JPH0412260A - Detecting method for surface flaw of metallic member - Google Patents

Detecting method for surface flaw of metallic member

Info

Publication number
JPH0412260A
JPH0412260A JP2115379A JP11537990A JPH0412260A JP H0412260 A JPH0412260 A JP H0412260A JP 2115379 A JP2115379 A JP 2115379A JP 11537990 A JP11537990 A JP 11537990A JP H0412260 A JPH0412260 A JP H0412260A
Authority
JP
Japan
Prior art keywords
infrared
wavelength
camera
radiation energy
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2115379A
Other languages
Japanese (ja)
Inventor
Tatatomi Shirohashi
白橋 忠臣
Shunji Yokoyama
横山 俊司
Masashi Mizuno
正志 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Mitsubishi Electric Corp
Original Assignee
Daido Steel Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Mitsubishi Electric Corp filed Critical Daido Steel Co Ltd
Priority to JP2115379A priority Critical patent/JPH0412260A/en
Publication of JPH0412260A publication Critical patent/JPH0412260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To detect a surface flaw with high accuracy without spoiling quality by a simple equipment by heating the surface of a metallic member by a high frequency current and detecting a distribution of radiation energy of radiated medium infrared rays of specific wavelength by an infrared camera. CONSTITUTION:When a metallic member 1 presses through in a high frequency induction coil 2, radiation energy is radiated from the surface of the member 11 by a high frequency current which is subjected to frequency control by an inverter 3, there fore, an infrared image is photographed by four sets of infrared cameras 4 placed immediately behind the coil 2. The camera can detect radiation energy of medium infrared rays of 3 - 5 mum wavelength, an infrared image of a detection object from the member 1 is formed in many semiconductor image pickup elements placed two-dimensionally, and a video signal corresponding to photodetecting intensityu is outputted to a data processing panel 5 by an electronic scan. By setting the detection wavelength of the camera 4 to 3 - 5 mum, a fluctuation of photodetecting infrared-ray intensity caused by a variation of infrared emissivity scarcely occurs, therefore, even if the surface of the member 1 does not become a wetting state, an SN ratio is high, and an output which can discriminate enough a surface flaw is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属部材の表面傷を検出する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting surface flaws on metal members.

〔従来の技術〕[Conventional technology]

例えば圧延処理された金属部材の表面傷の有無を検出す
る方法として従来から赤外線探傷法が知られている。こ
れは金属部材を高周波誘導コイル中に通過させることに
より該金属部材の表面に高周波誘導電流を励起させて該
金属部材の表面を誘導加熱しその直後に赤外線カメラに
より該金属部材の表面の温度分布を測定し傷部分の温度
検出出力はパルス状に大きく変化することで傷を検出し
ようとするものである。
For example, infrared flaw detection has been known as a method for detecting the presence or absence of surface flaws in rolled metal members. This method involves passing a metal member through a high-frequency induction coil to excite a high-frequency induced current on the surface of the metal member to induction heat the surface of the metal member. The temperature detection output at the scratched area changes greatly in a pulse-like manner to detect the scratch.

しかしこの赤外線探傷法で従来から使用されている赤外
線カメラは例えば検出素子として水銀カドニウム・チル
ライトを用いたELKEM社製のものでその検出波長は
8〜12μmの遠赤外線領域の電磁波を検出するもので
あった。ところがこのように専ら遠赤外線領域の電磁波
を検出して行なわれていた赤外線探傷法では金属部材の
表面にスケールが付着していたり、或いは表面の光沢状
態が異なること等による赤外線の放射率の変化で表面傷
の検出が困難になるという問題があった。そこで特開昭
58−85146号公報にて開示されている赤外線探傷
法では被検出物である金属部材の表面に液体(水)を吹
掛けて表面を加湿状態とすることにより放射率を均一化
しSN比を改善し検出を容易ならしめようとしている。
However, the infrared camera conventionally used in this infrared flaw detection method is one made by ELKEM, which uses a mercury-cadmium chill light as a detection element, and its detection wavelength detects electromagnetic waves in the far-infrared region of 8 to 12 μm. there were. However, infrared flaw detection, which is carried out by exclusively detecting electromagnetic waves in the far-infrared region, can detect changes in infrared emissivity due to scale adhesion to the surface of metal parts or differences in surface gloss. There was a problem that it became difficult to detect surface scratches. Therefore, in the infrared flaw detection method disclosed in JP-A No. 58-85146, the emissivity is made uniform by spraying liquid (water) onto the surface of the metal member being detected to moisturize the surface. Efforts are being made to improve the signal-to-noise ratio and make detection easier.

〔従来技術の課題〕[Issues with conventional technology]

しかし金属部材の表面を」1記のように液体で湿潤させ
る場合、金属部材が均等に加湿されないと検出誤差が発
生ずる。また、検査後にそれを乾燥する工数を要し乾燥
が不完全であると品質に影響を与える等のおそれがあっ
た。
However, when the surface of a metal member is moistened with a liquid as described in item 1, detection errors will occur if the metal member is not evenly moistened. In addition, it takes a lot of man-hours to dry it after inspection, and if the drying is incomplete, there is a risk that the quality will be affected.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は上記課題を解決しようとするもので、金属部材
の表面を高周波電流により加熱し、その表面から放射さ
れる波長3〜5μmの中赤外線の放射エネルギーの分布
を赤外線カメラにより検出することを特徴としたもので
ある。
The present invention aims to solve the above problems, and involves heating the surface of a metal member with a high-frequency current and detecting the distribution of mid-infrared radiation energy with a wavelength of 3 to 5 μm emitted from the surface using an infrared camera. This is a characteristic feature.

〔実施例〕〔Example〕

第1図に長尺角形鋼材を被検査材とする表面傷検出装置
の系統図を示す。図中1は被検査材たる金属部材で、該
金属部材1はローラーj般送装置(図示せず)の駆動に
より一定速度で矢印の方向に移動する。2はインバータ
3により周波数コントロールされた高周波電流が流され
る高周波誘導コイルで該コイル2中を金属部材1がf1
過する。
FIG. 1 shows a system diagram of a surface flaw detection device that uses a long rectangular steel material as the material to be inspected. In the figure, reference numeral 1 denotes a metal member to be inspected, and the metal member 1 is moved at a constant speed in the direction of the arrow by the drive of a roller j general feeding device (not shown). 2 is a high frequency induction coil through which a high frequency current whose frequency is controlled by an inverter 3 is passed through the coil 2, and a metal member 1 is passed through the coil 2.
pass

該コイル2の直後には該金属部材1の各面に相対するよ
うに赤外線カメラ4を4台設置している。
Immediately after the coil 2, four infrared cameras 4 are installed so as to face each surface of the metal member 1.

5は該各界外線カメラ4から得られた映像信号を処理す
るデータ処理盤、6は制御盤である。
5 is a data processing board for processing video signals obtained from the outside line cameras 4, and 6 is a control board.

第2図には一般に物体の表面から放射される放射エネル
ギー強度をグラフに示す。このグラフのように温度を有
するあらゆる物体は表面温度に対応した強さの電磁波を
放射しており温度が高くなるにつれてその放射エネルギ
ーは増加する。ただし温度が低いと同図に示されたよう
に短かい波長の放射はなくなる。一方、第3図には大気
中の赤外線透過率を表わしたグラフを示す。同グラフに
示されたように、大気中の赤外線透過率はその波長によ
って大きく異なる。そして遠赤外線領域では波長8〜1
3μmの透過率が高く、中速赤外線領域では波長3〜5
μmの透過率が概ね高くこれらの波長は大気中を通過す
る際に大気中の主成分(H□O,CO2等)に吸収され
離いのでこれを大気の窓と称している。
FIG. 2 shows a graph of the intensity of radiant energy generally emitted from the surface of an object. As shown in this graph, any object with a temperature emits electromagnetic waves with an intensity corresponding to the surface temperature, and as the temperature rises, the radiated energy increases. However, when the temperature is low, as shown in the figure, there is no radiation of short wavelengths. On the other hand, FIG. 3 shows a graph showing the infrared transmittance in the atmosphere. As shown in the graph, the infrared transmittance in the atmosphere varies greatly depending on the wavelength. And in the far infrared region, the wavelength is 8 to 1.
High transmittance at 3 μm, wavelengths 3 to 5 in the medium-speed infrared region
The transmittance in μm is generally high, and when these wavelengths pass through the atmosphere, they are absorbed by the main components of the atmosphere (H□O, CO2, etc.) and are therefore called the atmospheric window.

しかして本発明では前記赤外線カメラ4として波長3〜
5μmの中赤外線の放射エネルギーを検出できる赤外線
カメラを使用する。この波長の赤外線は大気中の透過率
が高くかつ比較的低温度(300K以上)の物体からも
放射される。そして多数の半導体撮像素子が二次元配列
された赤外線カメラ4にレンズを通してその検出物の赤
外線像が結像し、その素子に受光赤外線強度に応して発
生する電荷(BiL像信号)が電子走査によって逐次デ
ータ処理盤5に出力される。
However, in the present invention, the infrared camera 4 has wavelengths of 3 to 3.
An infrared camera capable of detecting mid-infrared radiation energy of 5 μm is used. Infrared rays of this wavelength have high transmittance through the atmosphere and are also emitted from objects with relatively low temperatures (300K or higher). Then, an infrared image of the detected object is formed through a lens through an infrared camera 4 in which a large number of semiconductor image sensors are two-dimensionally arranged, and a charge (BiL image signal) generated in accordance with the intensity of the received infrared light is electronically scanned. The data is sequentially outputted to the data processing board 5.

ところで、ブランクの放射則によれば、波長λと、絶対
温度Tと、放射エネルギーEとは次式の関係がある。
By the way, according to Blank's radiation law, the wavelength λ, the absolute temperature T, and the radiant energy E have the following relationship.

本発明は波長λが3〜5μmの中赤外線を検出するもの
であるから、λ−4μmを上記(1)式に代入し、従来
の検出波長である遠赤外線領域のλ−10μmの場合と
比較するため、T=290 K (17゛c) 、Tm
2O3K (27℃)で夫々放射エネルギーEを求める
と表1のようになる。
Since the present invention detects mid-infrared rays with a wavelength λ of 3 to 5 μm, λ-4 μm is substituted into the above equation (1) and compared with the conventional detection wavelength of λ-10 μm in the far infrared region. Therefore, T=290 K (17゛c), Tm
Table 1 shows the radiant energy E calculated at 2O3K (27°C).

表1 すなわち、λ−4μmでは温度差10℃の放射エネルギ
ー変化率は0.47610.718 =0.66となる
のに対し、λ−10μmでは同じく温度差10゛Cの放
射エネルギー変化率は0.84510.992 #01
85となる。
Table 1 In other words, at λ-4μm, the rate of change in radiant energy for a temperature difference of 10°C is 0.47610.718 = 0.66, whereas for λ-10μm, the rate of change in radiant energy for a temperature difference of 10°C is 0. .84510.992 #01
It becomes 85.

これを簡略式で表わすと、 △T4=56j!ogE2/ E △T1o=141 j!ogEz / Eとなる。Expressing this in a simplified form, △T4=56j! ogE2/E △T1o=141 j! It becomes ogEz/E.

E、を黒体(放射率1.0)の時の放射エネルギーとし
て放射率が0.1変化した時の温度変化を求めると表2
のようになる。
Table 2 calculates the temperature change when the emissivity changes by 0.1, assuming that E is the radiant energy when it is a black body (emissivity 1.0).
become that way.

表2 すなわち、波長10μmでは検出物の表面温度が8.2
°C上昇しても放射率が0.1低ければ放射エネルギー
は同じであるからその赤外線カメラには同温度としか検
出されないのに対し、波長4μmでは検出物の表面温度
が3.3°C以上上昇ずれぼたとえ放射率が0.1低く
なっても放射エネルギーは大きくなりその赤外線カメラ
にその温度変化を検知することが可能となる。言い換え
れば波長を4μmにすることによりその検出物の放射率
が放射エネルギーに与える影響を少なくすることができ
る。
Table 2 In other words, at a wavelength of 10 μm, the surface temperature of the detected object is 8.2
Even if the emissivity increases by 0.1 °C, the radiant energy remains the same, so the infrared camera will only detect the same temperature.However, at a wavelength of 4 μm, the surface temperature of the object to be detected is 3.3 °C. Even if the emissivity decreases by 0.1, the radiant energy increases and the infrared camera can detect the temperature change. In other words, by setting the wavelength to 4 μm, the influence of the emissivity of the detected object on the radiant energy can be reduced.

このため波長3〜5μmの放射エネルギーを検出する赤
外線カメラ4には金属部材1の表面の赤外線放射率の変
化による受光赤外線強度の変動が少なく、このために金
属部材1表面を湿潤状態にしなくてもSN比が高く表面
傷を充分に識別可能な出力が得られる。
For this reason, the infrared camera 4 that detects radiant energy with a wavelength of 3 to 5 μm has little variation in the received infrared intensity due to changes in the infrared emissivity of the surface of the metal member 1, and for this reason, the surface of the metal member 1 does not have to be kept in a wet state. It also has a high signal-to-noise ratio and can provide an output that can sufficiently identify surface flaws.

〔発明の効果〕〔Effect of the invention〕

このように本発明の金属部材の表面傷検出方法によれば
、金属部材を水等で湿潤しないでもその表面傷を検出す
ることができるようになったので、従来のような水数付
装置や乾燥装置を必要とせず設備が簡略化できると共に
金属部材の品質を損うおそれもなく、しかもミス検知の
おそれも少く高精度に表面傷を検出できる有益な効果が
ある。
As described above, according to the method for detecting surface flaws on metal members of the present invention, surface flaws can be detected without wetting the metal member with water, etc. This method has the advantageous effect that the equipment can be simplified without requiring a drying device, there is no risk of deteriorating the quality of the metal member, and that surface flaws can be detected with high precision with little risk of misdetection.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の金属部材の表面傷検出方法の一実施例を
示したもので、第1図はその検出装置の系統図、第2図
は物体表面からの放射エネルギー強度を示したグラフ、
第3図は大気中の赤外線透過率を表したグラフである。 1・・・金属部材、2・・・高周波誘導コイル、4・・
・赤外線カメラ。
The drawings show an embodiment of the method for detecting surface flaws on metal members according to the present invention, and FIG. 1 is a system diagram of the detection device, and FIG. 2 is a graph showing the intensity of radiant energy from the surface of an object.
FIG. 3 is a graph showing infrared transmittance in the atmosphere. 1... Metal member, 2... High frequency induction coil, 4...
・Infrared camera.

Claims (1)

【特許請求の範囲】[Claims] 金属部材の表面を高周波電流により加熱し、その表面か
ら放射される波長3〜5μmの中赤外線の放射エネルギ
ーの分布を赤外線カメラにより検出することを特徴とし
た金属部材の表面傷検出方法。
A method for detecting surface flaws on a metal member, comprising heating the surface of the metal member with a high-frequency current, and detecting the distribution of mid-infrared radiation energy with a wavelength of 3 to 5 μm emitted from the surface using an infrared camera.
JP2115379A 1990-05-01 1990-05-01 Detecting method for surface flaw of metallic member Pending JPH0412260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2115379A JPH0412260A (en) 1990-05-01 1990-05-01 Detecting method for surface flaw of metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115379A JPH0412260A (en) 1990-05-01 1990-05-01 Detecting method for surface flaw of metallic member

Publications (1)

Publication Number Publication Date
JPH0412260A true JPH0412260A (en) 1992-01-16

Family

ID=14661073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115379A Pending JPH0412260A (en) 1990-05-01 1990-05-01 Detecting method for surface flaw of metallic member

Country Status (1)

Country Link
JP (1) JPH0412260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100363949B1 (en) * 2001-03-09 2002-12-11 엘지전선 주식회사 An outward inferior lump detector of magnetic wire
CN105510385A (en) * 2015-11-29 2016-04-20 四川大学 Nondestructive testing apparatus and method for impact damage of component of conductive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100363949B1 (en) * 2001-03-09 2002-12-11 엘지전선 주식회사 An outward inferior lump detector of magnetic wire
CN105510385A (en) * 2015-11-29 2016-04-20 四川大学 Nondestructive testing apparatus and method for impact damage of component of conductive material

Similar Documents

Publication Publication Date Title
US5292195A (en) Thermographic evaluation technique
CA1229392A (en) Method and apparatus for detection of surface defects of hot metal body
US6000844A (en) Method and apparatus for the portable identification of material thickness and defects using spatially controlled heat application
SE8000240L (en) Surface Inspection System for Thermal Radiant Material
US4118732A (en) Apparatus for detecting a surface flaw of a material at high temperature
JPS6217167B2 (en)
US6786634B2 (en) Temperature measuring method and apparatus
JPH0412260A (en) Detecting method for surface flaw of metallic member
RU2509300C1 (en) Method for active single-sided thermal control of hidden defects in solid bodies
JPH0519943B2 (en)
JP2566952Y2 (en) Surface temperature distribution measuring device for steel strip
JPH07286968A (en) Surface defect inspecting device
JPH0413956A (en) Detecting method for surface defect of metal member
JPH05273045A (en) Temperature measuring apparatus for object covered with transparent thin film
JPS63128240A (en) Reflected light type flaw detecting device
JPS6191544A (en) Automatic exposure control for surface defect detection of hot metal material
KR102493099B1 (en) sleeve still surface temperature measuring apparatus and measuring method thereof
JPH0224538A (en) Apparatus for detecting fissure and crack
JPS6276436A (en) Internal defect detecting method for plate material
JPS5911853B2 (en) Method and device for measuring emissivity and/or temperature
JPH0735703A (en) Image processing method
JPS58191938A (en) Optical measuring apparatus
JP2653288B2 (en) Infrared flaw detector
JPH0413910A (en) Measuring device of distribution of thickness of oxide film
JPH0425729A (en) Temperature measuring instrument