JPH04122701A - Beta-glucan and its production - Google Patents

Beta-glucan and its production

Info

Publication number
JPH04122701A
JPH04122701A JP2413440A JP41344090A JPH04122701A JP H04122701 A JPH04122701 A JP H04122701A JP 2413440 A JP2413440 A JP 2413440A JP 41344090 A JP41344090 A JP 41344090A JP H04122701 A JPH04122701 A JP H04122701A
Authority
JP
Japan
Prior art keywords
glucan
viscosity
beta
polysaccharide
main chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2413440A
Other languages
Japanese (ja)
Other versions
JPH07119243B2 (en
Inventor
Hideyo Uchiwa
打和 秀世
Hiroko Santo
山東 博子
Kazuyoshi Morita
和良 森田
Hiroshi Togiya
研谷 啓
Kazunobu Tokunaga
徳永 和信
Tomohisa Kotani
小谷 智久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Publication of JPH04122701A publication Critical patent/JPH04122701A/en
Publication of JPH07119243B2 publication Critical patent/JPH07119243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jellies, Jams, And Syrups (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To obtain a beta-glucan having high viscosity and improved stability and functional characteristics by specifying its manner of bonding, its molecular weight and its viscosity. CONSTITUTION:Microorganisms belonging to the genus Macrophomopsis are cultured to obtain a beta-glucan having a manner of bonding in which all of the D-glucopyranosyl residues (D-GP residues) in the main chain are bonded through a beta-1,3 bond, there is a branch in the C-6 position of the D-GP residue of the main chain and there is one D-GP residue bonded through a beta-1,6 bond as a side chain for every four D-GP residues bonded through a beta-1,3 bond in the main chain, having a molecular weight (as determined by high-performance liquid chromatography through a molecular sieve column) of about 10000000 Dalton or above, having a relationship of the temperature dependency of the viscosity in which the viscosity is constant in the range of 5-8 deg.C in a concentration of 0.3wt.% or below and is also constant in the range of 20-85 deg.C even in a concentration of above 0.3wt.% and having a viscosity which is stable even when it is autoclaved at 121 deg.C or below under a pressure of 1kg/cm<2> for 20min.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】[Industrial application field]

本発明は高粘性を有する新規β−グルカン及びその製造
方法に関する。 [0002]
The present invention relates to a novel β-glucan with high viscosity and a method for producing the same. [0002]

【従来の技術及び発明が解決しようとする課題】多糖類
は食品工業、化粧品工業、医薬品工業、製紙工業、化学
工業等多方面に渡って使用されている。 [0003] 従来、多糖類は主に植物、海草等から供給されてきたが
、最近では必要な時にいつでも安定して供給できる微生
物からの多糖類が開発され供給されるようになってきた
。 [0004] 微生物の生産する多糖類に関しては、これまでアルカリ
土類金属、キサントモナス属、シュードモナス属等に属
する細菌、プルラニア属、スクレロティウム属アスペル
ギルス属等に属する真菌類の生産するものが知られてい
る。しかし熱に安定で、かつ常温で高粘性流である中性
多糖でしかもべたつき感がなく官能的に優れたものは意
外に少なかった。 [0005] また、多糖類の構造を見るに、これまでβ−1,3グル
コシド結合を主鎖にもつホモグルカン、所謂β−1,3
グルカンは担子菌を初め酵母、糸状菌等の真菌[000
6] 、の   − 例えば、シイタケの子実体からレンチナン  、カノデ
ルマ属の培養物からのガノデラン(2)を初めとした担
子菌由来のβ−1,3グルカン、不完全菌スフレロチイ
ウム属産生のスクレログルカンの、子のう菌ペスタロテ
ィア属産生のペスタロタンの等のβ−1,3グルカンな
どである。 [0007] の  「カビの分離・培養 固定と有用物質の生産・応
用」かび応用開発研究会(同文堂)P、354〜369 [0008] しかし、これらの中で、熱に対して安定な粘性を示し、
主鎖のD−グルコピラ以上という高分子量のβ−グルカ
ンは存在しなかった。しかもべたつき感がなく官能的に
優れたものは意外に少なかった。 [0009] 本発明は、安定で官能的に優れた新規な高粘性多糖を得
ることを目的としてl、)る。 [0010]
[Prior Art and Problems to be Solved by the Invention] Polysaccharides are used in a wide variety of fields, including the food industry, cosmetics industry, pharmaceutical industry, paper industry, and chemical industry. [0003] Conventionally, polysaccharides have been mainly supplied from plants, seaweed, etc., but recently polysaccharides from microorganisms that can be stably supplied whenever needed have been developed and supplied. [0004] Regarding polysaccharides produced by microorganisms, those produced by alkaline earth metals, bacteria belonging to the genus Xanthomonas, genus Pseudomonas, etc., and fungi belonging to the genus Plulania, genus Sclerotium, genus Aspergillus, etc. are known. ing. However, surprisingly few neutral polysaccharides are heat-stable, highly viscous at room temperature, have no sticky feel, and are sensually superior. [0005] Furthermore, looking at the structure of polysaccharides, homoglucans having β-1,3 glucoside bonds in the main chain, so-called β-1,3
Glucans are found in fungi such as basidiomycetes, yeasts, and filamentous fungi [000
6] - For example, lentinan from the fruiting bodies of shiitake mushrooms, β-1,3 glucan from basidiomycetes including ganoderan (2) from cultures of Canoderma sp., and scleroglucans produced by Sphlerotium deuteromycetes. and β-1,3 glucans such as Pestalotan produced by the Ascomycete Pestalotia. [0007] “Isolation and cultivation of mold, fixation, and production and application of useful substances” Mold Application Development Research Group (Dobundo) P, 354-369 [0008] However, among these, viscosity that is stable against heat shows,
There was no β-glucan with a molecular weight higher than D-glucopyra in the main chain. Moreover, there were surprisingly few products that did not have a sticky feeling and were sensually superior. [0009] The present invention aims to obtain a novel high-viscosity polysaccharide that is stable and has excellent organoleptic properties. [0010]

【課題を解決するための手段】[Means to solve the problem]

