JPH04122841U - liquid engine mount - Google Patents

liquid engine mount

Info

Publication number
JPH04122841U
JPH04122841U JP2897791U JP2897791U JPH04122841U JP H04122841 U JPH04122841 U JP H04122841U JP 2897791 U JP2897791 U JP 2897791U JP 2897791 U JP2897791 U JP 2897791U JP H04122841 U JPH04122841 U JP H04122841U
Authority
JP
Japan
Prior art keywords
chamber
receiving chamber
pressure receiving
switching valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2897791U
Other languages
Japanese (ja)
Inventor
秀次 大竹
英樹 松岡
亨 佐々木
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2897791U priority Critical patent/JPH04122841U/en
Publication of JPH04122841U publication Critical patent/JPH04122841U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 [目的] エンジンの中高速回転域において適切な動バ
ネ定数を得ることが可能であり、かつ低速回転域から中
高速回転域への切り換え時に動バネ定数の急変を防止し
得る液封式エンジンマウントを提供する。 [構成] エンジンに結合されるラバーブロック3の内
部に荷重により容積が増減する受圧室9を画成し、車体
フレームに結合される取付ブラケット8の内部にダイヤ
フラム12を有する平衡室13と可撓膜21を有する中
間室22を設ける。低速回転時には切換弁16により受
圧室9がアイドルオリフィス14よりなる短い連通路を
介して直接平衡室13に連通し、中高速回転時には受圧
室9がアイドルオリフィス14およびシェイクオリフィ
ス15よりなる長い連通路を介して平衡室13と中間室
22に連通する。また切換弁16の切り換え時には受圧
室9がアイドルオリフィス14を介して中間室22に連
通する。
(57) [Summary] [Purpose] It is possible to obtain an appropriate dynamic spring constant in the medium and high speed engine rotation range, and to prevent sudden changes in the dynamic spring constant when switching from the low speed rotation range to the medium and high speed rotation range. To provide a liquid ring type engine mount. [Configuration] A pressure receiving chamber 9 whose volume increases or decreases depending on the load is defined inside a rubber block 3 connected to the engine, and a balance chamber 13 having a diaphragm 12 inside a mounting bracket 8 connected to the vehicle body frame and a flexible chamber. An intermediate chamber 22 with a membrane 21 is provided. During low-speed rotation, the pressure-receiving chamber 9 is directly connected to the equilibrium chamber 13 via a short communication path formed by an idle orifice 14 by the switching valve 16, and during medium-high speed rotation, the pressure-receiving chamber 9 is connected directly to the equilibrium chamber 13 through a long communication path formed by an idle orifice 14 and a shake orifice 15. It communicates with the equilibrium chamber 13 and the intermediate chamber 22 via. Further, when the switching valve 16 is switched, the pressure receiving chamber 9 communicates with the intermediate chamber 22 via the idle orifice 14.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、例えば自動車のエンジンを車体フレームに防振支持するためのエン ジンマウントに関し、特に弾性材の内部に画成されて荷重により容積が変化する 受圧室と、長さが短い第1連通路または長さが長い第2連通路を介して前記受圧 室に連通する平衡室と、前記受圧室と平衡室の内部に封入した非圧縮性流体と、 前記両室をエンジンの回転数が低い時に第1連通路を介して相互に連通させ、エ ンジンの回転数が高い時に第2連通路を介して相互に連通させる切換弁とを備え た液封式エンジンマウントに関する。 The present invention is applicable to, for example, an engine for vibration-proofing support of an automobile engine to a vehicle body frame. Regarding gin mounts, it is defined inside an elastic material and its volume changes depending on the load. The pressure receiving chamber is connected to the pressure receiving chamber through a first communicating path having a short length or a second communicating path having a long length. an equilibrium chamber communicating with the chamber; an incompressible fluid sealed inside the pressure receiving chamber and the equilibrium chamber; The two chambers are made to communicate with each other through the first communication passage when the engine speed is low, and the engine speed is low. and a switching valve that communicates with each other through the second communication passage when the engine rotation speed is high. This article relates to liquid-sealed engine mounts.

【0002】0002

【従来の技術】[Conventional technology]

かかる液封式エンジンマウントは、例えば特開昭60−113833号公報に より公知である。 Such a liquid seal type engine mount is described, for example, in Japanese Patent Application Laid-open No. 113833/1983. It is more well known.

【0003】 このエンジンマウントは、アイドリング時のようなエンジンの低速回転時に、 流体が容易に通過し得る第1連通路を介して受圧室と平衡室を連通せしめ、動バ ネ定数を低下させることにより低周波振動の車体への伝達を防止している。また エンジンマスとマウントバネ系が共振するエンジンシェイク時や急発進・急加速 時によるエンジントルクの急変時には、流体が通過し難い第2連通路を介して受 圧室と平衡室を連通せしめ、動バネ定数を増加によるエンジンの振れ防止を図っ ている。0003 This engine mount is suitable for when the engine rotates at low speeds such as when idling. The pressure receiving chamber and the equilibrium chamber are communicated through a first communication path through which fluid can easily pass, and the dynamic valve By lowering the vibration constant, transmission of low-frequency vibrations to the vehicle body is prevented. Also When the engine mass and mount spring system resonate, such as when the engine shakes, or when starting or accelerating suddenly. When the engine torque suddenly changes due to time, the fluid is received through the second communication passage which is difficult to pass through. The pressure chamber and equilibrium chamber are communicated, and the dynamic spring constant is increased to prevent engine vibration. ing.

【0004】0004

【考案が解決しようとする課題】[Problem that the idea aims to solve]

ところでエンジンの中高速回転域において前記第1連通路で受圧室と平衡室を 連通させると動バネ定数が急激に増加するため、この場合には第2連通路を介し て受圧室と平衡室を連通させる必要がある。しかしながら上記従来の液封式エン ジンマウントでは、エンジンの中高速回転域において第2連通路を使用しても動 バネ定数を充分に低下させることが困難であり、しかも連通路の切り換え時に動 バネ定数が急増するため、充分な防振効果が得られない問題があった。 By the way, in the middle and high speed range of the engine, the first communication passage connects the pressure receiving chamber and the equilibrium chamber. If the connection is made, the dynamic spring constant will increase rapidly, so in this case, the It is necessary to communicate the pressure receiving chamber and the equilibrium chamber. However, the conventional liquid ring type engine mentioned above The gin mount does not operate even if the second communication passage is used in the engine's medium and high speed range. It is difficult to reduce the spring constant sufficiently, and the movement occurs when switching the communication path. Since the spring constant rapidly increases, there is a problem in that a sufficient vibration damping effect cannot be obtained.

【0005】 本考案は前述の事情に鑑みてなされたもので、エンジンの中高速回転域におい て適切な動バネ定数を得ることが可能であり、かつ連通路の切り換え時に動バネ 定数の急増を防止し得る液封式エンジンマウントを提供することを目的とする。[0005] This invention was made in view of the above-mentioned circumstances, and it It is possible to obtain an appropriate dynamic spring constant by using It is an object of the present invention to provide a liquid-sealed engine mount that can prevent a sudden increase in constant.

【0006】[0006]

【課題を解決するための手段】[Means to solve the problem]

前記目的を達成するために、本考案は、弾性材の内部に画成されて荷重により 容積が変化する受圧室と、長さが短い第1連通路または長さが長い第2連通路を 介して前記受圧室に連通する平衡室と、前記受圧室と平衡室の内部に封入した非 圧縮性流体と、前記両室をエンジンの回転数が低い時に第1連通路を介して相互 に連通させ、エンジンの回転数が高い時に第2連通路を介して相互に連通させる 切換弁とを備えた液封式エンジンマウントにおいて、少なくとも一部が可撓膜に より画成された容積可変の中間室を設け、受圧室と平衡室が第2連通路を介して 相互に連通する位置に前記切換弁が切り換えられた時、その切換弁により前記中 間室を平衡室に連通させるように構成したことを特徴とする。 In order to achieve the above object, the present invention provides an elastic material that is defined inside the elastic material and that is A pressure receiving chamber whose volume changes and a first communication passage with a short length or a second communication passage with a long length. an equilibrium chamber that communicates with the pressure receiving chamber through the compressible fluid, and the two chambers are connected to each other through the first communication passage when the engine speed is low. and communicate with each other via the second communication path when the engine speed is high. In a liquid ring type engine mount equipped with a switching valve, at least a portion is made of a flexible membrane. A more defined intermediate chamber with variable volume is provided, and the pressure receiving chamber and the equilibrium chamber are connected via a second communication passage. When the switching valve is switched to a position where they communicate with each other, the switching valve It is characterized in that the interchamber is configured to communicate with the equilibrium chamber.

【0007】[0007]

【実施例】【Example】

以下、図面に基づいて本考案の実施例を説明する。 Embodiments of the present invention will be described below based on the drawings.

【0008】 図1〜図7は本考案の一実施例を示すもので、図1はその液封式エンジンマウ ントの縦断面図、図2は図1の2−2線断面図、図3は図1の3−3線断面図、 図4は前記図1に対応する作用の説明図、図5は図4の5−5線断面図、図6は 制御系を示すブロック図、図7は入力周波数と動バネ定数の関係を示すグラフで ある。[0008] 1 to 7 show one embodiment of the present invention, and FIG. 1 shows the liquid-sealed engine mount. 2 is a sectional view taken along line 2-2 in FIG. 1, FIG. 3 is a sectional view taken along line 3-3 in FIG. FIG. 4 is an explanatory diagram of the action corresponding to FIG. 1, FIG. 5 is a sectional view taken along the line 5-5 in FIG. 4, and FIG. A block diagram showing the control system, and Figure 7 is a graph showing the relationship between input frequency and dynamic spring constant. be.

【0009】 図1および図2に示すように、このエンジンマウントMは円形の取付板1を備 え、その取付板1の中央部を上下に貫通する取付ボルト2の上部が図示せぬエン ジンに結合される。取付板1の下面と取付ボルト2の下部外周にはラバーブロッ ク3が加硫接着される。ラバーブロック3の外周には環状のケーシング4が加硫 接着され、そのケーシング4の下端には、重ね合わされた上部仕切板5と下部仕 切板6の外周、合成樹脂またはアルミニューム製の弁ハウジング7の上部に形成 したフランジ部71 、および前記弁ハウジング7の外周を覆う環状の取付ブラケ ット8の上部に形成したフランジ部81 が上下に挟圧されてカシメにより固定さ れる。取付ブラケット8は、その下部に形成したフランジ部82 により図示せぬ 車体フレームに結合される。As shown in FIGS. 1 and 2, this engine mount M includes a circular mounting plate 1, and the upper part of a mounting bolt 2 passing vertically through the center of the mounting plate 1 is connected to an engine (not shown). be done. A rubber block 3 is vulcanized and bonded to the lower surface of the mounting plate 1 and the lower outer periphery of the mounting bolt 2. An annular casing 4 is vulcanized and bonded to the outer periphery of the rubber block 3, and at the lower end of the casing 4, the outer peripheries of the superimposed upper partition plate 5 and lower partition plate 6, and a valve housing 7 made of synthetic resin or aluminum are attached. The flange portion 7 1 formed on the upper portion of the valve housing 7 and the flange portion 8 1 formed on the upper portion of the annular mounting bracket 8 covering the outer periphery of the valve housing 7 are vertically pressed and fixed by caulking. The mounting bracket 8 is coupled to a vehicle body frame (not shown) through a flange portion 82 formed at its lower portion.

【0010】 ラバーブロック3の下面には凹部が形成され、その凹部と上部仕切板5の間に は受圧室9が画成される。受圧室9の容積は取付板1とケーシング4間のラバー ブロック3が荷重で変形することにより変化し、ラバーブロック3の過剰な変形 は取付板1の下面がラバーブロック3の上面に当接することにより規制される。0010 A recess is formed on the lower surface of the rubber block 3, and a recess is formed between the recess and the upper partition plate 5. A pressure receiving chamber 9 is defined. The volume of the pressure receiving chamber 9 is determined by the rubber between the mounting plate 1 and the casing 4. Excessive deformation of the rubber block 3 caused by the deformation of the block 3 due to the load. is regulated by the lower surface of the mounting plate 1 coming into contact with the upper surface of the rubber block 3.

【0011】 取付ブラケット8の内面にはラバー製のダイヤフラム12の外周部が加硫接着 され、そのダイヤフラム12と弁ハウジング7の下面間には平衡室13が画成さ れる。前記受圧室9と平衡室13は後述のオリフィス14,15、および切換弁 16により相互に連通するとともに、それらの内部には油等の非圧縮性流体が封 入される。したがってラバーブロック3の変形により受圧室9の容積が増減する と、この受圧室9に連通する平衡室13の容積が前記ダイヤフラム12が上下に 変形することにより増減する。[0011] The outer circumference of the rubber diaphragm 12 is vulcanized and adhered to the inner surface of the mounting bracket 8. An equilibrium chamber 13 is defined between the diaphragm 12 and the lower surface of the valve housing 7. It will be done. The pressure receiving chamber 9 and the equilibrium chamber 13 are provided with orifices 14, 15 and a switching valve, which will be described later. 16, and an incompressible fluid such as oil is sealed inside them. entered. Therefore, the volume of the pressure receiving chamber 9 increases or decreases due to the deformation of the rubber block 3. The volume of the equilibrium chamber 13 communicating with this pressure receiving chamber 9 is such that the diaphragm 12 is vertically It increases or decreases by deforming.

【0012】 次に、図3を併せて参照しながら前記受圧室9と平衡室13を相互に連通させ るアイドルオリフィス14、シェイクオリフィス15、および切換弁16の構造 を説明する。0012 Next, referring also to FIG. 3, the pressure receiving chamber 9 and the equilibrium chamber 13 are made to communicate with each other. Structure of idle orifice 14, shake orifice 15, and switching valve 16 Explain.

【0013】 アイドルオリフィス14は前記弁ハウジング7の内部に形成されるもので、そ の始端は上部仕切板5と下部仕切板6に形成した開口51 ,61 により前記受圧 室9に連通する。アイドルオリフィス14は開口51 ,61 から下部仕切板6の 下面に沿って円周上を反時計方向に約120°にわたって延びる第1通路141 を備え、その第1通路141 の末端は下向きに延びる第2通路142 を介して第 3通路143 に接続する。第3通路143 は前記第2通路142 の下側に沿って 時計方向に90°にわたって延び、その末端は半径方向内側に延びて切換弁16 に連通する第4通路144 に接続する。The idle orifice 14 is formed inside the valve housing 7, and its starting end communicates with the pressure receiving chamber 9 through openings 5 1 and 6 1 formed in the upper partition plate 5 and the lower partition plate 6. The idle orifice 14 includes a first passage 14 1 extending from the openings 5 1 , 6 1 along the lower surface of the lower partition plate 6 in a circumferential direction counterclockwise over approximately 120 degrees, and the end of the first passage 14 1 is It is connected to a third passage 14 3 via a second passage 14 2 extending downward. The third passage 14 3 extends clockwise through 90° along the lower side of the second passage 14 2 , and its end is connected to a fourth passage 14 4 that extends radially inward and communicates with the switching valve 16 .

【0014】 また、シェイクオリフィス15は前記アイドルオリフィス14の第4通路14 4 の中間から半径方向外側に分岐する第1通路151 と、この第1通路151 の 末端から上向きに延びる第2通路152 と、この第2通路152 の末端から下部 仕切板6の下面に沿って円周上を反時計方向に約180°にわたって延びる第3 通路153 を備え、その末端は下向きに延びる第4通路154 を介して前記平衡 室13に連通する。[0014] Further, the shake orifice 15 is the fourth passage 14 of the idle orifice 14. Four A first passage 15 branching radially outward from the middle of1And this first passage 151of a second passageway 15 extending upwardly from the distal end;2And this second passage 152from the end to the bottom A third section extending approximately 180° counterclockwise on the circumference along the lower surface of the partition plate 6 aisle 153and a fourth passage 15 extending downward at its end.Foursaid equilibrium via It communicates with room 13.

【0015】 前記アイドルオリフィス14の第4通路144 の末端には切換弁16が配設さ れる。切換弁16は弁ハウジング7に回転自在に支持される断面円形の一対のガ イド部161 ,162 と、両ガイド部161 ,162 間を切欠くことにより形成 された弁部163 と、一方のガイド部162 から軸方向に延びて取付ブラケット 8の外部に延出する軸部164 と、この軸部164 の一部を半径方向外側に突出 させた非円形断面のストッパ部165 を備える。軸部164 の先端に固着された アーム17はアクチュエータ18に接続され、このアクチュエータ18を駆動す ることにより前記切換弁16は図1〜図3の低速位置と、図4および図5の中高 速位置間で回転する。このとき前記低速位置および中高速位置における切換弁1 6の位置規制は、前記ストッパ部165 がその外周に配設されたストッパ部材2 9に当接することにより行われる。また切換弁16の軸部164 の外周にはオイ ルシール19とダストシール20が装着され、前記取付ブラケット8内部からの 非圧縮性流体の漏れと、取付ブラケット8内部への塵の侵入が防止される。A switching valve 16 is provided at the end of the fourth passage 14 4 of the idle orifice 14 . The switching valve 16 includes a pair of guide portions 16 1 and 16 2 with a circular cross section that are rotatably supported by the valve housing 7, and a valve portion 16 3 formed by cutting out between the guide portions 16 1 and 16 2 . , a shaft portion 164 extending axially from one guide portion 162 to the outside of the mounting bracket 8, and a stopper portion having a non-circular cross section with a portion of the shaft portion 164 protruding outward in the radial direction. Equipped with 16 5 . An arm 17 fixed to the tip of the shaft portion 164 is connected to an actuator 18, and by driving this actuator 18, the switching valve 16 is moved between the low speed position shown in FIGS. 1 to 3 and the medium and high speed position shown in FIGS. 4 and 5. Rotate between positions. At this time, the position of the switching valve 16 in the low-speed position and the medium-high speed position is controlled by the stopper part 165 coming into contact with a stopper member 29 disposed on its outer periphery. Further, an oil seal 19 and a dust seal 20 are attached to the outer periphery of the shaft portion 164 of the switching valve 16 to prevent incompressible fluid from leaking from inside the mounting bracket 8 and dust from entering into the mounting bracket 8. Ru.

