JPH04122444A - Production of methanol from carbon dioxide - Google Patents

Production of methanol from carbon dioxide

Info

Publication number
JPH04122444A
JPH04122444A JP2242941A JP24294190A JPH04122444A JP H04122444 A JPH04122444 A JP H04122444A JP 2242941 A JP2242941 A JP 2242941A JP 24294190 A JP24294190 A JP 24294190A JP H04122444 A JPH04122444 A JP H04122444A
Authority
JP
Japan
Prior art keywords
reaction
oxide
copper
selectivity
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2242941A
Other languages
Japanese (ja)
Other versions
JPH0635401B2 (en
Inventor
Hironori Arakawa
裕則 荒川
Kazuhiro Sayama
和弘 佐山
Kiyomi Okabe
岡部 清美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2242941A priority Critical patent/JPH0635401B2/en
Publication of JPH04122444A publication Critical patent/JPH04122444A/en
Publication of JPH0635401B2 publication Critical patent/JPH0635401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To efficiently convert carbon dioxide to methanol by catalytic hydrogenation by using a new solid catalyst obtained by supporting copper and zinc oxide on specific metal oxide being a carrier. CONSTITUTION:Metal oxide is used as a carrier and a catalyst is prepared by supporting copper and zinc oxide on the carrier. As metal oxide used as the carrier, either one of alumina(Al2O3) silica(SiO2), zirconia(ZrO2), magnesia(MgO), ceria(CeO2), yttria(Y2O3), neodia(Nd2O3), strontium oxide(SrO) and calcium oxide(CaO) is used. Carbon dioxide is catalytically hydrogenated by hydrogen gas using this catalyst to be converted to methanol.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二酸化炭素から効率的にメタノールを合成す
る新規な方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for efficiently synthesizing methanol from carbon dioxide.

[従来技術] メタノールは重要な基礎化学品であり、世界で年間約2
O00万トンの需要がある。その合成は、天然ガスや石
油、石炭を水蒸気改質や部分酸化して得ることができる
一酸化炭素と水素の混合ガス(合成ガス)を原料として
、次式のように高温高圧下での触媒反応により合成され
、完成度の高い実用化プロセスとなっている。
[Prior art] Methanol is an important basic chemical, and about 2
There is a demand of O million tons. Its synthesis uses a mixed gas (synthesis gas) of carbon monoxide and hydrogen, which can be obtained by steam reforming or partial oxidation of natural gas, oil, or coal, as a raw material, using a catalyst under high temperature and high pressure as shown in the following formula. It is synthesized through a reaction, making it a highly complete process for practical use.

GO+2H2→ CH30I] 一方、合成ガス以外からのメタノール合成法に関しては
、例えば二酸化炭素と水素からの合成が学術的見地から
基礎研究レベルで検討されている程度であった。−例と
して、銅−亜鉛混合酸化物しかし、昨今の世界的な産業
経済活動規模の拡大に伴い、地球レベルでの環境破壊が
重量な問題となり、その対応策が世界的に検討されはし
めている。なかでも、地球温暖化問題は人類のみならず
、地球そのものにも著しい悪影響を与えることが推定さ
れ、地球温暖化の主要因とされている二酸化炭素の大気
中への排出を防止すべく、その対応策の確立が強く要請
されている。
GO+2H2→CH30I] On the other hand, regarding methanol synthesis methods from sources other than synthesis gas, for example, synthesis from carbon dioxide and hydrogen has only been studied at the basic research level from an academic standpoint. - For example, copper-zinc mixed oxide However, with the recent expansion of global industrial and economic activities, environmental destruction at the global level has become a serious issue, and countermeasures are being considered worldwide. . In particular, the problem of global warming is estimated to have a significant negative impact not only on humanity but also on the earth itself, and efforts are being made to prevent the emission of carbon dioxide into the atmosphere, which is considered the main cause of global warming. There is a strong need to establish countermeasures.

本発明者らは、排出される二酸化炭素を炭素資源と考え
、これを回収再資源化し、二酸化炭素から有用化学品を
合成できるプロセスを開発できれば、二酸化炭素の排出
抑制と資源利用の観点から最も有効な対策を確立するこ
とができると考え、二酸化炭素の有効利用技術について
、鋭意研究を行なった結果、二酸化炭素から効率的にメ
タツルを合成できる方法を発明するに至った。
The inventors consider that emitted carbon dioxide is a carbon resource, and believe that if we can develop a process that can recover and recycle it and synthesize useful chemicals from carbon dioxide, it will be the best from the perspective of reducing carbon dioxide emissions and resource utilization. Thinking that an effective countermeasure could be established, he conducted intensive research into techniques for effectively utilizing carbon dioxide, and as a result, he came up with a method for efficiently synthesizing metal vines from carbon dioxide.

[発明が解決しようとする問題点コ 従って、本発明は二酸化炭素による地球温暖化るだめの
ものであり、地球温暖化の抑制と効率的なメタノール合
成の新しい方法を提供するものである。
[Problems to be Solved by the Invention] Therefore, the present invention aims to prevent global warming caused by carbon dioxide, and provides a new method for suppressing global warming and efficiently synthesizing methanol.

[課題を解決するための手段] すなわち本発明によれば、特定の金属酸化物を担体とし
て、これに銅と酸化亜鉛を担体に担持した新しい固体触
媒を使用することを特徴とし、酸化炭素の接触水素化法
による効率的なメタツルへの変換方法が提供される。
[Means for Solving the Problems] That is, according to the present invention, a new solid catalyst in which copper and zinc oxide are supported on a specific metal oxide as a carrier is used. Provided is an efficient method for converting into metavine using a catalytic hydrogenation method.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に使用される触媒を構成する特定の金属酸化物は
、いかなる物理的な形態を持っていてもよい。すなわち
微粉末、粗粒子、ペレットなどその形態は任意である。
The specific metal oxide that constitutes the catalyst used in the present invention may have any physical form. That is, the form thereof may be arbitrary, such as fine powder, coarse particles, pellets, etc.

また、表面積は0.1〜1000m/g程度のものでよ
く、細孔が存在する場合でも、その大きさや分布が任意
のものを使用することができる。好ましくは、径]、、
5mm前後の粒子に成型したものがよい。
Further, the surface area may be about 0.1 to 1000 m/g, and even if pores are present, any size and distribution of pores can be used. Preferably, the diameter],
It is best to use particles molded into particles of around 5 mm.

塩化物や更には酢酸塩などの有機塩が使用可能であり任
意である。好ましくは硝酸塩や酢酸塩を使用する。
Organic salts such as chlorides and even acetates can be used and are optional. Preferably, nitrates and acetates are used.

本発明に使用される触媒を構成する銅及び酸化亜鉛の担
持量は任意であるが、好ましくは、銅担持量1〜30w
t%を使用する。また銅/酸化亜鉛はモル比は100/
1〜1 / 100でよく、好ましくは3/1〜1/3
の範囲で使用する。
The supported amount of copper and zinc oxide constituting the catalyst used in the present invention is arbitrary, but preferably the supported amount of copper is 1 to 30 w.
Use t%. The molar ratio of copper/zinc oxide is 100/
It may be 1 to 1/100, preferably 3/1 to 1/3
Use within the range.

銅及び亜鉛化合物前駆体を金属酸化物に担持する方法は
、含浸法、沈殿法や物理的混合法など任意である。好ま
しくは硝酸塩前駆体溶液を含浸液とする含浸法が使用さ
れる。前駆体溶液を含浸する前に、金属酸化物は150
〜500 ’Cの間で排気加熱処理を行なうことが好ま
しい。
The method for supporting the copper and zinc compound precursors on the metal oxide may be any method such as an impregnation method, a precipitation method, or a physical mixing method. Preferably, an impregnation method using a nitrate precursor solution as the impregnation liquid is used. Before impregnating with the precursor solution, the metal oxide was heated to 150
It is preferable to carry out the exhaust heat treatment at a temperature between 500'C and 500'C.

銅及び亜鉛化合物が担持された金属酸化物は酸素気流中
または空気気流中で焼成することが好ましい。焼成温度
は2O0〜800℃の間の温度で焼成を行なう。担持さ
れた銅及び酸化亜鉛前駆体しも必要ではない。
The metal oxide supporting copper and zinc compounds is preferably calcined in an oxygen stream or an air stream. The firing temperature is between 200 and 800°C. Supported copper and zinc oxide precursors are also not required.

焼成された触媒は、水素気流中で還元処理を行なう。還
元温度は100〜1000 ’Cまでの間の温度で任意
である。好ましくは、2O0〜600°Cの間の温度で
水素還元処理を行なう。
The calcined catalyst is subjected to reduction treatment in a hydrogen stream. The reduction temperature is arbitrary between 100 and 1000'C. Preferably, the hydrogen reduction treatment is carried out at a temperature between 2O0 and 600°C.

本発明により製造された触媒は二酸化炭素と水素の混合
ガスからのメタノール合成に使用されるが、その反応の
形式は任意であり、気相固定床流通式、気相流動床、液
相懸濁床のいずれでもよい。
The catalyst produced according to the present invention is used for methanol synthesis from a mixed gas of carbon dioxide and hydrogen, but the reaction format can be arbitrary: gas phase fixed bed flow type, gas phase fluidized bed, liquid phase suspension. Any floor is fine.

本発明に使用される触媒は、例えば反応管に充填した後
、反応に先立って水素還元処理を行なうことが好ましい
が、この処理はなくてもよい。
The catalyst used in the present invention is preferably subjected to a hydrogen reduction treatment prior to the reaction, for example after being filled into a reaction tube, but this treatment may be omitted.

本発明を実施する条件、すなわち炭酸ガスと水素の混合
ガスからメタノールを合成する反応条件として、圧力は
常圧〜300 k g/cJ、好ましくは10〜100
kg/cJで、反応温度は100〜400℃、好ましく
は180−300°Cがよい。
The conditions for implementing the present invention, that is, the reaction conditions for synthesizing methanol from a mixed gas of carbon dioxide gas and hydrogen, are such that the pressure is normal pressure to 300 kg/cJ, preferably 10 to 100 kg/cJ.
kg/cJ, and the reaction temperature is 100-400°C, preferably 180-300°C.

C○2/H2モル比は1710〜3/1であり、好まし
くは1/4〜1/1を使用する。また、反応ゝチフスの
流速は任意であるか、空間速度としてG HSVが50
〜2O000h ’が好ましい。
The C○2/H2 molar ratio is 1710 to 3/1, preferably 1/4 to 1/1. In addition, the flow rate of reactive typhoid fever is arbitrary, or the space velocity is GHSV 50.
~2000h' is preferred.

[実施例] 次に本発明を実施例により、更に詳細に説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

実施例1 固定床加圧流通式反応装置の反応管にCe、のメタノー
ルへの変換用触媒としてアルミナ(Al2O3)に銅と
酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化亜鉛:
1)を担持した触媒を1g充填した。反応に先立って触
媒を350°Cで30分水素還元処理した。水素気流中
で放冷した後、室温にて反応ガス(CO,/H2/Ar
−30/60/10、Arは内部標準)に切り替え、反
応温度22O°C1反応圧力30kg/cJ、流速10
0m]/mniで反応を行った。反応開始1時間後のメ
タノール生成量は1330μmol/L11、選択率3
9%であった。副生成物としてはCOが2O60 μm
o1./g、h(選択率61%)、メタンが2μmo1
./g、h(選択率路O%)であった。反応結果を表に
示す。
Example 1 Copper and zinc oxide (copper loading 5 wt%, copper/normal oxide/zinc oxide:
1 g of the catalyst supporting 1) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, reactant gas (CO, /H2/Ar
-30/60/10, Ar is internal standard), reaction temperature 22O°C, reaction pressure 30kg/cJ, flow rate 10
0 m]/mni. The amount of methanol produced 1 hour after the start of the reaction was 1330 μmol/L11, and the selectivity was 3.
It was 9%. As a by-product, CO is 2O60 μm
o1. /g, h (selectivity 61%), methane is 2 μmol
.. /g, h (selectivity 0%). The reaction results are shown in the table.

実施例2 一 ゝ5固定床加圧流通式反応装置の反応管にCe2のメタ
ノールへの変換用触媒としてシリカ(Sin2)に銅と
酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化亜鉛:
1)を担持した触媒を1g充填した。反応に先立って触
媒を350℃で30分水素還元処理した。水素気流中で
放冷した後、室温にて反応ガス(CO2/112/ A
r30/60/10、Arは内部標準)に切り替え、反
応温度22O℃、反応圧力30kg/a#、流速100
m1/mniで反応を行った。反応開始1時間後のメタ
ノール生成量は1360μmol/g、h、選択率3部
であった。副生成物としてはCOが710μmol/g
、h(選択率34%)、メタンが1μmol/g、h(
選択率路O%)であった。反応結果を表に示す。
Example 2 Copper and zinc oxide (copper supported amount: 5 wt%, copper/normal oxide/zinc oxide) were added to silica (Sin2) as a catalyst for converting Ce2 to methanol in the reaction tube of a 1.5 fixed bed pressurized flow reactor. :
1 g of the catalyst supporting 1) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, reactant gas (CO2/112/A
r30/60/10, Ar is internal standard), reaction temperature 22O ℃, reaction pressure 30kg/a#, flow rate 100
The reaction was carried out at m1/mni. The amount of methanol produced 1 hour after the start of the reaction was 1360 μmol/g, h, and the selectivity was 3 parts. As a by-product, CO is 710 μmol/g.
, h (selectivity 34%), methane 1 μmol/g, h (
The selectivity was 0%). The reaction results are shown in the table.

実施例3 固定床加圧流通式反応装置の反応管にCe2のメタノー
ルへの変換用触媒としてチタニア(TjO□)に銅と酸
化亜鉛(銅担持量5tit%+銅/酸化亜鉛モル比1:
1)を担持した触媒を1g充填した。反応に先立って触
媒を350℃で30分水素還元処理した。水素気流中で
放冷した後、室温にて反応ガス(CO2/12/((−
一 一−−A〒=30/60/10. Arは内部標準)に
切り替え、反応温度22O°C1反応圧力30kg/a
K、流速100m1/mnjで反応を行った。反応開始
1時間後のメタノール生成ftハ1280μmol/g
、h、選択率78%テあった。副生成物としてはCOが
360 μmol/g、h(選択率22%)、メタンが
1μmo1./g、h(選択率路0%)であった。反応
結果を表に示す。
Example 3 Copper and zinc oxide (copper loading amount 5 tit% + copper/zinc oxide molar ratio 1:
1 g of the catalyst supporting 1) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (CO2/12/((-
11--A〒=30/60/10. Ar is an internal standard), reaction temperature is 22O°C, reaction pressure is 30kg/a.
The reaction was carried out at a flow rate of 100 ml/mnj. Methanol production ft 1280 μmol/g 1 hour after the start of the reaction
, h, the selectivity was 78%. By-products include CO at 360 μmol/g (selectivity 22%) and methane at 1 μmol/g. /g, h (selectivity 0%). The reaction results are shown in the table.

実施例4 固定床加圧流通式反応装置の反応管にCe2のメタノー
ルへの変換用触媒としてクロミア(Cr2O□)に銅と
酸化亜鉛(銅担持量5wt% 、銅/酸化亜釦モル比1
:1)を担持した触媒を1g充填した。反応に先立って
触媒を350℃で30分水素還元処理した。水素気流中
で放冷した後、室温にて反応ガス(CO7/H2/Ar
=30/60/10、Arは内部標準)に切り替え、反
応温度22O°C1反応圧力30kg/ csK、流速
100m1/mn]で反応を行った。反応開始1時間後
のメタノール生成量は960μmol−/g、IT、選
択率77%であった。副生成物としてはCOが290 
μmol/g、h(選択率23%)、メタンが1μmo
l/g、h(選択率路0%)であった。反応結果を表に
示す。
Example 4 Chromia (Cr2O□), copper and zinc oxide (copper loading amount 5 wt%, copper/zinc oxide molar ratio 1
:1 g of the catalyst supporting 1) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (CO7/H2/Ar
=30/60/10, Ar is an internal standard), reaction temperature was 220°C, reaction pressure was 30kg/csK, and flow rate was 100ml/mn]. The amount of methanol produced 1 hour after the start of the reaction was 960 μmol/g, IT, and the selectivity was 77%. As a by-product, CO is 290
μmol/g, h (selectivity 23%), methane is 1 μmol
l/g, h (selectivity 0%). The reaction results are shown in the table.

実施例5 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒としてジルコニア(ZrO2)に銅と
酸化亜鉛(銅担持量5wt%、銅/酸化亜釦モル比l:
1)を担持した触媒を1g充填した。反応に先立って触
媒を350°Cで30分水素還元処理した。水素気流中
で放冷した後、室温にて反応ガス(Co2/H、、/ 
Ar30/60/100. Arは内部標準〕に切り替
え、反応温度22O℃、反応圧力30kg/d、流速1
00m1/mnjで反応を行った。反応開始1時間後の
メタノール生成量は910μmol/g、h、選択率5
7%であった。副生成物としてはCOが700μmol
/g、h(選択率43%)、メタンが1 μmo1./
g、h(選択1m8o%)であった。反応結果を表に示
す。
Example 5 Copper and zinc oxide (copper supported amount 5 wt%, copper/zinc oxide molar ratio l:
1 g of the catalyst supporting 1) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, reactant gas (Co2/H, , /
Ar30/60/100. Ar is an internal standard], the reaction temperature is 220°C, the reaction pressure is 30 kg/d, and the flow rate is 1.
The reaction was carried out at 00 m1/mnj. The amount of methanol produced 1 hour after the start of the reaction was 910 μmol/g, h, selectivity 5
It was 7%. 700 μmol of CO as a by-product
/g, h (selectivity 43%), methane was 1 μmo1. /
g, h (selection 1m8o%). The reaction results are shown in the table.

実施例6 固定床加圧流通式反応装置の反応管にCe2のメタノー
ルへの変換用触媒としてセリア(CeO□)に銅と酸化
亜鉛(銅担持量5wt%、銅/酸化並/酸化亜鉛:1)
を担持した触媒を1g充填した。反応に先立って中で放
冷した後、室温にて反応ガス(Co2/H,、/ Ar
30/60/1.0、Arは内部標準)に切り替え、反
応温度22O℃、反応圧力30kg/ d、流速100
m1/mniで反応を行った。反応開始1時間後のメタ
ノール生成量は830μmo1./g、h、選択率79
″1であった。副生成物としてはCOが22O p m
ol/g、h(選択$21%)、メタンが1μmo1.
/g、h(選択率路0%)であった。反応結果を表に示
す。
Example 6 Copper and zinc oxide (copper supported amount: 5 wt%, copper/normal oxide/zinc oxide: 1 )
1 g of the catalyst supporting the above was charged. Prior to the reaction, the reactant gas (Co2/H,,/Ar
30/60/1.0, Ar is internal standard), reaction temperature 22O℃, reaction pressure 30kg/d, flow rate 100
The reaction was carried out at m1/mni. The amount of methanol produced 1 hour after the start of the reaction was 830 μmol. /g, h, selectivity 79
``1.As a by-product, CO was 22O p m
ol/g, h (selection $21%), methane 1 μmol 1.
/g, h (selectivity 0%). The reaction results are shown in the table.

実施例7 固定床加圧流通式反応装置の反応管にCo2のメタノー
ルへの変換用触媒としてイツトリア(Y2O2)に銅と
酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化亜鉛:
1)を担持した触媒を1g充填した。反応に先立って触
媒を350℃で30分水素還元処理した。水素気流中で
放冷した後、室温にて反応ガス(C02/H2/Ar=
30/60/10、Arは内部標準)に切り替え、反応
温度22O℃、反応圧力30kg/ i、流速Loom
]、/mnjで反応を行った。反応開始1時間後のメタ
ノール生成量は650μmo1./g、h、選択率82
%であった。副一唖成物としてはCOが140 p m
ol、7g、h(選択率18I)、メタンが1μmol
/g、h(選択率路01)であった。反応結果を表に示
す。
Example 7 Copper and zinc oxide (copper loading 5 wt%, copper/normal oxide/zinc oxide:
1 g of the catalyst supporting 1) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (C02/H2/Ar=
30/60/10, Ar is internal standard), reaction temperature 22O℃, reaction pressure 30kg/i, flow rate Loom
], /mnj. The amount of methanol produced 1 hour after the start of the reaction was 650 μmol1. /g, h, selectivity 82
%Met. As a minor component, CO is 140 p m
ol, 7g, h (selectivity 18I), methane 1 μmol
/g, h (selectivity path 01). The reaction results are shown in the table.

実施例8 固定床加圧流通式反応装置の反応管にCo2のメタノー
ルへの変換用触媒として酸化プラセオジム(Pr、O□
1)に銅と酸化亜鉛(銅担持量5tit%、銅/酸化亜
鉛モル比1:1)を担持した触媒を]g充填した。
Example 8 Praseodymium oxide (Pr, O□
1) was filled with ] g of a catalyst supporting copper and zinc oxide (copper supported amount: 5 tit %, copper/zinc oxide molar ratio 1:1).

反応に先立って触媒を350℃で30分水素還元処理し
た。水素気流中で放冷した後、室温にて反応ガス(Co
7/H,、/ Ar・30/60/1.0、Arは内部
標$)に切り替え、反応温度22O°C1反応圧力30
kg/ ci、流速100m1/mniで反応を行った
。反応開始1時間後のメタノール生成量は650 μm
o]、/g、h、選択$82%であった。副生成物とし
てはCOが140μmo]、/g、h(選択率18%)
、メタンが2 μmol/g、h (選択率路0%)で
あった。
Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (Co
7/H,,/Ar・30/60/1.0, Ar is internal standard $), reaction temperature 22O°C1 reaction pressure 30
The reaction was carried out at a flow rate of 100 ml/mni at a flow rate of 100 ml/mni. The amount of methanol produced 1 hour after the start of the reaction was 650 μm.
o], /g, h, selection $82%. As a by-product, CO is 140 μmo], /g, h (selectivity 18%)
, methane was 2 μmol/g, h (selectivity path 0%).

反応結果を表に示す。The reaction results are shown in the table.

実施例9 固定床加圧流通式反応装置の反応管にCo2のメタノー
ルへの変換用触媒としてマグネシア(MgO)し1 −に銅と酸化亜鉛(銅担持量5wt%、銅/酸化亜釦モ
ル比1:1)を担持した触媒を1g充填した。反応に先
立って触媒を350°Cで30分水素還元処理した。水
素気流中で放冷した後、室温にて反応ガス(Co2/H
,、/Ar−30/60/10、Arは内部標準)に切
り替え、反応温度22O℃、反応圧力30kg/d、流
速100m1/mnjで反応を行った。反応開始1時間
後のメタノール生成量は590μmol/g、h、選択
率91%であった。副生成物としてはCOが60μmo
l/g、h(選択率9%)、メタンが1μmo]、/g
、h(選択率路ぼ)であった。反応結果を表に示す。
Example 9 Magnesia (MgO) was used as a catalyst for converting Co2 into methanol in a reaction tube of a fixed bed pressurized flow reactor, and copper and zinc oxide (copper loading amount 5 wt%, copper/zinc oxide molar ratio 1 g of a catalyst supporting 1:1) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (Co2/H
,,/Ar-30/60/10, Ar is an internal standard), and the reaction was carried out at a reaction temperature of 220° C., a reaction pressure of 30 kg/d, and a flow rate of 100 ml/mnj. The amount of methanol produced 1 hour after the start of the reaction was 590 μmol/g, h, and the selectivity was 91%. As a by-product, CO is 60μmo
l/g, h (selectivity 9%), methane 1 μmo], /g
, h (selectivity road). The reaction results are shown in the table.

実施例10 固定床加圧流通式反応装置の反応管にCo2のメタノー
ルへの変換用触媒として酸化タンタル(Ta2OS)に
銅と酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化亜
鉛:1)を担持した触媒を1g充填した。反応に先立っ
て触媒を350℃で30分水素還元処理した。
Example 10 Copper and zinc oxide (copper loading 5 wt%, copper/normal oxide/zinc oxide: 1 ) was charged in an amount of 1 g. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes.

水素気流中で放冷した後、室温にて反応ガス(Co2/
H2/ Ar−30/60/10. Arは内部標準)
に切り替え、反応温度22O°C1反応圧力30kg/
cn?、流速100m]、/mn→み反応を行った。反
応開始1時間後のメタノール生成量は530μmo1/
g、h、選択率79%であった。副生成物としてはCO
が130 μmol/g、h (選択率21r)、メタ
ンが1μmol/g、h(選択率路0%)であった。反
応結果を表に示す。
After cooling in a hydrogen stream, reactant gas (Co2/
H2/Ar-30/60/10. (Ar is internal standard)
, reaction temperature 22O°C, reaction pressure 30kg/
cn? , flow rate 100 m], /mn → reaction was carried out. The amount of methanol produced 1 hour after the start of the reaction was 530 μmol/
g, h, selectivity was 79%. CO as a by-product
was 130 μmol/g, h (selectivity 21r), and methane was 1 μmol/g, h (selectivity 0%). The reaction results are shown in the table.

実施例11 固定床加圧流通式反応装置の反応管にCo2のメタノー
ルへの変換用触媒として酸化イソテリビウム(Yb2O
3)に銅と酸化亜鉛(銅担持量5tit%、銅/酸化亜
釦モル比1:1)を担持した触媒を1g充填した。
Example 11 Isoterbium oxide (Yb2O) was added as a catalyst for converting Co2 to methanol in the reaction tube of a fixed bed pressurized flow reactor
3) was filled with 1 g of a catalyst supporting copper and zinc oxide (copper supported amount: 5 tit %, copper/zinc oxide molar ratio 1:1).

反応に先立って触媒を350℃で30分水素還元処理し
た。水素気流中で放冷した後、室温にて反応ガス(Co
2/H2/Ar:30/60/10、Arは内部標$)
に切り替え、反応温度22O℃、反応圧力30kg/c
n?、流速100m1/mnjで反応を行った。反応開
始1時間後のメタノール生成量は500 p mol/
g、h、選択率90%であった。副生成物としてはCO
が60μmol/g、h(選択率10石)、メタンが1
 μmol/g、h(選択率路0%)であった。
Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (Co
2/H2/Ar: 30/60/10, Ar is internal standard $)
, the reaction temperature was 22O℃, and the reaction pressure was 30kg/c.
n? , the reaction was carried out at a flow rate of 100 m1/mnj. The amount of methanol produced 1 hour after the start of the reaction was 500 pmol/
g, h, selectivity was 90%. CO as a by-product
is 60 μmol/g, h (selectivity 10 stones), methane is 1
It was μmol/g, h (selectivity: 0%).

反応結果を表に示す。The reaction results are shown in the table.

実施例12 ゝ5論定床加圧流通式反応装置の反応管にCO2のメタ
ノールへの変換用触媒としてネオジア(Nd2O3)に
銅と酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化亜
鉛:1)を担持した触媒を斥充填した。反応に先立って
触媒を350°Cで30分水素還元処理した。水素気流
中て放冷した後、室温にて反応ガス(Co、、/+12
/Ar=30/60/10、Arは内部標準)に切り替
え、反応温度22O°C1反応圧力30kg/ al、
流速100m1/mniで反応を行った。反応開始1時
間後のメタノール生成量は470μmO」/ε、h、選
択率94%であった。副生成物としてはCOが30 p
 mol−/g、h(選択率6%)、メタンが1μmo
1./g、h(選択車路O%)であった。反応結果を表
に示す。
Example 12 In a reaction tube of a fixed-bed pressurized flow reactor, neodia (Nd2O3) was used as a catalyst for converting CO2 into methanol, and copper and zinc oxide (copper loading amount 5 wt%, copper/normal oxide/zinc oxide) were used as a catalyst for converting CO2 into methanol. : A catalyst supporting 1) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (Co, , /+12
/Ar = 30/60/10, Ar is internal standard), reaction temperature 22O°C, reaction pressure 30kg/al,
The reaction was carried out at a flow rate of 100 ml/mni. The amount of methanol produced 1 hour after the start of the reaction was 470 μmO''/ε, h, and the selectivity was 94%. CO as a by-product is 30p
mol-/g, h (selectivity 6%), methane is 1 μmo
1. /g, h (selected road 0%). The reaction results are shown in the table.

実施例13 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒として酸化ホルミウム(+102O3
 )に銅と酸化亜鉛(銅担持量5wt%、銅/酸化亜釦
モル比1:1)を担持した触媒を1g充填した。反応に
先立って触媒を350℃で30分水素還元処理した。
Example 13 Holmium oxide (+102O3
) was filled with 1 g of a catalyst supporting copper and zinc oxide (copper supported amount: 5 wt %, copper/zinc oxide molar ratio 1:1). Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes.

水素気流中て放冷した後、室温にて反応ガス(CO□/
H2/Ar−30/60/10、Arは内部標準)に切
り替え、反応温度22O℃、反応圧力30kg/cJ、
流速100m1/mniで反応を行った。反応開始1時
間後のメタノール生成量は450μmol/g、l’l
、選択率93%であった。副生成物としてはCOが30
 μmo1./g、h(選択率7%)、メタンが1μm
ol/g、h(選択車路0%)であった。反応結果を表
に示す。
After cooling in a hydrogen stream, reactant gas (CO□/
H2/Ar-30/60/10, Ar is internal standard), reaction temperature 22O℃, reaction pressure 30kg/cJ,
The reaction was carried out at a flow rate of 100 ml/mni. The amount of methanol produced 1 hour after the start of the reaction was 450 μmol/g, l'l
, the selectivity was 93%. As a by-product, CO is 30
μmo1. /g, h (selectivity 7%), methane is 1 μm
ol/g, h (selected road 0%). The reaction results are shown in the table.

実施例14 固定床加圧流通式反応装置の反応管にC02のメタノー
ルへの変換用触媒として酸化エルビウム(Er2O3)
に銅と酸化亜鉛(銅担持量5tit%、銅/酸化亜鉛モ
ル比1:1)を担持した触媒を1g充填した。反応に先
立って触媒を350℃で30分水素還元処理した。
Example 14 Erbium oxide (Er2O3) was added as a catalyst for converting CO2 to methanol in the reaction tube of a fixed bed pressurized flow reactor.
was filled with 1 g of a catalyst supporting copper and zinc oxide (copper supported amount: 5 tit %, copper/zinc oxide molar ratio 1:1). Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes.

水素気流中で放冷した後、室温にて反応ガス(CO2/
H2/ Ar=30/60/10、Arは内部標準)に
切り替え、反応温度22O℃、反応圧力30kg/ a
K、流速100m1./mn1で反応を行った。反応開
始1時間後のメタノール生成量は42Oμmol/lL
h、選択率94%であった。副生成物としてはCOが3
0μmol/LM選択率日)、メタンが1μmol/g
、h(選択車路0%)であった。反応結”虻を表に示す
After cooling in a hydrogen stream, reactant gas (CO2/
H2/Ar=30/60/10, Ar is internal standard), reaction temperature 22O℃, reaction pressure 30kg/a
K, flow rate 100 m1. /mn1. The amount of methanol produced 1 hour after the start of the reaction was 42 Oμmol/L
h, selectivity was 94%. As a by-product, CO is 3
0 μmol/LM selectivity day), methane is 1 μmol/g
, h (selected lane 0%). The reaction results are shown in the table.

実施例15 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒として酸化サマリウム(Sm2O3)
に銅と酸化亜鉛(銅担持量5wt″1.銅/酸化亜鉛モ
ル比1:1)を担持した触媒を1g充填した。反応に先
立って触媒を350℃で30分水素還元処理した。
Example 15 Samarium oxide (Sm2O3) was added as a catalyst for converting CO2 to methanol in the reaction tube of a fixed bed pressurized flow reactor.
was filled with 1 g of a catalyst supporting copper and zinc oxide (amount of copper supported: 5 wt''1. Copper/zinc oxide molar ratio: 1:1). Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350° C. for 30 minutes.

水素気流中で放冷した後、室温にて反応ガス(CO□/
H2/ Ar=30/60/10、Arは内部標準)に
切り替え、反応温度22O℃、反応圧力30kg/d、
流速100m1/mniで反応を行った。反応開始1時
間後のメタノール生成量は380μmol/g、h、選
択率94%であった。副生成物としてはCOが2O μ
mol/g、h(選択率6%)、メタンが1μmol/
g、h(選択車路0%)であった。反応結果を表に示す
After cooling in a hydrogen stream, reactant gas (CO□/
H2/Ar=30/60/10, Ar is internal standard), reaction temperature 22O℃, reaction pressure 30kg/d,
The reaction was carried out at a flow rate of 100 ml/mni. The amount of methanol produced 1 hour after the start of the reaction was 380 μmol/g, h, and the selectivity was 94%. As a by-product, CO is 2Oμ
mol/g, h (selectivity 6%), methane 1 μmol/
g, h (selected lane 0%). The reaction results are shown in the table.

実施例16 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒として酸化カルシウム(Cab)に銅
と酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化亜鉛
:1)を担持した触媒を1g充填した。反応にゝ舅立っ
て触媒を350℃で30分水素還元処理した。
Example 16 Calcium oxide (Cab), copper and zinc oxide (copper supported amount: 5 wt%, copper/normal oxide/zinc oxide: 1 ) was charged in an amount of 1 g. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes.

水素気流中で放冷した後、室温にて反応ガス(CO2/
H2/ Ar=30/60/10、Arは内部標llり
に切り替え、反応温度22O°C1反応圧力30kg/
a(、流速]00m1/mniで反応を行った。反応開
始1時間後のメタノール生成量は340μmol/g浦
、選択率87%であった。副生成物としてはCOが50
 μmol/g、h(選択率13%)、メタンが1μm
ol/g、h(選択車路0%)であった。反応結果を表
に示す。
After cooling in a hydrogen stream, reactant gas (CO2/
H2/Ar=30/60/10, Ar switched to internal standard, reaction temperature 220°C, reaction pressure 30kg/
The reaction was carried out at a flow rate of 00 ml/mni.The amount of methanol produced 1 hour after the start of the reaction was 340 μmol/g, and the selectivity was 87%.As a by-product, CO was 50 ml/mni.
μmol/g, h (selectivity 13%), methane is 1 μm
ol/g, h (selected road 0%). The reaction results are shown in the table.

実施例17 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒として酸化ストロンチウム(SrO)
に銅と酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化
亜鉛:1)を担持した触媒を1g充填した。反応に先立
って触媒を350℃で30分水素還元処理した。水素気
流中で放冷した後、室温にて反応ガス(Co□/H□/
 Ar:30/60/10、Arは内部標準)に切り替
え、反応温度22O℃、反応圧力30kg/cr#、流
速100m1/mniで反応を行った。反応開始1時間
後のメタノール生成量は32Oμmol/g、h、選択
率90%であった。
Example 17 Strontium oxide (SrO) was added as a catalyst for converting CO2 to methanol in the reaction tube of a fixed bed pressurized flow reactor.
was filled with 1 g of a catalyst supporting copper and zinc oxide (copper supported amount: 5 wt %, copper/normal oxide/zinc oxide: 1). Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (Co□/H□/
Ar: 30/60/10 (Ar: internal standard), and the reaction was carried out at a reaction temperature of 220° C., a reaction pressure of 30 kg/cr#, and a flow rate of 100 ml/mni. The amount of methanol produced 1 hour after the start of the reaction was 320 μmol/g, h, with a selectivity of 90%.

−副生成物としてはCOが69 μmo1./g、h(
選択率10%)、メタンが1μmo]、/g、h(選択
率路0%)であった。反応結果を表に示す。
- As a by-product, CO is 69 μmol. /g,h(
The selectivity was 10%), and the methane was 1 μmo], /g, h (selectivity was 0%). The reaction results are shown in the table.

実施例18 固定床加圧流通式反応装置の反応管にCO,のメタノー
ルへの変換用触媒として酸化ジスプロシウム(Dy2O
:l )に銅と酸化亜鉛(銅和持量5tit%、銅/酸
化亜鉛モル比1:1)を担持した触媒を1g充填した。
Example 18 Dysprosium oxide (Dy2O
:1) was filled with 1 g of a catalyst supporting copper and zinc oxide (total copper content: 5 tit %, copper/zinc oxide molar ratio: 1:1).

反応に先立って触媒を350℃で30分水素還元処理し
た。水素気流中で放冷した後、室温にて反応ガス(CO
2/H2/Ar−30/60/10、Arは内部標7(
切に切り替え、反応温度22O°C1反応圧力30kg
/cn!、流速100m1/mniで反応を行った。反
応開始1時間後のメタノール生成量は310μmol/
g、l’l、選択率95%であった。副生成物としては
COが2Oμmo1./g、h(選択率5%)、メタン
が1μmo1./g、h(選択率路0%)であった。反
応結果を表に示す。
Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (CO
2/H2/Ar-30/60/10, Ar is internal standard 7 (
Switch to off, reaction temperature 22O°C, reaction pressure 30kg
/cn! The reaction was carried out at a flow rate of 100 ml/mni. The amount of methanol produced 1 hour after the start of the reaction was 310 μmol/
g, l'l, selectivity was 95%. As a by-product, CO is 20μmol1. /g, h (selectivity 5%), methane is 1 μmol1. /g, h (selectivity 0%). The reaction results are shown in the table.

実施例19 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒として酸化ジスプロシ一万ム(oyz
o3)に銅と酸化亜鉛(銅担持景5シt%、銅/酸化亜
鉛モル比1:1)を担持した触媒を1g充填した。
Example 19 In a reaction tube of a fixed bed pressurized flow reactor, 10,000 ml of oxidized dysprosium (oyz
O3) was filled with 1 g of a catalyst supporting copper and zinc oxide (copper loading: 5 t%, copper/zinc oxide molar ratio 1:1).

反応に先立って触媒を350°Cで30分水素還元処理
した。水素気流中で放冷した後、室温にて反応ガス(C
o2/H,/ Ar−30/60/10、Arは内部標
準)に切り替え、反応温度22O°C1反応圧力30k
g/ cnf、流速100m1/mnjで反応を行った
。反応開始1時間後のメタノール生成量は105μmo
l/g、h、選択率95%であった。副生成物としては
COが10μmo1./g、h(選択率5%)、メタン
が]μmol/g、h(選択率路O%)であった。反応
結果を表に示す。
Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (C
o2/H,/Ar-30/60/10, Ar is internal standard), reaction temperature 22O°C1 reaction pressure 30k
The reaction was carried out at a flow rate of 100 ml/mnj. The amount of methanol produced 1 hour after the start of the reaction was 105μmo
l/g, h, selectivity was 95%. As a by-product, CO is 10 μmol1. /g, h (selectivity 5%), methane was] μmol/g, h (selectivity 0%). The reaction results are shown in the table.

比較例1 固定床加圧流通式反応装置の反応管にCO,のメタノー
ルへの変換用触媒として酸化亜鉛(ZnO)に銅(5ν
t%)を担持した触媒を1g充填した。反応に先立って
触媒を350℃で30分水素還元処理した。
Comparative Example 1 Zinc oxide (ZnO) and copper (5ν
t%) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes.

水素気流中で放冷した後、室温にて反応ガス(CO7/
H2/Ar=30/60/10. Arは内部標準)に
切り替え、反応温度22O℃、反応圧力30kg/ a
K、流速100m1/mniで反応を行った。反応開始
1時間後のメタノール生成量は280μmo]、/g、
h、選択率92%であった。副生成物としてはCOが2
O μmo1./g、h (選択18%)、メタンが1
μmol/g、h(選択率路0%)であった。反応結果
を表に示す。
After cooling in a hydrogen stream, reactant gas (CO7/
H2/Ar=30/60/10. Ar is an internal standard), reaction temperature is 22O℃, reaction pressure is 30kg/a.
The reaction was carried out at a flow rate of 100 ml/mni. The amount of methanol produced 1 hour after the start of the reaction was 280 μmo], /g,
h, selectivity was 92%. As a by-product, CO is 2
O μmo1. /g, h (selection 18%), methane is 1
It was μmol/g, h (selectivity: 0%). The reaction results are shown in the table.

比較例2 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒として酸化モリブデン(M2O3)に
銅と酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化亜
鉛:1)を担持した触媒を1g充填した。反応に先立っ
て触媒を350℃で30分水素還元処理した。
Comparative Example 2 Molybdenum oxide (M2O3) was used as a catalyst for converting CO2 into methanol in a reaction tube of a fixed bed pressurized flow reactor, and copper and zinc oxide (copper loading amount 5 wt%, copper/normal oxide/zinc oxide: 1 ) was charged in an amount of 1 g. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes.

水素気流中で放冷した後、室温にて反応ガス(CO2/
H2/Ar−30/60/10、Arは内部標準)に切
り替え、反応温度22O℃、反応圧力30kg/ cl
、流速100m1/mniで反応を行った。反応開始1
時間後のメタノール生成量は290μmol−/g、h
、選択率43%であった。副生成物としてはCOが34
0 μmo1./g、h(選択率52%)、メタンが3
5μmol/g、h(選択率5%)であった。反応結果
を表に示す。
After cooling in a hydrogen stream, reactant gas (CO2/
H2/Ar-30/60/10, Ar is internal standard), reaction temperature 22O℃, reaction pressure 30kg/cl
The reaction was carried out at a flow rate of 100 ml/mni. Reaction start 1
The amount of methanol produced after hours was 290 μmol-/g, h
, the selectivity was 43%. As a by-product, CO is 34
0 μmo1. /g, h (selectivity 52%), methane is 3
It was 5 μmol/g, h (selectivity 5%). The reaction results are shown in the table.

比較例3 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒として酸化タングステン(UO3)に
銅と酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化亜
鉛:1)を担持した触媒を1g充填した。反応に先立っ
て触媒を350℃で30分水素還元処理した。
Comparative Example 3 Copper and zinc oxide (copper loading 5 wt%, copper/normal oxide/zinc oxide: 1 ) was charged in an amount of 1 g. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes.

水素気流中で放冷した後、室温にて反応ガス(CO□/
H□/Ar=30/60/1.0、Arは内部標準)に
切り替え、反応温度22O℃、反応圧力30kg/ff
l、流速100m1/mniで反応を行った。反応開始
1時間後のメタノール生成量は10μmo1./g浦、
選択率5%であった。副生成物としてはCOが260 
μmol/H,h(選択率92%)、メタンが8μmo
l/g、h(選択率3%)であった。反応結果を表に示
す。
After cooling in a hydrogen stream, reactant gas (CO□/
H□/Ar=30/60/1.0, Ar is internal standard), reaction temperature 22O℃, reaction pressure 30kg/ff
The reaction was carried out at a flow rate of 100 ml/mni. The amount of methanol produced 1 hour after the start of the reaction was 10 μmol1. /gura,
The selectivity was 5%. As a by-product, CO is 260
μmol/H, h (selectivity 92%), methane is 8 μmol
l/g, h (selectivity 3%). The reaction results are shown in the table.

比較例4 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒としてニオビア(Nb2OS)に銅と
酸化亜鉛(銅担持量5wt%、銅/酸化並/酸化亜鉛:
1)を担持した触媒を1g充填した。反応に先立って触
媒を350℃で30分水素還元処理した。水素気流中で
放冷した後、室温にて反応ガス(Co2/+12/Ar
−30/60/10、Arは内部標準)に切り替え、反
応温−122O℃、反応圧力30kg/ aK、流速1
00m1/mnjで反応を行った。反応開始1時間後の
メタノール生成量はほぼ0μmol/g、h、選択率は
ぼ0%であった。副生成物としてはCOが50 μmo
l/g、h (選択率98z)、メタンか1μmol/
g−h(選択率2%)であった。反応結果を表に示す。
Comparative Example 4 Copper and zinc oxide (copper loading 5 wt%, copper/normal oxide/zinc oxide:
1 g of the catalyst supporting 1) was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (Co2/+12/Ar
-30/60/10, Ar is internal standard), reaction temperature -122O℃, reaction pressure 30kg/aK, flow rate 1
The reaction was carried out at 00 m1/mnj. One hour after the start of the reaction, the amount of methanol produced was approximately 0 μmol/g, h, and the selectivity was approximately 0%. CO as a by-product is 50 μmo
l/g, h (selectivity 98z), methane or 1 μmol/
gh (selectivity 2%). The reaction results are shown in the table.

比較例5 固定床加圧流通式反応装置の反応管にCO2のメタノー
ルへの変換用触媒として酸化ビスマス(t3j、0.)
に銅と酸化亜鉛(銅担持量5tit%、銅/酸化亜釦モ
ル比l:1)を担持した触媒を1.g充填した。反応に
先立って触媒を350℃で30分水素還元処理した。
Comparative Example 5 Bismuth oxide (t3j, 0.) was added as a catalyst for converting CO2 to methanol in the reaction tube of a fixed bed pressurized flow reactor.
A catalyst supporting copper and zinc oxide (copper loading amount: 5 tit%, copper/zinc oxide molar ratio 1:1) was prepared in 1. g filled. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes.

水素気流中で放冷した後、室温にて反応ガス(CO7/
H2/Ar=30/60/1.0、Arは内部標$)に
切り替え、反応温度22O℃、反応圧力30kg/aイ
、流速100m1/mnjで反応を行った。反応開始1
時間後のメタノール生成量はほぼOμmol/Lh、選
択率はぼ0%であった。
After cooling in a hydrogen stream, reactant gas (CO7/
H2/Ar=30/60/1.0 (Ar is internal standard $), and the reaction was carried out at a reaction temperature of 220° C., a reaction pressure of 30 kg/a, and a flow rate of 100 ml/mnj. Reaction start 1
The amount of methanol produced after that time was approximately Oμmol/Lh, and the selectivity was approximately 0%.

他の生成物としてはメタンが1μmo1./g、h(選
択率100%)であった。反応結果を表に示す。
Other products include methane at 1 μmol. /g, h (selectivity 100%). The reaction results are shown in the table.

Claims (1)

【特許請求の範囲】[Claims] (1)金属酸化物を担体とし、銅と酸化亜鉛を担体に担
持して調製された触媒で、担体とし て使用する金属酸化物として、アルミナ (Al_2O_3)、シリカ(SiO_2)、ジルコニ
ア(ZrO_2)、マグネシア(MgO)、セリア(C
eO_2)、イットリア(Y_2O_3)、ネオジア(
Nd_2O_3)、酸化ストロンチウム(SrO)、酸
化カルシウム(C aO)、クロミア(Cr_2O_3)、酸化タンタル(
Ta_2O_5)、酸化プロセアジム(Pr_6O_1
_1)、酸化イッテルビウム(Yb_2O_3)、酸化
ホルミウム(Ho_2O_3)、酸化エルビウム(Er
_2O_3)、酸化サマリウム(Sm_2O_3)、酸
化ジスプロシウム(Dy_2O_3)、酸化ランタン(
La_2O_3)のいずれか1種類を担体として用いる
ことを特徴 とする二酸化炭素を水素ガスにより接触水 素化し、メタノールに変換する方法。
(1) A catalyst prepared by using a metal oxide as a carrier and supporting copper and zinc oxide on the carrier.The metal oxides used as the carrier include alumina (Al_2O_3), silica (SiO_2), zirconia (ZrO_2), Magnesia (MgO), ceria (C
eO_2), Yttria (Y_2O_3), Neodia (
Nd_2O_3), strontium oxide (SrO), calcium oxide (CaO), chromia (Cr_2O_3), tantalum oxide (
Ta_2O_5), protheazim oxide (Pr_6O_1
_1), ytterbium oxide (Yb_2O_3), holmium oxide (Ho_2O_3), erbium oxide (Er
_2O_3), samarium oxide (Sm_2O_3), dysprosium oxide (Dy_2O_3), lanthanum oxide (
A method for catalytically hydrogenating carbon dioxide with hydrogen gas and converting it into methanol, characterized by using any one of La_2O_3) as a carrier.
JP2242941A 1990-09-13 1990-09-13 Method for producing methanol from carbon dioxide Expired - Lifetime JPH0635401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2242941A JPH0635401B2 (en) 1990-09-13 1990-09-13 Method for producing methanol from carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2242941A JPH0635401B2 (en) 1990-09-13 1990-09-13 Method for producing methanol from carbon dioxide

Publications (2)

Publication Number Publication Date
JPH04122444A true JPH04122444A (en) 1992-04-22
JPH0635401B2 JPH0635401B2 (en) 1994-05-11

Family

ID=17096501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242941A Expired - Lifetime JPH0635401B2 (en) 1990-09-13 1990-09-13 Method for producing methanol from carbon dioxide

Country Status (1)

Country Link
JP (1) JPH0635401B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016011A1 (en) * 1994-11-22 1996-05-30 Ube Industries, Ltd. Process for producing methanol
US6649562B2 (en) 1998-11-18 2003-11-18 Honda Giken Kogyo Kabushiki Kaisha Methanol-decomposing catalyst and methanol-decomposing apparatus comprising same
JP2010254666A (en) * 2009-03-30 2010-11-11 Tokyo Electric Power Co Inc:The Method of methanol synthesis using microwave
CN105664954A (en) * 2016-03-18 2016-06-15 昆明理工大学 Method for promoting forming of aurichalcite phase in precursor of copper-based catalyst with calcium salt as additive
CN112517012A (en) * 2020-12-01 2021-03-19 大连理工大学 CO (carbon monoxide)2Preparation method and application of catalyst for preparing methanol by hydrogenation
JP2021146258A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Carbon dioxide reduction catalyst
CN114950419A (en) * 2022-04-20 2022-08-30 江南大学 Metal catalyst for preparing methanol by carbon dioxide hydrogenation and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917391A (en) * 1972-04-20 1974-02-15
JPS4942240A (en) * 1972-03-06 1974-04-20
JPS5932949A (en) * 1982-08-13 1984-02-22 Mitsubishi Gas Chem Co Inc Catalyst for synthesis of methanol
JPS6084142A (en) * 1983-10-17 1985-05-13 Mitsubishi Gas Chem Co Inc Fluidized catalyst for methanol synthesis
JPS60106534A (en) * 1983-11-14 1985-06-12 Mitsubishi Gas Chem Co Inc Fluidized catalyst for methanol synthesis
JPS6253739A (en) * 1985-08-31 1987-03-09 Mitsubishi Gas Chem Co Inc Preparation of methanol synthesizing catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942240A (en) * 1972-03-06 1974-04-20
JPS4917391A (en) * 1972-04-20 1974-02-15
JPS5932949A (en) * 1982-08-13 1984-02-22 Mitsubishi Gas Chem Co Inc Catalyst for synthesis of methanol
JPS6084142A (en) * 1983-10-17 1985-05-13 Mitsubishi Gas Chem Co Inc Fluidized catalyst for methanol synthesis
JPS60106534A (en) * 1983-11-14 1985-06-12 Mitsubishi Gas Chem Co Inc Fluidized catalyst for methanol synthesis
JPS6253739A (en) * 1985-08-31 1987-03-09 Mitsubishi Gas Chem Co Inc Preparation of methanol synthesizing catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016011A1 (en) * 1994-11-22 1996-05-30 Ube Industries, Ltd. Process for producing methanol
US6649562B2 (en) 1998-11-18 2003-11-18 Honda Giken Kogyo Kabushiki Kaisha Methanol-decomposing catalyst and methanol-decomposing apparatus comprising same
JP2010254666A (en) * 2009-03-30 2010-11-11 Tokyo Electric Power Co Inc:The Method of methanol synthesis using microwave
CN105664954A (en) * 2016-03-18 2016-06-15 昆明理工大学 Method for promoting forming of aurichalcite phase in precursor of copper-based catalyst with calcium salt as additive
JP2021146258A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Carbon dioxide reduction catalyst
CN113492010A (en) * 2020-03-18 2021-10-12 本田技研工业株式会社 Carbon dioxide reduction catalyst
CN112517012A (en) * 2020-12-01 2021-03-19 大连理工大学 CO (carbon monoxide)2Preparation method and application of catalyst for preparing methanol by hydrogenation
CN112517012B (en) * 2020-12-01 2022-01-04 大连理工大学 CO (carbon monoxide)2Preparation method and application of catalyst for preparing methanol by hydrogenation
CN114950419A (en) * 2022-04-20 2022-08-30 江南大学 Metal catalyst for preparing methanol by carbon dioxide hydrogenation and application thereof
CN114950419B (en) * 2022-04-20 2023-10-03 江南大学 Metal catalyst for preparing methanol by carbon dioxide hydrogenation and application thereof

Also Published As

Publication number Publication date
JPH0635401B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
WO2010011101A2 (en) Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
KR101068995B1 (en) Preparation method of methanol through synthesis gas derived from the combined reforming of methane gas with mixture of steam and carbon dioxide
EP1399256B1 (en) A process for the activation of a catalyst comprising a cobalt compound and a support
AU767267B2 (en) Nickel-rhodium based catalysts and process for preparing synthesis gas
JP4414951B2 (en) Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
KR100812099B1 (en) Method of preparing catalyst for making dimethylether from syngas with carbon dioxide
AU2008220544A1 (en) Promoted carbide-based Fischer-Tropsch catalyst, method for its preparation and uses thereof
WO1999017875A1 (en) Catalyst for producing hydrogen or synthesis gas and method of producing hydrogen or synthesis gas
KR101421187B1 (en) Preparation method for dimethyl carbonate by using greenhouse gases
CA2392106A1 (en) Cobalt-based catalysts and process for producing synthesis gas
JPH04122444A (en) Production of methanol from carbon dioxide
Larimi et al. Partial oxidation of methane over Ni/CeZrO2 mixed oxide solid solution catalysts
JPH11106770A (en) Method and apparatus for power generation with dimethyl ether modification gas
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
KR100904058B1 (en) Catalyst for direct synthesis of dimethyl ether from syngas and preparation method thereof
KR102186058B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
JP3525184B2 (en) Catalyst for producing hydrogen and method for producing hydrogen
JPH0736893B2 (en) Catalyst for catalytic reduction of carbon dioxide and method for producing methanol using the same
KR101525943B1 (en) Heterogeneous Cupper based catalysts for coproducing dimethyl ether and acetic acid from methanol
JPH10194703A (en) Catalyst for producing synthesis gas and production of synthesis gas
CN113316567A (en) Process for preparing compounds of formula RSH by hydrosulfurization
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
KR102186052B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
KR101440193B1 (en) Catalyst for the mixed reforming of natural gas, preparation method thereof and method for mixed reforming of natural gas using the catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term