本発明は、下記性質を有することを特徴とする高粘性β
−グルカンである。 [0011] (a)  結合様式が、主鎖のD−グルコピラノシル残
基はすべてβ−1,3結合であり、又主鎖のD−グルコ
ピラノシル残基のC−6の位置で労咳しており、かつ主
鎖であるβ−1,3結合のD−グルコピラノシル残基4
ケ毎にβ−1,6結合のD−グルコピラノシル残基1ケ
を側鎖として有する。 [0012] (b)  分子量が、分子ふるいカラムを用いた高速液
体クロマトグラフィーより約1千万ダルトンかそれ以上
である。 [0013] (c)  粘度の温度依存関係が、0.3重量%以下の
濃度に於いて、5℃〜85℃間で一定の粘度を有し、0
.3重量%を越える濃度でも20℃〜85℃間で一定の
粘度を有する。 [0014] (d)  121℃下、1kg/cm2のオートクレー
ブ加熱(20分間)処理によっても粘度が安定である。 [0015] また本発明は、マクロフォモプシス(Macro  h
omo  5is)属に属する微生物を培養し、培養物
から、上記のβ−グルカンを採取することを特徴とする
β−グルカンの製造方法。 及び、マクロフォモプシス属に属する微生物の培養にお
し゛て、炭素源として、ガラクトースを骨格として含む
糖を用いることを特徴とする、β−グルカンの製遣方法
。 更に、ガラクトースを骨格として含む糖がラクトースで
ある、β−グルカンの製造方法である。 [0016] 本発明に用いる微生物は、マクロフォモプシス(Mac
ro  homo  SlΣ)属に属し、例えば、微工
研受託9366号として寄託されたマクロフォモプシス
KAB55株と命名されたものがあげられる。 [0017] 以下にKAB55について説明する。 ■、採集地 神奈川県小田原市の土壌より分離した。 [0018] Il、各種培養基上の性状 KAB55の肉眼的および顕微鏡的観察に基く各種培地
上における培養の特徴は次に記載する通りである。 1)肉眼的観察 糸状菌KAB55株の25℃での成育形態を調べた。 [0019] 1、ツアペックドックス寒天培地 生育は比較的速く、培養2日目には菌糸の伸長がみられ
た。培養5日目には白色綿毛様の菌糸増殖が盛んであっ
た。菌糸が全体的に密に増殖する。12日目頃には、コ
ロニーは5.5cm位になり、コロニー中心部の裏面は
黄褐色化する。3週間目頃から、コロニー中心よりやや
周辺部で菌糸が盛り上がりはじめた。 [0020] 2、ポテトデキストロース寒天培地 生育は比較的速く、菌糸は白色綿毛様である。コロニー
中心部は、菌糸は余り増殖性が活発でなく、周辺部で非
常に活発で、菌糸が密になり、ドーナッツ様となる。更
に、そこから菌糸が伸長し、ドーナツツ周辺にやや疎菌
糸帯を形成し、その先端周辺部で密菌糸帯を形成してい
く。そしてまたその疎菌糸帯も密になり、更に大きなド
ーナツツ様コロニーとなる。12日目頃にはコロニーは
6.5〜7.5crn位になる。コロニー中心部の裏面
が黄色褐色化する。3週間口位には、コロニー中心部へ
の菌糸増殖が進み、全体的に菌糸が覆われた状態になる
。その後、コロニー中心部よりやや周辺部で、暗緑色様
に着色しつつ、菌糸の盛り上がりが起こってきた。 [0021] 3、麦芽エキス寒天培地 1.2に比較し、初期の白色綿毛様の菌糸体増殖が遅い
。しかし、コロニーの拡大は速い。5日目頃からコロニ
ー中心部より周辺部に向い疎・密菌糸帯の繰返し模様が
観察される。12日目頃には、コロニーは8.5cmと
なる。3週間口位には、そのまんだら模様が全体的に菌
糸で覆われるような形で薄れて行く。 [0022] 4、コーンミル培地 生育は極めて速く、ポテトデキストロース寒天培地と同
様に菌糸は白色綿毛様の菌糸体増殖をする。分生子未形
成に適しており、分生子果の着生成熟ともに速く盛ん。 分生子果は寒天中にわずかに埋没して形成される。1%
 meat  extractを添加して培養すると紫
色に着色する。 [0023] 5、オートミル寒天培地 コーンミル培地とほぼ同じ挙動である。 [0024] 2)顕微鏡下での形態 コーンミルなどの寒天培地上での菌糸は白色綿毛様であ
り、寒天にもぐるようにして増殖し、分岐をもち、隔膜
がある。寒天培地上で形成される分生子果は・コゲ茶で
球形であり、開口部を持っている。開口部の孔口は単一
で、まるく、中心にある・分生子果柄は無色で、分岐し
、基部でのみ隔膜がみられ、円筒状の形態をしている。 分生子形成細胞は、全割、不定形である。分生子は無色
で隔膜のない紡錘形をしている。分生子の先端は鋭角、
後端は裁断状である。 [0025] 3)生育のpH pH3,5〜9.0のpH域で生育できるが、pH2,
5以下では生育できない。生育の至適ばpH5,0〜8
.0である。 [0026] 4)生育温度 10℃〜40℃の温度域で生育するが5℃以下または4
5℃以上では生育できない。35℃〜40℃の生育は、
28℃と同程度に速い。白色菌糸体の形成が主体で、分
生子果の形成、成熟には、28℃以下のほうが適してい
る。生育および分生子果の形成の至適温度は20℃〜3
0℃である。 本発明の新規な多糖類は次の理化学性質を有する。 [0027] の 分子量:移動相として50mM塩化ナトリウム溶液
を用いたAsahipak  G5−710カラム(排
除限界分子量が1000万)を用いた高速液体クロマト
グラフィー(以下HPLCと略記)により、一定分子量
のプルランを検量線用にして分子ふるいを行なった時、
排除限界付近の位置に一本のピークが観察される。よっ
てその分子の大きさは約1千万ダルトンがそれ以上であ
り極めて大きな分子サイズを示す。 [0028] (2) 紫外線吸収スペクトル:吸収は示さない。 [0029] (3) 赤外線吸収スペクトル:図1に示す通り、β−
り刃コシド結合に特有の約890cm’の吸収が見られ
るが、α−グリコシド結合に特有の約9170m 、約
844cm、約766cm’の吸収は見られない。 従って本発明の多糖はβ−グリコシド結合のみを持つこ
とが分かった。 [0030] (4) 溶剤に対する溶解性:水に可溶、0.5N水酸
化ナトリウム、90%ギ酸に可溶、メタノール、アセト
ン、クロロホルム、酢酸エチル等の有機溶媒には不溶。 [0031] (5) 呈色反応 A) フェノール硫酸反応:+ B)  ヨード反応ニー C) カルバゾール−硫酸反応: D) ニンヒドリン反応ニー [0032] (6) 塩基性、酸性、中性の区別:本物質の水溶液の
pHは中性である。 [0033] (7) 物質の色:白色。 [0034] (8) 構成糖の種類: 2.5N)リフルオロ酢酸で8時間加水分解しこれをT
SK−gel  Suger  AXGカラム(東洋曹
達社製)を用いたHPLCにて分析した時、本発明の多
糖はグルコースのみを主要成分としていることが認めら
れた。 [0035] (9) 酵素による分解性: 本多糖類は下達酵素にて処理しく各酵素2.5Unit
s、pH5,0,37℃、0〜24hr反応) その被
加水分解能を薄層クロマトグラフィー(展開溶媒:n−
ブタノール:酢酸:エチルエーテル:水=9 : 6 
: 3 : 1)及びAsahipak  G5−71
0HPLCにより観察した結果、α−アミラーゼ、β−
アミラーゼ、グルコアミラーゼでは全く加水分解を受け
ず、ラミナリナーゼのみ両分析法で被分解能を認めた。 [0036] (10) 粘性 イ)粘度:本多糖の溶解液は粘性の高い中性溶液となる
。ビスメトロン回転粘度計でその粘度を測定する時1%
水溶液で1200〜1700センチポアズ示すとおりで
あり既存のキサンタンガムの粘度と比べて約2倍の粘性
を示す[0037] 口)粘度の温度依存性:常温で安定な高粘性流を示し、
0.3重量%以下の濃度に於いて、5℃〜85℃間で一
定の粘度を有し、0.3重量%を越える濃度でも20℃
〜85℃間で一定の粘度を有する。 以下に測定結果を示す。 [0038] ポリマー濃度 0.3%  0.5%  1゜0% 温度 (cps) 5℃      240    728    262
010℃      240    697    1
56020℃      239    609   
 115930℃      240    609 
   113740℃      240    60
9    113085℃      240    
609    1130[0039] 尚、各サンプル溶液は所定の温度の恒温槽にて約1時間
放置後、恒温槽外に取り出し、ただちにその粘度を測定
した。 [0040] ハ)加熱に対する安定性:121℃下、1kg/cm2
のオートクレーブ加熱(20分間)処理によっても粘度
が安定である。即ち0.3重量%の溶液を用いて、上記
のオートクレーブ処理を行なった場合、処理前の粘度が
207CpSで処理後が210cpsであった。 [0041] ニ)酸及びアルカリに対する安定性: pH2〜13の
範囲で比較的安定した粘度を示す。 [0042] ホ)塩に対する安定性ニホウ酸塩、酢酸塩、硫酸塩、ナ
トリウム塩、カリウム塩、カルシウム塩、マグネシウム
塩等のいずれかの塩の存在下でも一定の粘性を示し安定
である。 [0043] (11) 結合様式 本発明多糖類をジメチルスルホキシドに溶解後メチルス
ルホニルカルボアニオン及び沃化メチルを用いる箱守法
でメチル誘導体に導き、これを酸で加水分解後、メチル
化糖をアルデイトール、アセテートに誘導し、ガスクロ
マトグラフィー、質量分析器の組0合せにより固定、定
量分析すると、生成物は2,3゜4.6−テトラ−0−
メチルーD−グルコース、2,4.6−トリーO−メチ
[0044] 更に、本発明多糖を過ヨウ素酸で酸化し、水素化ホウ素
ナトリウムで還元後酸により加水分解した(Smith
分解)。それを再度アンモニア存在下水素化ホウ素ナト
リウム還元後、アセテート誘導体として、ガスクロマト
グラフィーにより同定、定量すると、生成物は次のもの
が観察された。グリセロールが1.0モルに対して、グ
ルコースが3.5乃至4.3モル。 [0045] 上述の結果より、本発明のβ−グルカンは主鎖のD−グ
ルコピラノシル残基カ全てβ−1,3結合であり、主鎖
のD−グルコピラノシル残基のC−6の位置で分岐し、
主鎖のβ−1,3結合のD−グルコピラノシル残基4ケ
毎にβ−1,6結合のD−グルコピラノシル残基1ケを
側鎖として有する中性多糖である。 [0046] (12) 水分蒸散試験 4群のサンプルびんに一定量の水を入れ、第二原紙(謄
写板で使うろうをひいた薄い紙)をびんの口に貼り、各
群の原紙の上にそれぞれヒアルロン酸1%溶液、ヒアル
ロン酸0.5%溶液1本多糖類1%溶液1本多糖類0.
5%溶液を一定量塗布し、そのサンプルびんの重量を経
日的に測定することにより、水分蒸散量を求めた。 [0047] 尚、紙に水を塗布したものをコントロールとし各群3個
の試料を用い測定した。 以下、結果を示す。 [0048] 水分蒸散試、験 水分蒸散量(m g ) コーテイング物質  トー  7 −7一−刊4日目1
8日目112日目1 本多糖類 1% 0.5% ヒアルロン酸 Oo 1% 5% 水 (1群3点で測定し、その平均値を示した。)[004
9] 本多糖類は保湿作用を有するヒアルロン酸よれた。 りも水分蒸散抑制効果が認めら [0050] (13) 安全性試験 本発明多糖類の感作性試、験(Maximizat i
on法、試料濃度;誘導1%(2回)、惹起0.5%及
び1%)を実施する時、モルモット10中隔陽性と認め
られる動物は一匹もいなかった。 また、本発明多糖類の光感作性試験(Adjuvant
−5tr ip法、試料濃度;誘導1%、惹起0.5%
及び1%)を実施する時、モルモツ)10匹中隔性と認
められる動物は一匹もいなかった。 [0051] 以上より、本発明多糖類は感作性の低い、安全性の高い
多糖類であった。 [0052] (14) その他の特徴的な性質 本発明の多糖類は無味無臭である。また、本発明の多糖
類は塗布した時の官能特性として、後記応用例の官能テ
ストの結果が示す如く、既存のキサンタンガムが持つ上
すべり感がなく、サラッとした感触を示す。 [0053] 次に、培養法及び精製法について述べる。 本多糖類生産菌の培養に用いられる炭素源としては例え
ば、ブドウ糖、グリセリン、麦芽糖、デンプン、シヨ糖
、フラクトース、糖蜜、及びこれらの混合物等が挙げら
れる。 [0054] 上記の糖類を用いた場合、培養物中にはβ−グルカンと
α−グルカンが同時に蓄積されるが、炭素源としてガラ
クトースを骨格として含む糖を用いれば、マクロフォモ
プシス属に属する微生物に、β−グルカンのみを選択的
に培養物中に産生、蓄積させることができ、これによっ
てβ−グルカンを更に容易、かつ安価に回収、利用する
事ができる為、より好ましい。 [0055] ガラクトースを骨格として含む糖としては、例えばガラ
クトース、ラクトースメリビオース、ラフィノース、ス
タキオース等が挙げられるが、収率の点ではラクトース
が特に好ましい。 [0056] 窒素源としては、概ね微生物の培養に用いられる有機体