【0016】 切換弁16の上部には、前記下部仕切板6の中央部に形成した円形の開口部を 覆うようにラバー製の可撓膜21が張設される。可撓膜21の下面と弁ハウジン グ7の上面間には中間室22が画成され、この中間室22は前記切換弁16の弁 部163 により開閉される。すなわち、切換弁16が図1〜図3の低速位置にあ るとき、受圧室9は第1連通路としてのアイドルオリフィス14から前記低速位 置にある切換弁16を介して直接に平衡室13に連通し、中間室22は弁部16 3 により閉塞される。一方、切換弁16が図4および図5の中高速位置にあると き、切換弁16の弁部163 によりアイドルオリフィス14と平衡室13の直接 の連通が遮断され、受圧室9は第2連通路としてのアイドルオリフィス14とシ ェイクオリフィス15の両者を介して平衡室13に連通し、更に平衡室13は弁 部163 により開かれた中間室22に連通する。また切換弁16が低速位置から 中高速位置に向けて回転を開始すると同時に中間室22が開かれるため、その切 り換え中には中間室22がアイドルオリフィス14を介して受圧室9に連通する 。[0016] The upper part of the switching valve 16 has a circular opening formed in the center of the lower partition plate 6. A flexible membrane 21 made of rubber is stretched to cover it. Lower surface of flexible membrane 21 and valve housing An intermediate chamber 22 is defined between the upper surfaces of the switch valve 7, and this intermediate chamber 22 is connected to the valve of the switching valve 16. Part 163It is opened and closed by That is, when the switching valve 16 is in the low speed position shown in FIGS. When the pressure receiving chamber 9 is The intermediate chamber 22 communicates directly with the equilibrium chamber 13 via the switching valve 16 located at the valve section 16. 3 is occluded by On the other hand, when the switching valve 16 is in the medium and high speed position in FIGS. 4 and 5, The valve part 16 of the switching valve 163Due to the direct connection between the idle orifice 14 and the equilibrium chamber 13 communication is cut off, and the pressure receiving chamber 9 is connected to the idle orifice 14 as a second communication path. The equilibrium chamber 13 is connected to the equilibrium chamber 13 through both of the quake orifices 15, and the equilibrium chamber 13 is further connected to a valve. Part 163It communicates with the intermediate chamber 22 opened by. Also, the switching valve 16 is switched from the low speed position. Since the intermediate chamber 22 is opened at the same time as the rotation starts toward the medium-high speed position, the During switching, the intermediate chamber 22 communicates with the pressure receiving chamber 9 via the idle orifice 14. .

【0017】 図6に示すように、前記エンジンマウントMを制御するコントロールユニット 23には電源24、回転数センサ25、およびソレノイドバルブ26が接続され 、回転数センサ25が検出するエンジンの回転数の変化に応じてソレノイドバル ブ26が開閉制御される。ソレノイドバルブ26は大気27の圧力とエンジンの インテークマニホールド28の負圧を選択的に前記アクチュエータ18に伝達し 、エンジンマウントMの切換弁16が開閉操作される。[0017] As shown in FIG. 6, a control unit that controls the engine mount M A power supply 24, a rotation speed sensor 25, and a solenoid valve 26 are connected to 23. , the solenoid valve is activated in accordance with the change in engine speed detected by the rotation speed sensor 25. The opening and closing of the valve 26 is controlled. The solenoid valve 26 is connected to the pressure of the atmosphere 27 and the engine. The negative pressure of the intake manifold 28 is selectively transmitted to the actuator 18. , the switching valve 16 of the engine mount M is opened and closed.

【0018】 次に、前述の構成を備えた本考案の実施例の作用を、入力周波数を横軸に動バ ネ定数を縦軸にとった図7のグラフを参照して説明する。[0018] Next, the operation of the embodiment of the present invention having the above-mentioned configuration will be explained with respect to the input frequency on the horizontal axis. This will be explained with reference to the graph of FIG. 7 in which the vertical axis is the constant.

【0019】 アイドリング状態のようなエンジンの低速回転域(入力周波数20〜45ヘル ツ)では切換弁16が図1〜図3に示す低速位置にあり、受圧室9は第1連通路 としてのアイドルオリフィス14を介して直接平衡室13に連通し、中間室22 は切換弁16により閉塞されている。このときアイドルオリフィス14の末端は シェイクオリフィス15を介しても平衡室13に連通しているが、前述のように アイドルオリフィス14の末端は切換弁16を介して直接平衡室13に連通して いるため、シェイクオリフィス15は実質的に機能しない。[0019] Low engine speed range such as idling (input frequency 20 to 45 Hertz) In (3), the switching valve 16 is in the low speed position shown in FIGS. 1 to 3, and the pressure receiving chamber 9 is in the first communication path. The intermediate chamber 22 communicates directly with the equilibrium chamber 13 through the idle orifice 14 as is closed by the switching valve 16. At this time, the end of the idle orifice 14 is It also communicates with the equilibrium chamber 13 through the shake orifice 15, but as mentioned above, The end of the idle orifice 14 directly communicates with the equilibrium chamber 13 via the switching valve 16. Therefore, the shake orifice 15 does not substantially function.

【0020】 上記低速回転域では、ラバーブロック3の変形により受圧室9に発生する圧力 変動に伴ってアイドルオリフィス14内の流体が液柱共振し、ラバーブロック3 のバネの主成分よりも更に動バネ定数を低下させることができる。その結果、図 7に一点鎖線で示すように入力周波数20〜45ヘルツの領域における動バネ定 数が低い値に保たれ、エンジンから車体への振動伝達が効果的に遮断される。[0020] In the low-speed rotation range mentioned above, the pressure generated in the pressure receiving chamber 9 due to the deformation of the rubber block 3 Due to the fluctuation, the fluid in the idle orifice 14 resonates as a liquid column, and the rubber block 3 The dynamic spring constant can be lowered further than the main component of the spring. As a result, fig. 7, the dynamic spring constant in the input frequency range of 20 to 45 Hz is shown by the dashed line. The number is kept low, effectively blocking vibration transmission from the engine to the vehicle body.

【0021】 しかしながら、上述のようにアイドルオリフィス14により受圧室9と平衡室 13を連通させた状態では、加速時すなわち中速回転域における入力周波数の増 加に伴って動バネ定数が急激に増加してしまう不都合がある。このために、入力 周波数が約45ヘルツに達すると切換弁16を図1〜図3に示す低速位置から切 り換えを開始し、入力周波数が約65ヘルツに達したときに図3および図4に示 す中高速位置に切り換えを完了させる。その間、切換弁16が回転を開始すると 同時にアイドルオリフィス14の末端が中間室22に連通するため、受圧室9の 圧力変動が中間室22の可撓膜21の弾性変形により吸収される。これにより、 入力周波数45〜65ヘルツの領域において、動バネ定数を一点鎖線で示す値か ら破線で示す値に大きく減少させることが可能となる。[0021] However, as described above, the idle orifice 14 causes the pressure receiving chamber 9 and the equilibrium chamber to 13 is in communication, the input frequency increases during acceleration, that is, in the medium speed rotation range. There is an inconvenience that the dynamic spring constant increases rapidly as the load increases. For this, type When the frequency reaches approximately 45 Hz, the switching valve 16 is turned off from the low speed position shown in Figures 1 to 3. 3 and 4 when the input frequency reaches approximately 65 Hz. Complete the changeover to the medium-high speed position. During that time, when the switching valve 16 starts rotating, At the same time, since the end of the idle orifice 14 communicates with the intermediate chamber 22, the pressure receiving chamber 9 Pressure fluctuations are absorbed by elastic deformation of the flexible membrane 21 in the intermediate chamber 22. This results in In the input frequency range of 45 to 65 Hz, the dynamic spring constant is the value shown by the dashed line. It becomes possible to significantly reduce the value from the value shown by the broken line.

【0022】 入力周波数が約65ヘルツを越える高速回転域に達すると、切換弁16の切り 換えが完了し、受圧室9と平衡室13は第2連通路としての直列に接続されたア イドルオリフィス14とシェイクオリフィス15を介して連通するとともに、そ の平衡室13は開放された中間室22にも連通する。この場合シェイクオリフィ ス15は周波数の高い振動により窒息して流通抵抗が大きな状態となるため、も しも中間室22と平衡室13の連通が行われないと、図7に二点鎖線で示すよう に高速回転域における動バネ定数を充分に低下させることが困難となる。しかし ながら、本考案では中間室22と平衡室13が相互に連通することにより中間室 22の可撓膜21の変形のよる液圧の吸収が行われるため、実際の動バネ定数は 二点鎖線で示す値から実線で示す値に低下し、その特性が改善される。[0022] When the input frequency reaches a high speed range exceeding approximately 65 Hz, the switching valve 16 is switched off. After the replacement is completed, the pressure receiving chamber 9 and the equilibrium chamber 13 are connected in series as a second communication path. The idle orifice 14 and the shake orifice 15 communicate with each other. The equilibrium chamber 13 also communicates with an open intermediate chamber 22. In this case shake orifice 15 is suffocated by high-frequency vibrations and the flow resistance becomes large. If there is no communication between the intermediate chamber 22 and the equilibrium chamber 13, as shown by the two-dot chain line in FIG. It becomes difficult to sufficiently reduce the dynamic spring constant in the high speed rotation range. but However, in the present invention, the intermediate chamber 22 and the equilibrium chamber 13 communicate with each other. Since the fluid pressure is absorbed by the deformation of the flexible membrane 21 of 22, the actual dynamic spring constant is The value decreases from the value shown by the two-dot chain line to the value shown by the solid line, and its characteristics are improved.

