JPH0412217Y2 - - Google Patents

Info

Publication number
JPH0412217Y2
JPH0412217Y2 JP9896587U JP9896587U JPH0412217Y2 JP H0412217 Y2 JPH0412217 Y2 JP H0412217Y2 JP 9896587 U JP9896587 U JP 9896587U JP 9896587 U JP9896587 U JP 9896587U JP H0412217 Y2 JPH0412217 Y2 JP H0412217Y2
Authority
JP
Japan
Prior art keywords
damper
viscous
viscous damper
center
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9896587U
Other languages
Japanese (ja)
Other versions
JPS644769U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9896587U priority Critical patent/JPH0412217Y2/ja
Publication of JPS644769U publication Critical patent/JPS644769U/ja
Application granted granted Critical
Publication of JPH0412217Y2 publication Critical patent/JPH0412217Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は鉄骨高層建物の地震時の揺れを少なく
する大容量制震ダンパー装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a large-capacity seismic damper device that reduces the shaking of high-rise steel buildings during earthquakes.

〔従来の技術〕[Conventional technology]

従来、粘性体の粘性抵抗を利用して地震時建物
の震動を低減させる制震ダンパーが開発されてい
る。
Conventionally, vibration control dampers have been developed that utilize the viscous resistance of viscous bodies to reduce the vibrations of buildings during earthquakes.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら前記従来の制震ダンパーの制震効
果は小さく、試算によれば30階を超す大形ビルで
は一構面一層分として50個も設置しないと効果が
ないことが判明している。
However, the vibration control effect of the conventional seismic dampers is small, and according to a trial calculation, it has been found that in a large building with more than 30 floors, it will not be effective unless 50 dampers are installed on each floor.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は上記従来の状況に鑑み、制震ダンパー
の大容量化をはかり、高層大形建物にも少数の設
置で制震効果をあげることのできる制震ダンパー
を提供することを目的とし、上記目的を達成する
ため本考案は、中心に挿通したピンを支点として
相対回転変位可能な2枚のデイスク間に粘性材を
介在した粘性ダンパーを建物の上階と下階の両梁
間に梁方向垂直に配置し、該粘性ダンパーの一側
のデイスクの垂直直径線上、中心より上方至近の
一点を上階の梁に固着した高剛性支持部材に枢着
し、粘性ダンパーの他側のデイスクの垂直直径線
上、中心より下方至近の一点を下階の梁に固着し
た高剛性支持部材に枢着すると共に、該粘性ダン
パーの垂直直径線上の上下各端縁を前記上階およ
び下階の梁に夫々固着したふれ止め部材に夫々受
承せしめたことを特徴としている。
In view of the above-mentioned conventional situation, the purpose of this invention is to increase the capacity of a seismic damper, and to provide a seismic damper that can increase the seismic control effect even in large, high-rise buildings with a small number of installations. In order to achieve this purpose, the present invention uses a viscous damper with a viscous material interposed between two disks that can be rotated relative to each other using a pin inserted in the center as a fulcrum. A point on the vertical diameter line of the disk on one side of the viscous damper, near the top of the center, is pivoted to a high-rigidity support member fixed to a beam on the upper floor, and the vertical diameter of the disk on the other side of the viscous damper is One point on the line, closest below the center, is pivoted to a high-rigidity support member fixed to the beam on the lower floor, and the upper and lower edges of the viscous damper on the vertical diameter line are fixed to the beams on the upper and lower floors, respectively. It is characterized by being received by each of the anti-slip members.

〔作用〕[Effect]

地震が発生し、建物の上階と下階の梁に相対水
平変位が生じると、この水平変位は上階および下
階の梁に固着した各高剛性支持部材を介して粘性
ダンパーの両側のデイスクにピンを支点とする相
対回転変位を与える。しかして両高剛性支持部材
のデイスク上の着力点は、両デイスク中心のピン
から上下各半径方向至近の対称位置にあるから、
上下階の梁間の水平方向相対変位量が僅かであつ
てもデイスクの周縁に近ずくにつれこの相対変位
量は著しく拡大され、この変位は両デイスク間に
介在される粘性材の粘性によつて抵抗され極めて
大きな制震力が働らいて建物の震動を低減する。
When an earthquake occurs and a relative horizontal displacement occurs in the beams on the upper and lower floors of the building, this horizontal displacement is transferred to the disks on both sides of the viscous damper through the high-rigidity support members fixed to the beams on the upper and lower floors. Give a relative rotational displacement about the pin as a fulcrum. Therefore, the points of force applied on the disks of both high-rigidity supporting members are located at symmetrical positions close to the pin at the center of both disks in the upper and lower radial directions.
Even if the relative displacement in the horizontal direction between the beams on the upper and lower floors is small, this relative displacement increases significantly as you approach the periphery of the disk, and this displacement is resisted by the viscosity of the viscous material interposed between the two disks. This creates an extremely large damping force and reduces the vibrations of the building.

〔実施例〕〔Example〕

以下本考案を図示の一実施例に基いて詳細に説
明する。
The present invention will be explained in detail below based on an illustrated embodiment.

第1図は本考案装置の側面図、第2図は第1図
の−線断面図である。
FIG. 1 is a side view of the device of the present invention, and FIG. 2 is a sectional view taken along the line -- in FIG.

図において1は粘性ダンパーで、2枚の鋼板デ
イスク1a,1a′が中心に挿通したピン2を軸と
して相対回転変位可能に連結され、両デイスク1
a,1a′間にアスフアルトコンパウンド等の粘性
材3が介在されて成り、その直径は建物の上階の
梁4と下階の梁5との内法間隔Lに納まる最大限
の大きさにされている。即ち、従来の粘性ダンパ
ーが最大のものでも直径30cm程度であるからその
数倍以上の直径となる。この粘性ダンパー1は建
物の上階と梁4と下階の梁5との間に梁方向垂直
に配置され、一側のデイスク1aの垂直直径線
上、中心より上方至近の一点が上階の梁4に固着
した高剛性支持部材6にボルト7で枢着され、他
側のデイスク1a′の垂直直径線上、中心より下方
至近の一点が下階の梁5に固着した高剛性支持部
材6′にボルト7′で枢着されている。高剛性支持
部材6,6′は頑丈なアングル材等で製造され、
従来のバーブレース等の支持部材に比べて格段の
剛性が付与されている。
In the figure, reference numeral 1 denotes a viscous damper, in which two steel plate disks 1a and 1a' are connected so as to be relatively rotatable about a pin 2 inserted through the center.
A viscous material 3 such as asphalt compound is interposed between a and 1a', and its diameter is set to the maximum size that fits within the internal distance L between the beam 4 on the upper floor and the beam 5 on the lower floor of the building. ing. That is, since the largest conventional viscous damper has a diameter of about 30 cm, the diameter is several times larger than that. This viscous damper 1 is arranged perpendicularly to the beam direction between the beam 4 on the upper floor of the building and the beam 5 on the lower floor. A point on the vertical diameter line of the disk 1a' on the other side, near the bottom of the center, is connected to the high rigidity support member 6' fixed to the beam 5 on the lower floor. It is pivotally connected with bolt 7'. The high-rigidity support members 6, 6' are made of sturdy angle material, etc.
It has much greater rigidity than conventional support members such as bar braces.

また粘性ダンパー1の垂直直径線上の上下両端
縁は、上階および下階の梁4,5に夫々固着した
断面コ字状のふれ止め部材8,8′に僅少の間隙
を存して受承され、デイスク1a,1a′の面に垂
直方向のふれを防止している。なお図中の9,1
0は梁4,5の補強リブである。
In addition, both upper and lower edges of the viscous damper 1 on the vertical diameter line are received with a small gap by the resting members 8 and 8' having a U-shaped cross section and fixed to the beams 4 and 5 of the upper and lower floors, respectively. This prevents the surfaces of the disks 1a and 1a' from wobbling in the vertical direction. Note that 9 and 1 in the figure
0 is the reinforcing rib of the beams 4 and 5.

以上のように構成された本考案装置において、
地震が発生し、建物の上階と下階の梁4,5に相
対水平変位δが生じると、この水平変位δは上階
および下階の梁4,5に固着された各高剛性支持
部材6,6′を介して粘性ダンパー1の両側のデ
イスク1a,1a′にピン2を支点とする相対回転
変位δを与える。ここで、両高剛性支持部材6,
6′のデイスク1a,1a′上の着力点、即ちボル
ト7,7′の位置を両デイスク1a,1a′の中心
から半径Δrの点とすれば、半径rのデイスク1
a,1a′の周縁における相対回転変位δ′は、δ′=
δ×r/Δrであり、Δrはデイスク1a,1a′の
中心から至近の小距離であるからδ′は極めて大き
な値となる。従つて上下階の梁4,5間の相対水
平変位量が僅かであつてもデイスク1a,1a′の
周縁に近ずくにつれ両デイスク1a,1a′間の相
対回転変位量は著しく拡大され、この変位は両デ
イスク1a,1a′間に介在される粘性材の粘性に
よつて抵抗され、極めて大きな制震力が働らき、
高層大形建物の地震時の地震力を低減することが
できる。
In the device of the present invention configured as described above,
When an earthquake occurs and a relative horizontal displacement δ occurs in the beams 4 and 5 on the upper and lower floors of a building, this horizontal displacement δ is caused by each high-rigidity support member fixed to the beams 4 and 5 on the upper and lower floors. A relative rotational displacement δ about the pin 2 as a fulcrum is applied to the disks 1a, 1a' on both sides of the viscous damper 1 via the pins 6, 6'. Here, both high rigidity support members 6,
If the force application point on the disks 1a, 1a' of 6', that is, the position of the bolts 7, 7', is a point with a radius Δr from the center of both disks 1a, 1a', then the disk 1 with radius r
The relative rotational displacement δ′ at the periphery of a and 1a′ is δ′=
δ×r/Δr, and since Δr is a short distance from the center of the disks 1a, 1a', δ' has an extremely large value. Therefore, even if the relative horizontal displacement between the beams 4 and 5 on the upper and lower floors is small, the relative rotational displacement between the two disks 1a and 1a' increases significantly as you approach the periphery of the disks 1a and 1a'. The displacement is resisted by the viscosity of the viscous material interposed between both disks 1a and 1a', and an extremely large damping force is exerted.
It is possible to reduce the seismic force of large, high-rise buildings during earthquakes.

なお、両デイスク1a,1a′とふれ止め部材
8,8との間隙に第3図に示すごとく粘性材3を
介在させることによつて、さらに制震効果を高め
ることができる。
The damping effect can be further enhanced by interposing a viscous material 3 between the discs 1a, 1a' and the resting members 8, 8 as shown in FIG.

第4図および第5図は、従来の粘性ダンパーの
50倍の制震力を有する本考案の制震ダンパー装置
を実際の高層大形建物に取付けたと仮定した場合
とダンパーなしの場合との地震応答の試算例を比
較して示したグラフで、第4図は最大応答加速
度、第5図は最大応答剪断力を示している。両グ
ラフに見られるように本考案の制震ダンパー装置
を取付けた場合、ダンパーなしの場合に比べて最
大応答加速度、最大応答剪断力共略1/2に低減さ
れることがわかる。
Figures 4 and 5 show the conventional viscous damper.
This is a graph that compares an example of the estimated seismic response when the seismic control damper device of the present invention, which has 50 times the seismic control force, is installed in an actual large, high-rise building and when there is no damper. Figure 4 shows the maximum response acceleration, and Figure 5 shows the maximum response shear force. As seen in both graphs, when the vibration control damper device of the present invention is installed, both the maximum response acceleration and the maximum response shear force are reduced to approximately 1/2 compared to the case without a damper.

なおこの制震力は強風による建物の動揺に対し
ても有効である。
This seismic control power is also effective against the shaking of buildings caused by strong winds.

〔考案の効果〕[Effect of idea]

以上説明したように本考案は、中心に挿通した
ピンを支点として相対回転変位可能な2枚のデイ
スク間に粘性材を介在した粘性ダンパーを建物の
上階と下階の両梁間に梁方向垂直に配置し、該粘
性ダンパーの一側のデイスクの垂直直径線上、中
心より上方至近の一点を上階の梁に固着した高剛
性支持部材に枢着し、粘性ダンパーの他側のデイ
スクの垂直直径線上、中心より下方至近の一点を
下階の梁に固着した高剛性支持部材に枢着すると
共に、該粘性ダンパーの垂直直径線上の上下両端
縁を前記上階および下階の梁に夫々固着したふれ
止め部材に受承せしめ、地震によつて生じる上下
階の梁間の水平方向相対変位を相対回転変位に変
えて拡大し、これを粘性材の粘性で抵抗せしめた
から極めて大きな制震力が得られ、さらにデイス
クを従来のデイスク直径の数倍以上の建物の上階
の梁と下階の梁との内法間隔に納まる最大限の直
径のものとすることにより高層大形建物に適用で
きる大容量制震ダンパーが可能となる。
As explained above, the present invention uses a viscous damper with a viscous material interposed between two disks that can be rotated relative to each other using a pin inserted in the center as a fulcrum. A point on the vertical diameter line of the disk on one side of the viscous damper, near the top of the center, is pivoted to a high-rigidity support member fixed to a beam on the upper floor, and the vertical diameter of the disk on the other side of the viscous damper is One point on the line, closest to the bottom of the center, is pivoted to a high-rigidity support member fixed to a beam on the lower floor, and both upper and lower edges of the viscous damper on the vertical diameter line are fixed to the beams on the upper and lower floors, respectively. It is received by the bulge member, and the horizontal relative displacement between the beams on the upper and lower floors caused by an earthquake is converted into relative rotational displacement and expanded, and this is resisted by the viscosity of the viscous material, resulting in an extremely large damping force. In addition, by making the disk the maximum diameter that fits within the internal spacing between the upper and lower floor beams of a building, which is several times the diameter of a conventional disk, it has a large capacity that can be applied to large, high-rise buildings. Vibration control damper becomes possible.

なお粘性ダンパーとふれ止め部材との間隙に粘
性材を介在させることによつて、さらに制震効果
を高めることができる。
Note that the damping effect can be further enhanced by interposing a viscous material in the gap between the viscous damper and the resting member.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の一実施例を示し、第1図は側面
図、第2図は第1図の−線断面図、第3図は
粘性ダンパーとふれ止め部材との間隙に粘性材を
介在させた実施例を示す要部断面図、第4図およ
び第5図は本考案装置を実際の高層大形建物に取
り付けたと仮定した場合と、ダンパーなしの場合
との地震応答の試算例を比較して示したグラフで
第4図は最大応答加速度、第5図は最大応答剪断
力を示す。 1……粘性ダンパー、2……ピン、3……粘性
材、4……上階の梁、5……下階の梁、6,6′
……高剛性支持部材、8,8′……ふれ止め部材。
The drawings show an embodiment of the present invention, in which Fig. 1 is a side view, Fig. 2 is a cross-sectional view taken along the line - - in Fig. 1, and Fig. 3 shows an example in which a viscous material is interposed in the gap between a viscous damper and a resting member. Figures 4 and 5, which are cross-sectional views of main parts showing an example, compare trial calculations of seismic response between the case where the device of the present invention is installed in an actual large, high-rise building and the case without a damper. In the graphs shown, Fig. 4 shows the maximum response acceleration, and Fig. 5 shows the maximum response shear force. 1... Viscous damper, 2... Pin, 3... Viscous material, 4... Beam on the upper floor, 5... Beam on the lower floor, 6, 6'
... Highly rigid support member, 8, 8'... Anti-slip member.

Claims (1)

【実用新案登録請求の範囲】 (1) 中心に挿通したピンを支点として相対回転変
位可能な2枚のデイスク間に粘性材を介在した
粘性ダンパーを建物の上階と下階の両梁間に梁
方向垂直に配置し、該粘性ダンパーの一側のデ
イスクの垂直直径線上、中心より上方至近の一
点を上階の梁に固着した高剛性支持部材に枢着
し、粘性ダンパーの他側のデイスクの垂直直径
線上、中心より下方至近の一点を下階の梁に固
着した高剛性支持部材に枢着すると共に、該粘
性ダンパーの垂直直径線上の上下各端縁を前記
上階および下階の梁に夫々固着したふれ止め部
材に夫々受承せしめたことを特徴とする大容量
制震ダンパー装置。 (2) 前記粘性ダンパーの垂直直径線上の上下各端
縁は前記ふれ止め部材に粘性材を介して受承せ
しめたことを特徴とする実用新案登録請求の範
囲第1項記載の大容量制震ダンパー装置。
[Claims for Utility Model Registration] (1) A viscous damper with a viscous material interposed between two disks that can be rotated relative to each other using a pin inserted through the center as a fulcrum is installed between the beams on the upper and lower floors of a building. A point on the vertical diameter line of the disk on one side of the viscous damper, close to the top of the center, is pivoted to a high-rigidity support member fixed to a beam on the upper floor, and the disk on the other side of the viscous damper is One point on the vertical diameter line, closest to the bottom of the center, is pivotally connected to a highly rigid support member fixed to the beam on the lower floor, and the upper and lower edges of the viscous damper on the vertical diameter line are attached to the beams on the upper and lower floors. A large-capacity seismic damper device characterized in that each is received by a fixed anti-slip member. (2) The large-capacity damping device according to claim 1, wherein the upper and lower edges of the viscous damper on the vertical diameter line are received by the resting member through a viscous material. damper device.
JP9896587U 1987-06-27 1987-06-27 Expired JPH0412217Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9896587U JPH0412217Y2 (en) 1987-06-27 1987-06-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9896587U JPH0412217Y2 (en) 1987-06-27 1987-06-27

Publications (2)

Publication Number Publication Date
JPS644769U JPS644769U (en) 1989-01-12
JPH0412217Y2 true JPH0412217Y2 (en) 1992-03-25

Family

ID=31325692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9896587U Expired JPH0412217Y2 (en) 1987-06-27 1987-06-27

Country Status (1)

Country Link
JP (1) JPH0412217Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107247B2 (en) * 2004-01-30 2008-06-25 東海ゴム工業株式会社 Rotational displacement amplification type vibration control structure of building
JP4504787B2 (en) * 2004-11-05 2010-07-14 ミサワホーム株式会社 Vibration control device

Also Published As

Publication number Publication date
JPS644769U (en) 1989-01-12

Similar Documents

Publication Publication Date Title
JP2001521079A (en) Method and apparatus for controlling structural displacement, acceleration and seismic force
WO1996029477A1 (en) Foundation
JPH0412217Y2 (en)
JPH11343675A (en) Damping device and damping structure
US5537790A (en) Seismic bridge
KR102124584B1 (en) Vibration reducing device for structure
JPH09296625A (en) Building structure having earthquake-resistant construction
JP4439694B2 (en) High-damping frame of high-rise building
JPH10231639A (en) Vibration-damping structure
JPH0412218Y2 (en)
JP3260473B2 (en) Mega structure brace frame damping structure incorporating damper unit
JP3718114B2 (en) Seismic isolation structure
JP2516575B2 (en) Frame built-in vibration control device
JP3336481B2 (en) Installation method of seismic isolation device
JP2021534361A (en) Seismic isolation bearing
JP2511319B2 (en) Steel rod damper device for seismic isolation and vibration control
JP3180903B2 (en) Wind sway prevention device for seismic isolation structure and seismic isolation structure for light weight structure equipped with this device
JP3020089B2 (en) Damping structure beam
JP3390982B2 (en) Rubber bearing body movement restriction device
JP3608134B2 (en) Seismic isolation mechanism
JP3957255B2 (en) Vibration control rack
JP2001090378A (en) Seismic control frame
JP2002061417A (en) Vibration control damper and its structure
JPH10220066A (en) Base isolation structure for building
JPH03140573A (en) Elasto-plastic damper