、無機体の窒素源の全てが使用可能であり、例えば脱脂
綿実粉(Pharmamed i a)、コーンステイ
ープリカー、酵母エキス、乾燥酵母、各種ペプトン、オ
ートミール肉エキスカゼイン加水分解物、アンモニウム
塩、硝酸塩等が挙げられる。 [0057] その地温加物として塩化ナトリウム、マグネシウム、カ
ルシウム、リン酸等の無機塩があげられる。 [0058] 更に該培地には必要に応じて鉄、銅、マンガン等の金属
塩を微量配合してもよ[0059] 培養は上記培養基を含有する通常の水性培地で振盪培養
、深部通気培養、深部通気攪拌培養1回転ドラム式培養
でも実施できる。 [00601 培養条件はpH3,5〜9.O1好ましくはpH5,0
〜8.0、培養温度が10〜40℃、好ましくは20〜
35℃で通常3〜7日間で培養する。 このようにして得られた培養物から本発明の目的の多糖
類が得られる。 [0061] この培養液を、濾過又は遠心分離などの適当な方法で処
理して該微生物菌体を除去する。次に、得られる濾液又
は上清に、適当な沈澱剤例えばエタノール、メタノール
、イソプロパツール、フロパノール、アセトン等の有機
沈澱剤を約10〜35重量%加え、β−グルカンを沈澱
させる。この沈澱物を濾過又は遠心分離等の適当な方法
で分離し、さらに水に再溶解させた後、沈澱剤による沈
澱をくり返した後、透析、凍結乾燥をすることにより、
精製多糖類が得られる。 [0062] この操作によって、β−グルカンを、α−グルカンやそ
の他の培養物中の成分から分離・精製することができる
。 ガラクトースを骨格として含む糖を用いた場合、β−グ
ルカンのみが蓄積されているので、α−グルカン・β−
グルカンの混在系に比べて粘性が低く、菌体の濾過ある
いは遠心分離操作が容易かつ短時間で完了する。 [0063] β−グルカンのみが培養物中に蓄積されているため、α
−グルカンとの分離工程は不要であるが、エタノールや
イソプロパツールのような適当な沈澱剤を添加すること
によって、純度の高いβ−グルカンを効率良く回収する
ことができる。 [0064] また、濾過液又は遠心分離後の上澄液を、イオン交換樹
脂によって脱塩処理し、必要に応じて活性炭で脱色する
方法によっても、精製することができる。 [0065]
The present invention provides high viscosity β characterized by having the following properties.
-It is a glucan. [0011] (a) The bonding mode is that all D-glucopyranosyl residues in the main chain are β-1,3 bonds, and there is a bond at the C-6 position of the D-glucopyranosyl residue in the main chain, and β-1,3-bonded D-glucopyranosyl residue 4, which is the main chain.
Each has one β-1,6-linked D-glucopyranosyl residue as a side chain. [0012] (b) The molecular weight is about 10 million Daltons or more as determined by high performance liquid chromatography using a molecular sieve column. [0013] (c) The temperature dependence of viscosity is such that at a concentration of 0.3% by weight or less, the viscosity is constant between 5°C and 85°C, and 0.
.. It has a constant viscosity between 20°C and 85°C even at concentrations exceeding 3% by weight. [0014] (d) The viscosity is stable even when heated at 121° C. in an autoclave at 1 kg/cm 2 (20 minutes). [0015] The present invention also provides macrophomopsis
A method for producing β-glucan, which comprises culturing a microorganism belonging to the genus Omo 5is) and collecting the above-mentioned β-glucan from the culture. and a method for producing β-glucan, which is characterized in that a sugar containing galactose as a backbone is used as a carbon source in culturing a microorganism belonging to the genus Macrophomopsis. Furthermore, it is a method for producing β-glucan in which the sugar containing galactose as a skeleton is lactose. [0016] The microorganism used in the present invention is Macrophomopsis (Mac
For example, the strain named Macrophomopsis KAB55, which was deposited as Fiber Entrustment No. 9366, belongs to the genus Macrophomopsis KAB55. [0017] The KAB55 will be explained below. ■Isolated from soil in Odawara City, Kanagawa Prefecture, where it was collected. [0018] Characteristics of KAB55 on various culture media based on macroscopic and microscopic observations are as described below. 1) Macroscopic Observation The growth form of the filamentous fungus KAB55 strain at 25°C was investigated. [0019] 1. Growth on Tzapek Dox agar medium was relatively fast, and hyphal elongation was observed on the second day of culture. On the 5th day of culture, white fluff-like hyphae were actively proliferating. Hyphae grow densely throughout. Around the 12th day, the colony grows to about 5.5 cm, and the back side of the center of the colony becomes yellowish brown. From around the third week, hyphae began to grow in the slightly peripheral areas rather than the center of the colony. [0020] 2. Growth on potato dextrose agar medium is relatively fast, and the hyphae are white and fluff-like. In the center of the colony, the hyphae are not very proliferative, but in the periphery they are very active, and the hyphae become dense and doughnut-like. Furthermore, the hyphae extend from there, forming a slightly sparse hyphal zone around the donut, and a dense hyphal zone around the tip. The sparse hyphal zone also becomes denser, forming an even larger donut-like colony. The colony reaches 6.5 to 7.5 crn around the 12th day. The underside of the center of the colony turns yellowish brown. After 3 weeks at the mouth, hyphae proliferate to the center of the colony, and the entire colony becomes covered with hyphae. After that, a swell of mycelia began to appear on the periphery of the colony, turning a dark green color. [0021] 3. Compared to malt extract agar medium 1.2, the initial growth of white fluff-like mycelium is slow. However, the colony expands quickly. From around the 5th day, a repeating pattern of sparse and dense hyphal zones is observed from the center of the colony to the periphery. By around day 12, the colony will be 8.5 cm. After three weeks, the mandala pattern fades and becomes completely covered with mycelium. [0022] 4. Growth on corn mill medium is extremely fast, and hyphae grow in a white fluff-like manner similar to potato dextrose agar medium. Suitable for non-conidial formation, both epiphytic and maturation of conidia occur rapidly. Conidiophores are formed slightly embedded in agar. 1%
When cultured with the addition of meat extract, the cells turn purple. [0023] 5. Oatmill agar medium It behaves almost the same as corn mill medium. [0024] 2) Morphology under a microscope Mycelium on an agar medium such as a corn mill is white fluff-like, grows as if it is wrapped in the agar, has branches, and has septa. The conidiospores formed on the agar medium are dark brown, spherical, and have an opening. The aperture is single and round, and the central conidiophore is colorless and branched, with septa visible only at the base, and has a cylindrical shape. All conidiogenic cells are amorphous. Conidia are colorless and spindle-shaped without septa. The tip of the conidium is acute;
The rear end is cut. [0025] 3) Growth pH It can grow in the pH range of pH 3.5 to 9.0, but at pH 2.
It cannot grow below 5. Optimum growth pH is 5.0 to 8.
.. It is 0. [0026] 4) Grows in a temperature range of 10°C to 40°C, but below 5°C or 4
It cannot grow above 5℃. Growth at 35°C to 40°C is
As fast as 28°C. Mainly the formation of white mycelium, and temperatures below 28°C are suitable for the formation and maturation of conidia. The optimal temperature for growth and conidiophore formation is 20℃~3
It is 0°C. The novel polysaccharide of the present invention has the following physical and chemical properties. Molecular weight of [0027]: Pullulan of a certain molecular weight was calibrated by high performance liquid chromatography (hereinafter abbreviated as HPLC) using an Asahipak G5-710 column (exclusion limit molecular weight: 10 million) using 50 mM sodium chloride solution as the mobile phase. When molecular sieving was performed using a wire,
A single peak is observed near the exclusion limit. Therefore, its molecular size is about 10 million Daltons or more, indicating an extremely large molecular size. [0028] (2) Ultraviolet absorption spectrum: No absorption is shown. [0029] (3) Infrared absorption spectrum: As shown in FIG.
Absorption at about 890 cm', which is characteristic of glycosidic bonds, is observed, but absorptions at about 9170 cm, about 844 cm, and about 766 cm, which are characteristic of α-glycosidic bonds, are not observed. Therefore, it was found that the polysaccharide of the present invention has only β-glycosidic bonds. [0030] (4) Solubility in solvents: Soluble in water, soluble in 0.5N sodium hydroxide, 90% formic acid, insoluble in organic solvents such as methanol, acetone, chloroform, and ethyl acetate. [0031] (5) Color reaction A) Phenol-sulfuric acid reaction: + B) Iodine reaction C) Carbazole-sulfuric acid reaction: D) Ninhydrin reaction [0032] (6) Distinction between basic, acidic, and neutral: Book The pH of an aqueous solution of a substance is neutral. [0033] (7) Color of substance: white. [0034] (8) Type of constituent sugar: 2.5N) Hydrolyzed with refluoroacetic acid for 8 hours and then
When analyzed by HPLC using an SK-gel Sugar AXG column (manufactured by Toyo Soda Co., Ltd.), it was found that the polysaccharide of the present invention had only glucose as its main component. [0035] (9) Degradability by enzymes: This polysaccharide is treated with downstream enzymes, each enzyme containing 2.5 Units.
s, pH 5.0, 37°C, 0-24 hr reaction) The hydrolyzable ability was determined by thin layer chromatography (developing solvent: n-
Butanol:acetic acid:ethyl ether:water=9:6
: 3 : 1) and Asahipak G5-71
As a result of observation by 0HPLC, α-amylase, β-
It was not hydrolyzed at all by amylase and glucoamylase, and only laminarinase showed degradable ability in both analytical methods. [0036] (10) Viscosity a) Viscosity: The solution of this polysaccharide becomes a highly viscous neutral solution. 1% when measuring the viscosity with a bismetron rotational viscometer
The viscosity is 1200 to 1700 centipoise in an aqueous solution, which is about twice the viscosity of existing xanthan gum.
At a concentration of 0.3% by weight or less, it has a constant viscosity between 5℃ and 85℃, and even at a concentration exceeding 0.3% by weight, it has a constant viscosity at 20℃
It has a constant viscosity between ~85°C. The measurement results are shown below. [0038] Polymer concentration 0.3% 0.5% 1°0% Temperature (cps) 5°C 240 728 262
010℃ 240 697 1
56020℃ 239 609
115930℃ 240 609
113740℃ 240 60
9 113085℃ 240
609 1130 [0039] Each sample solution was left in a constant temperature bath at a predetermined temperature for about 1 hour, then taken out of the constant temperature bath, and its viscosity was immediately measured. [0040] C) Stability against heating: 1 kg/cm2 at 121°C
The viscosity remains stable even after autoclave heating (20 minutes). That is, when the above autoclave treatment was performed using a 0.3% by weight solution, the viscosity before treatment was 207 CpS and after treatment was 210 cps. [0041] d) Stability against acids and alkalis: Shows relatively stable viscosity in the pH range of 2 to 13. [0042] E) Stability against salts It exhibits a certain viscosity and is stable even in the presence of any salt such as diborate, acetate, sulfate, sodium salt, potassium salt, calcium salt, magnesium salt, etc. [0043] (11) Bonding mode After dissolving the polysaccharide of the present invention in dimethyl sulfoxide, a methyl derivative is obtained by the Hakomori method using a methyl sulfonyl carbanion and methyl iodide. After hydrolyzing this with an acid, the methylated sugar is converted into an aldeitol, When induced into acetate, fixed and quantitatively analyzed using a combination of gas chromatography and mass spectrometry, the product was 2,3°4.6-tetra-0-
Methyl-D-glucose, 2,4.6-tri-O-methy[0044] Furthermore, the polysaccharide of the present invention was oxidized with periodic acid, reduced with sodium borohydride, and then hydrolyzed with acid (Smith
Disassembly). After reducing it again with sodium borohydride in the presence of ammonia, it was identified and quantified as an acetate derivative by gas chromatography, and the following product was observed. Glucose is 3.5 to 4.3 moles per 1.0 mole of glycerol. [0045] From the above results, in the β-glucan of the present invention, all of the D-glucopyranosyl residues in the main chain are β-1,3 bonds, and there is a branch at the C-6 position of the D-glucopyranosyl residue in the main chain. death,
It is a neutral polysaccharide having one β-1,6-linked D-glucopyranosyl residue as a side chain for every four β-1,3-linked D-glucopyranosyl residues in the main chain. [0046] (12) Water evaporation test Pour a certain amount of water into the sample bottles of the 4 groups, paste a second base paper (waxed thin paper used on a mimeograph board) on the mouth of the bottle, and place the top of each group's base paper on top of the bottle. 1% hyaluronic acid solution, 1 hyaluronic acid 0.5% solution, 1 polysaccharide 1% solution and 0.0% polysaccharide solution, respectively.
The amount of water evaporated was determined by applying a certain amount of the 5% solution and measuring the weight of the sample bottle over time. [0047] In addition, paper coated with water was used as a control, and three samples in each group were used for measurement. The results are shown below. [0048] Moisture transpiration test, test water transpiration amount (mg) Coating material Toh 7-7-1-Publication 4th day 1
8th day 112th day 1 Polysaccharide 1% 0.5% Hyaluronic acid Oo 1% 5% Water (measured at 3 points per group, and the average value is shown) [004
9] This polysaccharide contains hyaluronic acid, which has a moisturizing effect. [0050] (13) Safety test The sensitization test of the polysaccharide of the present invention (Maximizat i
On method, sample concentration: induction 1% (twice), challenge 0.5% and 1%), no animals were found to be septum positive in guinea pig 10. In addition, the photosensitivity test (Adjuvant) of the polysaccharide of the present invention
-5tri ip method, sample concentration: induction 1%, induction 0.5%
and 1%), none of the 10 guinea pigs was recognized as septate. [0051] From the above, the polysaccharide of the present invention was a polysaccharide with low sensitization and high safety. [0052] (14) Other characteristic properties The polysaccharide of the present invention is tasteless and odorless. In addition, the polysaccharide of the present invention exhibits a smooth feel when applied, without the slippery feeling that existing xanthan gum has, as shown by the results of the sensory test in the application example described below. [0053] Next, a culture method and a purification method will be described. Examples of the carbon source used for culturing this polysaccharide-producing bacterium include glucose, glycerin, maltose, starch, sucrose, fructose, molasses, and mixtures thereof. [0054] When the above sugars are used, β-glucan and α-glucan are simultaneously accumulated in the culture, but when a sugar containing galactose as a backbone is used as a carbon source, microorganisms belonging to the genus Macrophomopsis Moreover, only β-glucan can be selectively produced and accumulated in the culture, which is more preferable because β-glucan can be recovered and used more easily and at low cost. [0055] Examples of sugars containing galactose as a skeleton include galactose, lactose melibiose, raffinose, and stachyose, but lactose is particularly preferred in terms of yield. [0056] As the nitrogen source, all organic and inorganic nitrogen sources used for culturing microorganisms can be used, such as absorbent cottonseed powder (Pharmamed ia), cornstarch liquor, yeast extract, and dried Examples include yeast, various peptones, oatmeal meat extract casein hydrolyzate, ammonium salts, nitrates, and the like. [0057] Examples of the geothermal additive include inorganic salts such as sodium chloride, magnesium, calcium, and phosphoric acid. [0058] Further, if necessary, a small amount of metal salts such as iron, copper, manganese, etc. may be added to the medium. [0059] Cultivation is carried out in an ordinary aqueous medium containing the above-mentioned culture medium by shaking culture, deep aeration culture, Deep aeration agitation culture and single-rotation drum culture can also be carried out. [00601 Culture conditions are pH 3.5-9. O1 preferably pH 5.0
~8.0, culture temperature is 10~40℃, preferably 20~
Culture is usually carried out at 35°C for 3 to 7 days. The polysaccharide of interest of the present invention can be obtained from the culture thus obtained. [0061] This culture solution is treated with an appropriate method such as filtration or centrifugation to remove the microbial cells. Next, approximately 10 to 35% by weight of an organic precipitant such as a suitable precipitant such as ethanol, methanol, isopropanol, acetone, etc. is added to the obtained filtrate or supernatant to precipitate β-glucan. This precipitate is separated by an appropriate method such as filtration or centrifugation, and then redissolved in water, followed by repeated precipitation with a precipitant, followed by dialysis and freeze-drying.
A purified polysaccharide is obtained. [0062] By this operation, β-glucan can be separated and purified from α-glucan and other components in the culture. When using a sugar containing galactose as a backbone, only β-glucan is accumulated, so α-glucan and β-glucan are
It has a lower viscosity than glucan mixed systems, and filtration or centrifugation of bacterial cells can be completed easily and in a short time. [0063] Since only β-glucan is accumulated in the culture, α
- Although a separation step from glucan is not necessary, highly pure β-glucan can be efficiently recovered by adding a suitable precipitant such as ethanol or isopropanol. [0064] Purification can also be carried out by desalting the filtrate or the supernatant after centrifugation using an ion exchange resin and, if necessary, decolorizing it with activated carbon. [0065]

【実施例】【Example】

以下、実施例及び応用例にて本発明を更に詳細に説明す
る。 [0066] 実施例1 マクロフォモプシス属に属する菌株KAB55(微工研
受託9366号)を下記組成の培地にて3日間前培養し
、これの6mlを同組成培地100m1を入れた500
m1三角フラスコに植菌して25℃で4日間120回転
/分で回転培養した。 [0067] (組成) グルコース           100g
Pha rmame d i a        5 
gKH2P04         1g Mg50  ・7HO3g 水道水               1リツトル(N
aOHにてpH6に調整) [0068] 得られた培養液を8000回転/分、20分で遠心分離
し、菌体を除去し、上澄に等量の40%イソプロパツー
ルを加え多糖を析出させた。これを10.000回転/
分、5分で遠心分離し多糖を得た。得られた多糖を再び
水に溶解させ上記操作をくり返し、無味無臭、白色の高
粘性多糖類0.22gを得た。 [0069] この多糖類に諸測定を行い、理化学性質を決定した。そ
の結果は既に述べた通りである。 [0070] 実施例2 50リットルジャーファメンタ−(ミツワバイオ社製)
に下記培地30リツトルを入れ、ここに実施例1と同様
に前培養したKAB55を1リツトル植菌し、25℃1
通気量1.Ovvmで4日間培養した。 [0071] (組成) グルコース           3000
gPharmamedia      150gKH2
PO430g Mg5O・7H2090g 水道水              30リツトル(N
aOHにてpH6に調整) [0072] 得られた培養液を10000回転/分で連続遠心により
菌体を除去し、得られた上澄に等量の60%エタノール
を加え、多糖を析出させた。これを実施例1と同様の手
順により精製処理し、無味無臭、白色の高粘性多糖類2
5gを得た。 [0073] 実施例3 KAB55を下記の組成の培地にて3日間前培養し、こ
れの全量を、同組成の培地30リツトルを入れた50リ
ットルジャーファーメンタ−に接種して、25℃1通気
量1.5vvmで4日間培養した。 [0074] (組成) グルコース             50
gPh a rmame d i a 10g KH2PO41g Mg50  ・7H203g 水道水               1リツトル(N
aOHにてpH6に調整) [0075] この培養液から遠心分離(10,00Orpm・12分
間)により菌体を分離除去した上澄を、移動相として5
0mM塩化ナトリウム溶液を用いたAsahipak 
 G5−710カラムを用いた高速液体クロマトグラフ
ィーに供したところ、図3(A)に示した様に、分子量
1千万ダルトンの物質(β−グルカン)に起因するピー
クの他に、分子量100万ダルトンの物質(α−グルカ
ン)に起因するピークが認められた。 [0076] この時のβ−グルカンの収量は、既知の濃度のβ−グル
カンを用いた検量線より、45gであった。 [0077] 実施例4 培地の組成を下記の様に変える他は、実施例3と同様に
して、実験を行った。 [0078] (組成) ラクトース・            50
gPharmamedia       10gKH2
PO41g M g S O4・7 H203g 水道水               1リツトル(N
aOHにてpH6に調整) [0079] この場合、菌体分離の為の遠心分離は10.00Orp
m・5分間で良く、実施例3よりも分離が容易であった
。 [00801 また、実施例3と同様に高速液体クロマトグラフィーに
供したところ、図3(B)に示した様に、分子量1千万
ダルトン付近にβ−グルカン由来のピークは認められた
が、分子量100万ダルトン付近のα−グルカン由来の
ピークは認められなかった。 [0081] この時のβ−グルカンの収量は、検量線より51gであ
った。 [0082] 応用例、比較例−乳液 の 処方 配  合  組  成   1配 合 量1(wt%) 1油1流動パラフイン ミリスチン酸オクチルドデシル 相 セチルアルコール モノステアリン酸グリセリン 10.01 5.0 2.0 1、O プロピレングリコール 水Iセチル硫酸ナトリウム パラオキシ安息香酸メチル 相1本発明の多糖類 精製水 [0083] (2) 調製法 攪拌しながら速やかに冷却して本発明の多糖類を含有し
た乳液を得た。 [0084] また比較例として本発明の多糖類の代わりに既存のキサ
ンタンガムを用いて同様に乳液を調製し、これらを次の
官能テストに用いた。 [0085] (官能テスト) 20名の女子被験者に、上記の応用例および比較の乳液
を顔面の左右片側にそれぞれ各別に約0.5gずつ塗布
し、塗布時の「べたつき感」と塗布後の「肌のなめらか
さ」の評価項目を被試験者本人が一対比較法で評価した
。 [0086] (3) 試験結果 上述の応用例と比較例を比較してもらった結果を下記の
表に示した。 [0087] 評価項目1 [べたつき感が1 「肌のなめらか回 答
         1ない」     1さがある」応
用例の方が優れている1  17人  1 13人1応
用例も比較例も同じ 1  3人  1  7人1比較
例の方が優れている1   0人  1  0人[00
88] 表から明らかな如く、応用例(本発明の多糖類を含有)
は、比較例(既存のキサンタンガム含有)と比べてべた
つき感がなく軽くて瑞々しい感触を示した。 [0089]
Hereinafter, the present invention will be explained in more detail with reference to Examples and Application Examples. [0066] Example 1 Bacterial strain KAB55 (Feikoken Contract No. 9366) belonging to the genus Macrophomopsis was precultured for 3 days in a medium with the following composition, and 6 ml of this was added to a 500-ml culture medium containing 100 ml of a medium with the same composition.
The cells were inoculated into a m1 Erlenmeyer flask and cultured at 25° C. for 4 days with rotation at 120 revolutions/minute. [0067] (Composition) Glucose 100g
Pharmame di a 5
gKH2P04 1g Mg50 ・7HO3g Tap water 1 liter (N
(adjusted to pH 6 with aOH) [0068] The obtained culture solution was centrifuged at 8000 rpm for 20 minutes to remove bacterial cells, and an equal amount of 40% isopropanol was added to the supernatant to precipitate polysaccharides. I let it happen. Rotate this 10,000 times/
The polysaccharide was obtained by centrifugation for 5 minutes and 5 minutes. The obtained polysaccharide was dissolved in water again and the above operation was repeated to obtain 0.22 g of a tasteless, odorless and white highly viscous polysaccharide. [0069] Various measurements were performed on this polysaccharide to determine its physical and chemical properties. The results are as already described. [0070] Example 2 50 liter jar fermenter (manufactured by Mitsuwa Bio)
Add 30 liters of the following medium to the tank, inoculate 1 liter of KAB55 pre-cultured in the same manner as in Example 1, and heat at 25°C.
Amount of ventilation 1. Cultured in Ovvm for 4 days. [0071] (Composition) Glucose 3000
gPharmamedia 150gKH2
PO430g Mg5O・7H2090g Tap water 30 liters (N
(adjusted to pH 6 with aOH) [0072] The obtained culture solution was subjected to continuous centrifugation at 10,000 rpm to remove bacterial cells, and an equal volume of 60% ethanol was added to the obtained supernatant to precipitate polysaccharides. . This was purified by the same procedure as in Example 1, and a tasteless, odorless, white, highly viscous polysaccharide 2 was obtained.
5g was obtained. [0073] Example 3 KAB55 was precultured for 3 days in a medium with the following composition, and the entire amount was inoculated into a 50 liter jar fermentor containing 30 liters of a medium with the same composition, and the mixture was incubated at 25° C. with 1 aeration. Culture was carried out for 4 days at a volume of 1.5 vvm. [0074] (Composition) Glucose 50
gPh a rma me di a 10g KH2PO41g Mg50 ・7H203g Tap water 1 liter (N
(adjusted to pH 6 with aOH) [0075] The supernatant obtained by separating and removing the bacterial cells from this culture solution by centrifugation (10,00 Orpm, 12 minutes) was used as a mobile phase for 5 mL.
Asahipak with 0mM sodium chloride solution
When subjected to high performance liquid chromatography using a G5-710 column, as shown in Figure 3(A), in addition to the peak due to a substance with a molecular weight of 10 million daltons (β-glucan), there was a peak due to a substance with a molecular weight of 1 million daltons. A peak due to Dalton's substance (α-glucan) was observed. [0076] The yield of β-glucan at this time was 45 g, based on a calibration curve using β-glucan of a known concentration. [0077] Example 4 An experiment was conducted in the same manner as in Example 3, except that the composition of the medium was changed as follows. [0078] (Composition) Lactose 50
gPharmamedia 10gKH2
PO41g M g S O4・7 H203g Tap water 1 liter (N
(adjusted to pH 6 with aOH) [0079] In this case, centrifugation for bacterial cell isolation was performed at 10.00 Orp.
The separation was easier than in Example 3, as it only took m·5 minutes. [00801 In addition, when subjected to high performance liquid chromatography in the same manner as in Example 3, as shown in FIG. A peak derived from α-glucan near 1 million daltons was not observed. [0081] The yield of β-glucan at this time was 51 g based on the calibration curve. [0082] Application examples, comparative examples - Emulsion formulation Composition 1 formulation Amount 1 (wt%) 1 oil 1 liquid paraffin octyldodecyl myristate phase Cetyl alcohol monostearate glycerin 10.01 5.0 2.0 1, O Propylene glycol water I Sodium cetyl sulfate Methyl paraoxybenzoate Phase 1 Purified polysaccharide water of the present invention [0083] (2) Preparation method Quickly cool while stirring to obtain a milky lotion containing the polysaccharide of the present invention. Ta. [0084] As a comparative example, emulsions were similarly prepared using existing xanthan gum instead of the polysaccharide of the present invention, and these were used in the following sensory test. [0085] (Sensory test) Approximately 0.5 g of the above-mentioned application example and comparative emulsions were applied to each side of the left and right sides of the face to 20 female subjects. The evaluation item of "skin smoothness" was evaluated by the test subjects themselves using the paired comparison method. [0086] (3) Test Results The results of a comparison between the above application example and comparative example are shown in the table below. [0087] Evaluation item 1 [Feeling of stickiness is 1. “Skin smoothness” 1. “Skin smoothness” 1. There is a feeling.” Applied example is better 1 17 people 1 13 people 1 Applied example and comparative example are the same 1 3 people 1 7 people 1 Comparative example is better 1 0 people 1 0 people [00
88] As is clear from the table, application examples (containing the polysaccharide of the present invention)
Compared to the comparative example (containing existing xanthan gum), it had a light and fresh feel with no sticky feeling. [0089]

【発明の効果】【Effect of the invention】

上述のように、本発明は、食品、化粧品等の分野におい
て増粘剤、乳化剤、安定則、保湿剤としての用途が可能
な多糖類(β−グルカン)と、その製n 方法を提供す
るものである。 [0090] また、炭素源として、ガラクトースを骨格として含む糖
を用いれば、β−グルカンのみを選択的に製造すること
ができるので、菌体の分離作業等。労力をヵ、ケリ低減
することができる。
As described above, the present invention provides a polysaccharide (β-glucan) that can be used as a thickener, emulsifier, stability agent, and humectant in the fields of foods, cosmetics, etc., and a method for producing the same. It is. [0090] Furthermore, if a sugar containing galactose as a backbone is used as a carbon source, it is possible to selectively produce only β-glucan, which can be used to isolate bacterial cells. Labor and effort can be reduced considerably.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】 本発明の多糖類の赤外線吸収スペクトルを示す図である
。 尚、図1において、OO〜15で示したピークの波長と
吸光度は、以下の通りである。 波長(cm)      吸光度 00    3421.14    0.164401
    1652.72    0.064302  
  1641.15    0.064803    
1430.94    0.089004    13
73.09    0.090005    1317
.16    0.082406    1253.5
2    0.082407    1201.45 
   0.089408    1160.95   
 0.108809    1076.10    0
.132210     890.96    0.0
55111     624.83    0.0,7
0312     570.83    0.0773
13     566.98    0.077314
     460.91    0.070215  
   418.48    0.0643
FIG. 1 is a diagram showing an infrared absorption spectrum of the polysaccharide of the present invention. In addition, in FIG. 1, the wavelength and absorbance of the peaks indicated by OO to 15 are as follows. Wavelength (cm) Absorbance 00 3421.14 0.164401
1652.72 0.064302
1641.15 0.064803
1430.94 0.089004 13
73.09 0.090005 1317
.. 16 0.082406 1253.5
2 0.082407 1201.45
0.089408 1160.95
0.108809 1076.10 0
.. 132210 890.96 0.0
55111 624.83 0.0,7
0312 570.83 0.0773
13 566.98 0.077314
460.91 0.070215
418.48 0.0643

【図2】[Figure 2]

【図3】 (A)は実施例3の高速液体クロマトグラフィーツマタ
ーンを示しており、は実施例4の高速液体クロマトグラ
フィーパターンを示してX/)る。
FIG. 3 (A) shows the high performance liquid chromatography pattern of Example 3, and (X/) shows the high performance liquid chromatography pattern of Example 4.

【符号の説明】[Explanation of symbols]

■  β−グルカン由来のピーク ■  α−グルカン由来のピーク (B ■ Peak derived from β-glucan ■ Peak derived from α-glucan (B

【書類基】[Document base]

【図1】 図面[Figure 1] drawing

【図2】 ↑[Figure 2] ↑

【図3】[Figure 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】下記性質を有することを特徴とする高粘性
β−グルカン。 (a)結合様式が、主鎖のD−グルコピラノシル残基は
すべてβ−1,3結合であり、又主鎖のD−グルコピラ
ノシル残基のC−6の位置で分岐しており、かつ主鎖で
あるβ−1,3結合のD−グルコピラノシル残基4ケ毎
にβ−1,6結合のD−グルコピラノシル残基1ケを側
鎖として有するβ−グルカン。 (b)分子量が、分子ふるいカラムを用いた高速液体ク
ロマトグラフィーにより約1千万ダルトンかそれ以上で
ある。 (c)粘度の温度依存性関係が、0.3重量%以下の濃
度に於いて、5℃〜85℃間で一定の粘度を有し、0.
3重量%を越える濃度でも20℃〜85℃間で一定の粘
度を有する。 (d)121℃下、1kg/cm^2のオートクレーブ
加熱(20分間)処理によっても粘度が安定である。
1. A highly viscous β-glucan characterized by having the following properties: (a) The bonding pattern is that all the D-glucopyranosyl residues in the main chain are β-1,3 bonds, and the D-glucopyranosyl residues in the main chain are branched at the C-6 position, and A β-glucan having one β-1,6-linked D-glucopyranosyl residue as a side chain for every four β-1,3-linked D-glucopyranosyl residues. (b) has a molecular weight of about 10 million daltons or more as determined by high performance liquid chromatography using a molecular sieve column; (c) The temperature dependence of viscosity is such that at a concentration of 0.3% by weight or less, the viscosity is constant between 5°C and 85°C;
It has a constant viscosity between 20°C and 85°C even at concentrations exceeding 3% by weight. (d) The viscosity is stable even when heated at 121° C. in an autoclave at 1 kg/cm^2 (20 minutes).
【請求項2】マクロフオモプシス(¥Macropho
mopsis¥)属に属する微生物を培養し、培養物か
ら、請求項1記載のβ−グルカンを採取することを特徴
とする、β−グルカンの製造方法。
Claim 2: Macrophomopsis (¥Macropho
A method for producing β-glucan, which comprises culturing a microorganism belonging to the genus P. mopsis and collecting the β-glucan according to claim 1 from the culture.
【請求項3】マクロフオモプシス属に属する微生物の培
養において、炭素源として、ガラクトースを骨格として
含む糖を用いることを特徴とする、請求項2記載のβ−
グルカンの製造方法。
3. The β-saccharide according to claim 2, characterized in that a sugar containing galactose as a backbone is used as a carbon source in the cultivation of a microorganism belonging to the genus Macrophomopsis.
Method for producing glucan.
【請求項4】ガラクトースを骨格として含む糖がラクト
ースである、請求項3記載のβ−グルカンの製造方法。
4. The method for producing β-glucan according to claim 3, wherein the sugar containing galactose as a backbone is lactose.
JP2413440A 1990-08-23 1990-12-21 β-glucan and method for producing the same Expired - Fee Related JPH07119243B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP22305090 1990-08-23
JP2-223050 1990-08-23
JP32699990 1990-11-27
JP2-326999 1990-11-27

Publications (2)

Publication Number Publication Date
JPH04122701A true JPH04122701A (en) 1992-04-23
JPH07119243B2 JPH07119243B2 (en) 1995-12-20

Family

ID=26525238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413440A Expired - Fee Related JPH07119243B2 (en) 1990-08-23 1990-12-21 β-glucan and method for producing the same

Country Status (1)

Country Link
JP (1) JPH07119243B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543418A (en) * 1991-08-14 1993-02-23 Pola Chem Ind Inc Cosmetic
JPH09309842A (en) * 1996-05-20 1997-12-02 Kureha Chem Ind Co Ltd New physiologically active substance, its production and medicinal composition
JP2002510610A (en) * 1998-04-06 2002-04-09 コグニス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Cosmetic or pharmaceutical preparation containing ribonucleic acid or deoxyribonucleic acid
JP2002539145A (en) * 1999-03-12 2002-11-19 バイオテク エイエスエイ Use of surfactant mixtures
JP2006280290A (en) * 2005-03-31 2006-10-19 Sanei Gen Ffi Inc Gel-like composition
JP2008043308A (en) * 2006-08-21 2008-02-28 Sanei Gen Ffi Inc Method for producing macrophomopsis gum
JP2008255138A (en) * 2007-03-30 2008-10-23 Kobayashi Pharmaceut Co Ltd Th1/Th2 BALANCE-IMPROVING AGENT
JP2017500409A (en) * 2013-12-18 2017-01-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Cationic poly α-1,3-glucan ether
JP2017509718A (en) * 2013-12-16 2017-04-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Use of poly α-1,3-glucan ether as a viscosity modifier
JP2018501396A (en) * 2014-12-22 2018-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Polymer blend containing polyalpha-1,3-glucan

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050398A1 (en) * 1997-05-07 1998-11-12 Rutgers, The State University Of New Jersey Improved beta-glucan and methods of use

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543418A (en) * 1991-08-14 1993-02-23 Pola Chem Ind Inc Cosmetic
JPH09309842A (en) * 1996-05-20 1997-12-02 Kureha Chem Ind Co Ltd New physiologically active substance, its production and medicinal composition
JP2002510610A (en) * 1998-04-06 2002-04-09 コグニス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Cosmetic or pharmaceutical preparation containing ribonucleic acid or deoxyribonucleic acid
JP2002539145A (en) * 1999-03-12 2002-11-19 バイオテク エイエスエイ Use of surfactant mixtures
JP4643014B2 (en) * 1999-03-12 2011-03-02 バイオテク エイエスエイ Use of surfactant mixtures
JP2006280290A (en) * 2005-03-31 2006-10-19 Sanei Gen Ffi Inc Gel-like composition
JP2008043308A (en) * 2006-08-21 2008-02-28 Sanei Gen Ffi Inc Method for producing macrophomopsis gum
JP2008255138A (en) * 2007-03-30 2008-10-23 Kobayashi Pharmaceut Co Ltd Th1/Th2 BALANCE-IMPROVING AGENT
JP2017509718A (en) * 2013-12-16 2017-04-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Use of poly α-1,3-glucan ether as a viscosity modifier
JP2017500409A (en) * 2013-12-18 2017-01-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Cationic poly α-1,3-glucan ether
JP2018501396A (en) * 2014-12-22 2018-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Polymer blend containing polyalpha-1,3-glucan

Also Published As

Publication number Publication date
JPH07119243B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
Singh et al. Pullulan: microbial sources, production and applications
Singh et al. Biosynthesis of pullulan and its applications in food and pharmaceutical industry
FI110324B (en) New polysaccharides and their production
Kachhawa et al. Studies on downstream processing of pullulan
JPH04122701A (en) Beta-glucan and its production
da Silva et al. Xanthan: biotechnological production and applications
JPH0138476B2 (en)
EP0960132A1 (en) Polysaccharide, micro-organism and method for obtaining same, composition containing it and application
DE69116601T2 (en) Process for the preparation of anti-tumor dextran
EP0534855B1 (en) Polysaccharide, applications thereof, fermentation process to obtain the same and pseudomonas strain producing it
JPH11500609A (en) Klebsiella pneumoniae, subsp. Novel strain of Pneumoniae and method for producing polysaccharide containing L-fucose
EP1121453B1 (en) Heteropolysaccharide produced by an agrobacterium radiobacter
JP2654825B2 (en) Novel cyclic inulooligosaccharide and method for producing the same
Nwe et al. Decomposition of myceliar matrix and extraction of chitosan from Gongronella butleri USDB 0201 and Absidia coerulea ATCC 14076
JPH10237105A (en) Polysaccharide, its production, and cosmetic formulated therewith
JPH032202A (en) Beta-glucan and production thereof
CA1103181A (en) Processes for producing glucan
Uzochukwu et al. The role of microbial gums in the color and consistency of palm wine
Tanwar Synthesis of Pullulan
JPH0710881B2 (en) α-Glucan, method for producing the same, and film type pack containing the α-glucan
WO2022250011A1 (en) METHOD FOR PRODUCING β-1,3-1,6-GLUCAN
JPH08301904A (en) Humectant comprising polysaccharide as effective component and cosmetic preparation containing the same
US4202940A (en) Glucan and a process for the production thereof using Elsinoe
JPH06253877A (en) Production of cellulosic substance by microorganism
JPH0124121B2 (en)

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees