the transmittance distribution of electromagnetic waves, it is possible to produce various lenses other than circular, such as elliptical, blade-shaped, lenticular, etc., as well as concave lenses.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のレンズアレイの製造方法で
は、電磁波の透過率が段階的に変化してなるパターニン
グ用マスクを利用して、まず、電磁波反応性樹脂の残膜
厚分布が疑似レンズ形状をなす樹脂構造体をつくり、次
に、前記樹脂構造体を加熱変形するという2段階の工程
を経ることにより、成形精度に優れたレンズ体を容易に
作製することが出来る。従来の一段の矩形パターンを熱
流動させてレンズ体を得る方法では樹脂に大きな熱流動
性が要求され、そのため個々のレンズ間の距離をあまり
狭くすることが出来なかったが、本発明の方法では、従
来法に較べて樹脂にそれほど大きな流動性が要求されな
いため、個々のレンズ間の距離を狭くすることが可能で
ある。また、本発明の製造方法は、曲率半径の大きなレ
ンズ体を作製し易い、耐熱性に優れた樹脂材料をレンズ
材料として使用できるなどの特徴を有する。
As explained above, in the method for manufacturing a lens array of the present invention, first, the remaining film thickness distribution of the electromagnetic wave-reactive resin is shaped into a pseudo lens shape using a patterning mask in which the electromagnetic wave transmittance changes stepwise. By performing a two-step process of creating a resin structure having a shape and then heating and deforming the resin structure, a lens body with excellent molding accuracy can be easily manufactured. In the conventional method of obtaining a lens body by thermally fluidizing a single-stage rectangular pattern, the resin was required to have great thermal fluidity, and therefore the distance between individual lenses could not be made very narrow.However, the method of the present invention Since the resin does not require much fluidity compared to conventional methods, it is possible to reduce the distance between individual lenses. Further, the manufacturing method of the present invention has features such that a lens body with a large radius of curvature can be easily manufactured and a resin material with excellent heat resistance can be used as the lens material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるレンズアレイの製造方法を概念的
に示した流れ図。第2図は実施例で用いたバターニング
用マスクの透過率分布を示す図。 第3図は実施例で用いたポジ型レジストの感度曲線図。 第4図は実施例1で作製したレンズ体の熱処理後におけ
る断面形状を示す図。 11・・・成膜工程 12・・・パターニング工程 13・・・現像工程 熱処理工程 以上
FIG. 1 is a flowchart conceptually showing a method for manufacturing a lens array according to the present invention. FIG. 2 is a diagram showing the transmittance distribution of the patterning mask used in the example. FIG. 3 is a sensitivity curve diagram of the positive resist used in Examples. FIG. 4 is a diagram showing the cross-sectional shape of the lens body produced in Example 1 after heat treatment. 11...Film forming process 12...Patterning process 13...Developing process Heat treatment process and above

Claims (1)

【特許請求の範囲】[Claims]  透明基板の表面に熱変形性を有する電磁波反応性樹脂
を塗布した後、個々のレンズパターンにおいてレンズ形
状に対応して透過率が段階的に変化してなるパターニン
グ用マスクを介して電磁波を照射し、該反応性樹脂の現
像後における残膜厚分布が疑似レンズ形状をなす樹脂体
を成形した後、該樹脂体を加熱変形することによりレン
ズ体を得ることを特徴とするレンズアレイの製造方法。
After applying heat-deformable electromagnetic wave-reactive resin to the surface of a transparent substrate, electromagnetic waves are irradiated through a patterning mask in which the transmittance of each lens pattern changes stepwise in accordance with the lens shape. A method for manufacturing a lens array, comprising: molding a resin body whose residual film thickness distribution after development of the reactive resin forms a pseudo-lens shape, and then obtaining a lens body by heating and deforming the resin body.
JP2244921A 1990-09-14 1990-09-14 Method for manufacturing lens array Expired - Fee Related JP3041916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2244921A JP3041916B2 (en) 1990-09-14 1990-09-14 Method for manufacturing lens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2244921A JP3041916B2 (en) 1990-09-14 1990-09-14 Method for manufacturing lens array

Publications (2)

Publication Number Publication Date
JPH04123004A true JPH04123004A (en) 1992-04-23
JP3041916B2 JP3041916B2 (en) 2000-05-15

Family

ID=17125958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2244921A Expired - Fee Related JP3041916B2 (en) 1990-09-14 1990-09-14 Method for manufacturing lens array

Country Status (1)

Country Link
JP (1) JP3041916B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298366A (en) * 1990-10-09 1994-03-29 Brother Kogyo Kabushiki Kaisha Method for producing a microlens array
JP2010267683A (en) * 2009-05-12 2010-11-25 Sharp Corp Lens forming method, method of manufacturing semiconductor device and electronic information device
JP2012108327A (en) * 2010-11-17 2012-06-07 Sharp Corp Lens and method for manufacturing the same, solid-state image sensor and method for manufacturing the same, and electronic information equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298366A (en) * 1990-10-09 1994-03-29 Brother Kogyo Kabushiki Kaisha Method for producing a microlens array
JP2010267683A (en) * 2009-05-12 2010-11-25 Sharp Corp Lens forming method, method of manufacturing semiconductor device and electronic information device
JP2012108327A (en) * 2010-11-17 2012-06-07 Sharp Corp Lens and method for manufacturing the same, solid-state image sensor and method for manufacturing the same, and electronic information equipment

Also Published As

Publication number Publication date
JP3041916B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
EP0741418A3 (en) Solid state imaging device and production method for the same
KR101839461B1 (en) Method for making micro lens array
JP2945440B2 (en) Method for manufacturing solid-state imaging device
JP3117886B2 (en) Mask for forming resist pattern, method for forming resist pattern, and method for manufacturing lens
JP4557242B2 (en) Photomask for controlling exposure amount and method for manufacturing the same
JP3611613B2 (en) Three-dimensional shape forming method, three-dimensional structure formed by the method, and press mold
JPH06194502A (en) Microlens and microlens array and their production
JPH04123004A (en) Production of lens array
CN113740942B (en) Micro-lens array grating and preparation method and application thereof
JP3321194B2 (en) Photo mask
CN114895389A (en) Method for flexibly manufacturing multi-focus micro-lens array structure
JPH03190166A (en) Manufacture of solid-state image sensing element microlens
KR100701355B1 (en) Fabrication method of micro lens array and stamper for duplicating micro lens array
JPH04123003A (en) Production of lens array
JPH03202330A (en) Manufacture of micro lens
JP2001296649A (en) Distributed density mask, method for manufacturing the same, and method for forming surface shape
JP2604890B2 (en) Method for manufacturing solid-state imaging device
JP3598855B2 (en) Solid-state imaging device and method of manufacturing the same
US8192922B2 (en) Method of optical fabrication of three-dimensional polymeric structures with out of plane profile control
JPH02196201A (en) Production of microlens array
JP3947279B2 (en) Method for forming uneven pattern
KR960007880B1 (en) Making method of micro-lenses
JP2002162747A (en) Manufacturing method for three-dimensional structure by multistep exposure
JPH08286002A (en) Production of microlens
JPH0529590A (en) Manufacture of solid state image sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees