JPH04122079A - Semiconductor ceramic thermoelectric element material - Google Patents
Semiconductor ceramic thermoelectric element materialInfo
- Publication number
- JPH04122079A JPH04122079A JP2244285A JP24428590A JPH04122079A JP H04122079 A JPH04122079 A JP H04122079A JP 2244285 A JP2244285 A JP 2244285A JP 24428590 A JP24428590 A JP 24428590A JP H04122079 A JPH04122079 A JP H04122079A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt oxide
- thermoelectric element
- seebeck coefficient
- semiconductor ceramic
- make
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 239000000919 ceramic Substances 0.000 title claims description 11
- 239000000463 material Substances 0.000 title claims description 11
- 229910000428 cobalt oxide Inorganic materials 0.000 claims abstract description 10
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims abstract description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 abstract description 4
- 239000011230 binding agent Substances 0.000 abstract description 3
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 3
- 239000000843 powder Substances 0.000 abstract description 3
- 239000002002 slurry Substances 0.000 abstract description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000889 atomisation Methods 0.000 abstract description 2
- LBFUKZWYPLNNJC-UHFFFAOYSA-N cobalt(ii,iii) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 abstract description 2
- 239000002270 dispersing agent Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 229910052709 silver Inorganic materials 0.000 abstract description 2
- 239000004332 silver Substances 0.000 abstract description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 abstract description 2
- 235000017550 sodium carbonate Nutrition 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 abstract 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910005331 FeSi2 Inorganic materials 0.000 description 1
- 229910005900 GeTe Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
(a)産業上の利用分野
この発明は、p型半導体セラミックとn型半導体セラミ
ックとを接合して構成される半導体セラミック熱電素子
の材料に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a material for a semiconductor ceramic thermoelectric element constructed by bonding a p-type semiconductor ceramic and an n-type semiconductor ceramic.
(bl従来の技術
従来の一般的な熱電素子はベルチェ効果を利用した電子
冷却素子や、ゼーベック効果を利用した発電素子として
用いられている。(bl Prior Art) Conventional general thermoelectric elements are used as electronic cooling elements that utilize the Beltier effect and power generation elements that utilize the Seebeck effect.
また、熱電素子の材料としては、BizTe。Moreover, BizTe is used as a material for the thermoelectric element.
、Sbz Te、 、PbTe、GeTeなどの金属化
合物やFeSi2が用いられている。, Sbz Te, , PbTe, GeTe, and other metal compounds and FeSi2 are used.
(C)発明が解決しようとする課題
従来の熱電素子材料のうちB 1 z Te3 、S
bz Tes 、PbTe5GeTeなどの金属化合物
は希少元素を用いており、またプロセスも複雑でコスト
高となる。さらに酸化や分解を起こすため高温下で使用
できないという欠点がある。一方Fe5iz系の材料は
高温下での発電用途として期待されているが、加工性が
低いという欠点があるところで、一般に熱電素子の性能
指数をZとすればZは次の式で示される。(C) Problems to be solved by the invention Among conventional thermoelectric element materials, B 1 z Te3, S
Metal compounds such as bz Tes and PbTe5GeTe use rare elements, and the process is complicated and costly. Another disadvantage is that it cannot be used at high temperatures due to oxidation and decomposition. On the other hand, Fe5iz-based materials are expected to be used for power generation at high temperatures, but they have the drawback of low workability.Generally, if Z is the figure of merit of a thermoelectric element, Z is expressed by the following formula.
2=α2/にρ
ここでαはゼーベック係数、Kは熱伝導率、ρは比抵抗
である。2=α2/ρ where α is the Seebeck coefficient, K is the thermal conductivity, and ρ is the specific resistance.
従来より用いられている上記熱電素子材料においては比
抵抗ρが小さく性能指数Zが大きい特徴を備えている。The above-mentioned thermoelectric element materials conventionally used are characterized by a small resistivity ρ and a large figure of merit Z.
このため、熱電素子の一般的な用途である発電には適し
ている。しかしながら、温度、熱流、赤外線などを検出
するセンサ用途としては電力変換効率よりも、いかに大
きなゼーベッり係数を有するかが重要である。Therefore, it is suitable for power generation, which is a common use of thermoelectric elements. However, for sensor applications that detect temperature, heat flow, infrared rays, etc., it is more important to have a large Seebe coefficient than power conversion efficiency.
この発明の目的は、安価で高いゼーベック係数を有し、
高温下でも使用できる半導体セラミソピ熱電素子材料、
特にp型熱電素子材料を提供す4ことにある。The purpose of this invention is to have a high Seebeck coefficient at low cost,
Semiconductor ceramic thermoelectric element material that can be used even at high temperatures.
In particular, the present invention provides a p-type thermoelectric element material.
(d)課題を解決するだめの手段
この発明の半導体セラミック熱電素子材料は、酸化コバ
ルトに対し、LiまたはNaを0.01〜30原子%含
有させて原子化制御を行ったこ2を特徴としている。(d) Means for Solving the Problems The semiconductor ceramic thermoelectric element material of the present invention is characterized by controlling the atomization of cobalt oxide by containing 0.01 to 30 atomic percent of Li or Na. .
(81作用
発明者らは高温下でも使用可能な種々の半導伺材料の実
験を行い、酸化物中でも特に酸化コハリ【ト系に注目し
、添加物の検討を行った結果、LiまたはNaを0.O
1〜301〜30原子せることにより、従来の熱電素子
材料よりも大きなゼーベック係数を有する半導体セラミ
ック材料が得られることを見出した。(81 Effect) The inventors conducted experiments on various semiconducting materials that can be used even at high temperatures, and focused on oxides, especially amorphous oxides, and investigated additives. 0.O
It has been found that by adding 1 to 301 to 30 atoms, a semiconductor ceramic material having a larger Seebeck coefficient than conventional thermoelectric element materials can be obtained.
酸化コバルトは高い比抵抗を持つセラミックであるが、
この酸化コバルトにLiまたはNaを源加すると、常温
における比抵抗を3〜10’Ωcmと低くして半導体化
させることができ、いわゆる酸化コバルト系半導体セラ
ミックとして知られている。Cobalt oxide is a ceramic with high resistivity,
When Li or Na is added to this cobalt oxide, the specific resistance at room temperature can be reduced to 3 to 10' Ωcm, making it a semiconductor, and it is known as a so-called cobalt oxide semiconductor ceramic.
酸化コバルト・系半導体セラミックの特性はその組成物
にほとんど依存しているが、その半導体化機構は、半導
体化剤の添加量に影響され、例えば酸化コバルトにCO
とイオン半径が近く、Coよりも原子価の小さな元素を
加えたとき半導体化するのであり、このときの電気伝導
度の発生:まL iを例にすれば次式で表されると考え
られる。The properties of cobalt oxide-based semiconductor ceramics mostly depend on their composition, but the semiconducting mechanism is influenced by the amount of semiconducting agent added. For example, if CO is added to cobalt oxide,
When an element with an ionic radius close to Co and with a lower valence than Co is added, it becomes a semiconductor, and the occurrence of electrical conductivity at this time: Using Li as an example, it is thought to be expressed by the following equation. .
Co”O”−+ x L 1
−Co、−X” (Co”・h H) XL iX″O
2すなわち、添加したLiがCoの格子点に入り、原子
価が一つ減る。このとき一部のCoが空孔を形成して電
気的中性を保つが、正孔は準安定状態にあるため、外部
から加えられた電界により容易に移動して電気伝導に寄
与する。こうしてp型の原子価制御型半導体セラミ、り
が得られる。Co"O"-+ x L 1 -Co, -X"(Co"・h H) XL iX"O
2 That is, the added Li enters the lattice point of Co, and the valence decreases by one. At this time, some Co forms holes and maintains electrical neutrality, but since the holes are in a metastable state, they are easily moved by an externally applied electric field and contribute to electrical conduction. In this way, a p-type valence-controlled semiconductor ceramic is obtained.
LiまたはNaの含有量を0.O11原子以上としたの
は、0,01原子%未満では比抵抗が大きくなりすぎる
こと、また30原子%以下としたのは、これを超えると
Coの格子点に置換固溶するLi濃度が過剰となり、比
抵抗が増加し、更にゼーベック係数が小さくなることが
明らかとなったからである。The content of Li or Na is 0. The reason for setting O11 atoms or more is that if it is less than 0.01 atom%, the specific resistance becomes too large, and the reason for setting it to be 30 atom% or less is because if it exceeds this, the concentration of Li substituted as a solid solution at the lattice points of Co will be excessive. This is because it has become clear that the specific resistance increases and the Seebeck coefficient further decreases.
(f)実施例
■先ず酸化コバルト粉末と1i2Co、および/または
Na2CO3の粉末を秤量し、混合し、1000°Cで
2時間仮焼した。(f) Example ■ First, cobalt oxide powder and 1i2Co and/or Na2CO3 powder were weighed, mixed, and calcined at 1000°C for 2 hours.
■これを粉砕し、粉末に有機バインダ、水、分散剤を加
えて混練し、スラリーを作成した。(2) This was pulverized, and an organic binder, water, and a dispersant were added to the powder and kneaded to create a slurry.
■スラリーをドクターブレード法にてグリーンシートと
して形成し、13Xi3X0.25mmのサイズにカッ
トした。(2) The slurry was formed into a green sheet using a doctor blade method and cut into a size of 13Xi3X0.25 mm.
■これを空気中で1250〜1450℃で焼成すること
によってバインダ成分を燃焼させるとともに半導体化を
行った。(2) This was fired in air at 1250 to 1450°C to burn off the binder component and convert it into a semiconductor.
■焼成後、ダイヤモンドカッタで10X2X0.20m
mのサイズにカットし、さらに図に示すように両端に銀
電極Eを設けた。■After firing, use a diamond cutter to 10X2X0.20m
It was cut into a size of m, and silver electrodes E were provided at both ends as shown in the figure.
このような試料を添加剤とその添加量の条件を変えて複
数種作成し、比抵抗と平均ゼーベック係数を測定した。Multiple types of such samples were prepared by changing the conditions of additives and amounts added, and the specific resistance and average Seebeck coefficient were measured.
ここで比抵抗は試料の画電極間の抵抗値を測定し計算に
より求め、また平均ゼーベック係数は試料の両端に5℃
の温度差を与えてゼーベック係数を測定し、温度を0〜
5℃から400〜405℃まで変化させて平均を求めた
。Here, the specific resistance is calculated by measuring the resistance value between the picture electrodes of the sample, and the average Seebeck coefficient is 5°C at both ends of the sample.
Measure the Seebeck coefficient by giving a temperature difference of 0 to
The temperature was varied from 5°C to 400-405°C and the average was determined.
その結果を表に示す。The results are shown in the table.
表
なお、表において*印と**印を付したものは比較例で
あり、それ以外はこの発明の範囲内のものである。In the table, those marked with * and ** are comparative examples, and the others are within the scope of this invention.
表から明らかなように、酸化コバルトにLiまたはNa
を0.01〜30原子%添加したことにより、約400
〜700μV/”Cと高い平均ゼーベック係数を得るこ
とができた。同表において試料番号1に示すように添加
′#Liの添加蓋が0゜01原子%未満である0、00
5原子%のとき比抵抗は10bと高い値を示した。また
、試料番号9に示すようにNaの添加量が30原子%を
超える40原子%であれば比抵抗は105と高い値を示
した。As is clear from the table, Li or Na is added to cobalt oxide.
By adding 0.01 to 30 at% of
We were able to obtain a high average Seebeck coefficient of ~700 μV/''C.
At 5 at%, the specific resistance showed a high value of 10b. Further, as shown in sample number 9, when the amount of Na added was 40 at%, which exceeded 30 at%, the specific resistance showed a high value of 105.
(g)発明の効果
以上のようにこの発明によればゼーベック係数が大きく
、高温下でも使用可能な半導体セラミック材料を得るこ
とができるため、たとえば熱流センサや自動車排気温検
知センサ等、高温雰囲気中でも使用できる高感度な温度
センサを容易に構成することができる。(g) Effects of the Invention As described above, according to the present invention, it is possible to obtain a semiconductor ceramic material that has a large Seebeck coefficient and can be used even under high temperatures. A usable highly sensitive temperature sensor can be easily constructed.
図はこの発明の実施例に係る試料の寸法を表す図である
。The figure is a diagram showing the dimensions of a sample according to an example of the present invention.
Claims (1)
30原子%含有させて原子価制御を行った半導体セラミ
ック熱電素子材料。(1) Li or Na is added from 0.01 to cobalt oxide
Semiconductor ceramic thermoelectric element material containing 30 atom% and controlling valence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2244285A JPH04122079A (en) | 1990-09-13 | 1990-09-13 | Semiconductor ceramic thermoelectric element material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2244285A JPH04122079A (en) | 1990-09-13 | 1990-09-13 | Semiconductor ceramic thermoelectric element material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04122079A true JPH04122079A (en) | 1992-04-22 |
Family
ID=17116471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2244285A Pending JPH04122079A (en) | 1990-09-13 | 1990-09-13 | Semiconductor ceramic thermoelectric element material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04122079A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013157362A (en) * | 2012-01-26 | 2013-08-15 | Toyota Motor Corp | Thermoelectric semiconductor |
-
1990
- 1990-09-13 JP JP2244285A patent/JPH04122079A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013157362A (en) * | 2012-01-26 | 2013-08-15 | Toyota Motor Corp | Thermoelectric semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tsubota et al. | Transport properties and thermoelectric performance of (Zn1–yMgy) 1–xAlxO | |
Li et al. | Synthesis and thermoelectric properties of the new oxide ceramics Ca3− xSrxCo4O9+ δ (x= 0.0–1.0) | |
JP2010037131A (en) | OXIDE SINTERED COMPACT HAVING n-TYPE THERMOELECTRIC CHARACTERISTIC | |
JP4867618B2 (en) | Thermoelectric conversion material | |
WO2006109884A1 (en) | Thermoelectric conversion material, method for production thereof and thermoelectric conversion element | |
Behera et al. | Synthesis, structure and thermoelectric properties of La _ 1-x Na _ x CoO _ 3 La 1-x Na x CoO 3 perovskite oxides | |
Zhou et al. | Influence of Mn-site doped with Ru on the high-temperature thermoelectric performance of CaMnO3− δ | |
Moon et al. | Ca-doped RCoO3 (R= Gd, Sm, Nd, Pr) as thermoelectric materials | |
Paengson et al. | Improvement in thermoelectric properties of CaMnO3 by Bi doping and hot pressing | |
JP2006062951A (en) | Thermoelectric conversion material and its manufacturing method | |
He et al. | High temperature thermoelectric properties of Bi 2− x Na x Sr 2 Co 2 O y ceramics | |
JP3069701B1 (en) | Composite oxide with high Seebeck coefficient and high electrical conductivity | |
JP4876721B2 (en) | Thermoelectric conversion material and method for producing the same | |
JPH04122079A (en) | Semiconductor ceramic thermoelectric element material | |
JPH01231383A (en) | Thermoelement material of ceramic semiconductor | |
JP2009196821A (en) | Perovskite-based oxide, its producing method and thermoelectric element using it | |
Kulawik et al. | Fabrication and characterization of bulk and thick film perovskite NTC thermistors | |
Xu et al. | Utilization of doping and compositing strategy for enhancing the thermoelectric performance of CaMnO3 perovskite | |
JP2808580B2 (en) | Thermoelectric semiconductor materials | |
JP2007149996A (en) | Layered oxide thermoelectric material having delafossite structure | |
JPH0617225B2 (en) | Thermoelectric conversion material | |
JP2007059491A (en) | N-type thermoelectric conversion material and thermoelectric conversion element | |
JP3088039B2 (en) | Thermoelectric semiconductor element | |
JP3051922B1 (en) | Oxide members for thermoelectric conversion elements | |
Zhu et al. | Composition-Dependent Thermoelectric Properties of (PbTe) 100− x (Bi2Te3-Sb2Te3) x (0.1≤ x≤ 5) |