【0023】 以上、本考案の実施例を詳述したが、本考案は、前記実施例に限定されるもの でなく、実用新案登録請求の範囲に記載された本考案を逸脱することなく、種々 の小設計変更を行うことが可能である。[0023] Although the embodiments of the present invention have been described in detail above, the present invention is limited to the above embodiments. However, various inventions may be made without departing from the present invention as stated in the claims for utility model registration. It is possible to make small design changes.

【0024】 例えば、実施例では第1連通路を構成するアイドルオリフィス14が第2連通 路の一部をも構成しているが、第1連通路と第2連通路を完全に別個に設けるこ とも可能である。[0024] For example, in the embodiment, the idle orifice 14 constituting the first communication path is connected to the second communication path. However, it is not possible to provide the first communication path and the second communication path completely separately. Both are possible.

【0025】[0025]

【考案の効果】[Effect of the idea]

以上のように本考案の特徴によれば、エンジンの回転数が高いときに受圧室と 平衡室とを長さが長い第2連通路を介して連通させると同時に、前記平衡室を可 撓膜を有する中間室に連通させているので、受圧室の液圧変動により第2連通路 が窒息して液圧が上昇しても、その液圧を前記可撓膜の変形により吸収して動バ ネ定数の増加を抑制することができる。また切換弁による第1連通路と第2連通 路の切り換え中に前記中間室が受圧室に連通するので、エンジンの回転数が低速 から高速に移行する過程における動バネ定数の急変が防止され、広い回転数領域 で動バネ定数を適切な値に保持することができる。 As described above, according to the features of the present invention, when the engine speed is high, the pressure receiving chamber At the same time, the equilibrium chamber is communicated with the equilibrium chamber via a second communication path having a long length. Since it communicates with the intermediate chamber having a flexible membrane, the second communication passage is Even if the fluid suffocates and the fluid pressure increases, the fluid pressure is absorbed by the deformation of the flexible membrane and the dynamic spring It is possible to suppress the increase in the net constant. In addition, the first communication passage and the second communication passage are connected by a switching valve. Since the intermediate chamber communicates with the pressure receiving chamber during road switching, the engine speed is low. This prevents sudden changes in the dynamic spring constant during the transition from high speed to high speed, resulting in a wide rotation speed range. The dynamic spring constant can be maintained at an appropriate value.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】液封式エンジンマウントの縦断面図[Figure 1] Longitudinal cross-sectional view of liquid ring type engine mount

【図2】図1の2−2線断面図[Figure 2] Cross-sectional view taken along line 2-2 in Figure 1

【図3】図1の3−3線断面図[Figure 3] Cross-sectional view taken along line 3-3 in Figure 1

【図4】図1に対応する作用の説明図[Fig. 4] Explanatory diagram of the action corresponding to Fig. 1

【図5】図4の5−5線断面図[Figure 5] Cross-sectional view taken along line 5-5 in Figure 4

【図6】制御系を示すブロック図[Figure 6] Block diagram showing the control system

【図7】入力周波数と動バネ定数の関係を示すグラフ[Figure 7] Graph showing the relationship between input frequency and dynamic spring constant

【符号の説明】[Explanation of symbols]

3・・・ラバーブロック(弾性材) 9・・・受圧室 13・・平衡室 14・・アイドルオリフィス(第1連通路、第2連通
路) 15・・シェイクオリフィス(第2連通路) 16・・切換弁 21・・可撓膜 22・・中間室
3... Rubber block (elastic material) 9... Pressure receiving chamber 13... Equilibrium chamber 14... Idle orifice (first communication path, second communication path) 15... Shake orifice (second communication path) 16.・Switching valve 21・・Flexible membrane 22・・Intermediate chamber

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 弾性材(3)の内部に画成されて荷重に
より容積が変化する受圧室(9)と、長さが短い第1連
通路(14)または長さが長い第2連通路(14,1
5)を介して前記受圧室(9)に連通する平衡室(1
3)と、前記受圧室(9)と平衡室(13)の内部に封
入した非圧縮性流体と、前記両室(9,13)をエンジ
ンの回転数が低い時に第1連通路(14)を介して相互
に連通させ、エンジンの回転数が高い時に第2連通路
(14,15)を介して相互に連通させる切換弁(1
6)とを備えた液封式エンジンマウントにおいて、少な
くとも一部が可撓膜(21)により画成された容積可変
の中間室(22)を設け、受圧室(9)と平衡室(1
3)が第2連通路(14,15)を介して相互に連通す
る位置に前記切換弁(16)が切り換えられた時、その
切換弁(16)により前記中間室(22)を平衡室(1
3)に連通させるように構成したことを特徴とする、液
封式エンジンマウント。
Claim 1: A pressure receiving chamber (9) defined inside the elastic material (3) whose volume changes depending on the load, and a first communication passage (14) having a short length or a second communication passage having a long length. (14,1
an equilibrium chamber (1) communicating with the pressure receiving chamber (9) via a
3), an incompressible fluid sealed inside the pressure receiving chamber (9) and the equilibrium chamber (13), and a first communication passage (14) connecting both the chambers (9, 13) when the engine speed is low. The switching valves (14, 15) communicate with each other through the second communication passages (14, 15) when the engine speed is high.
A liquid-sealed engine mount comprising: a variable volume intermediate chamber (22) at least partially defined by a flexible membrane (21);
When the switching valve (16) is switched to a position where the two chambers (3) communicate with each other via the second communication passage (14, 15), the switching valve (16) switches the intermediate chamber (22) into an equilibrium chamber ( 1
3) A liquid-sealed engine mount characterized by being configured to communicate with the engine mount.
JP2897791U 1991-04-24 1991-04-24 liquid engine mount Pending JPH04122841U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2897791U JPH04122841U (en) 1991-04-24 1991-04-24 liquid engine mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2897791U JPH04122841U (en) 1991-04-24 1991-04-24 liquid engine mount

Publications (1)

Publication Number Publication Date
JPH04122841U true JPH04122841U (en) 1992-11-05

Family

ID=31912963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2897791U Pending JPH04122841U (en) 1991-04-24 1991-04-24 liquid engine mount

Country Status (1)

Country Link
JP (1) JPH04122841U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138839A (en) * 2007-12-05 2009-06-25 Toyo Tire & Rubber Co Ltd Liquid-filled vibration isolator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113833A (en) * 1983-11-21 1985-06-20 Tokai Rubber Ind Ltd Mounting device of power unit
JPH0389043A (en) * 1989-08-31 1991-04-15 Tokai Rubber Ind Ltd Fluid-filled vibration isolating mount

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113833A (en) * 1983-11-21 1985-06-20 Tokai Rubber Ind Ltd Mounting device of power unit
JPH0389043A (en) * 1989-08-31 1991-04-15 Tokai Rubber Ind Ltd Fluid-filled vibration isolating mount

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138839A (en) * 2007-12-05 2009-06-25 Toyo Tire & Rubber Co Ltd Liquid-filled vibration isolator
JP4579963B2 (en) * 2007-12-05 2010-11-10 東洋ゴム工業株式会社 Liquid-filled vibration isolator

Similar Documents

Publication Publication Date Title
JP2843088B2 (en) Fluid-filled mounting device
US4834349A (en) Vibration preventing apparatus using fluid
US6073918A (en) Vibration isolating apparatus
JPH06337034A (en) Liquid sealing vibration control device
JPH0650379A (en) Vibration control device
JPH0540638U (en) Fluid-filled mounting device
JPH04122841U (en) liquid engine mount
JP2944470B2 (en) Liquid sealing rubber device
JP3698186B2 (en) Liquid filled mount
JP2884804B2 (en) Fluid-filled mounting device
JPH05248487A (en) Liquid-sealed type vibration isolating device
JP2831172B2 (en) Anti-vibration device
JPH0246337A (en) Fluid sealing type vibration isolator
JPS6322353Y2 (en)
JP4210851B2 (en) Fluid-filled engine mount for vehicles
JPH11166578A (en) Vibration control device
JPS631072Y2 (en)
JP3633207B2 (en) Fluid filled vibration isolator
JPH0710114Y2 (en) Liquid-filled mount
JPH04312231A (en) Liquid seal vibration isolating device
JPH0425636A (en) Vibration isolator and method thereof
JPH0674285A (en) Vibration control device
JP4409661B2 (en) Vibration isolator
JP3461018B2 (en) Anti-vibration device
JPH11230243A (en) Vibration control device