JPH04122079A - Semiconductor ceramic thermoelectric element material - Google Patents

Semiconductor ceramic thermoelectric element material

Info

Publication number
JPH04122079A
JPH04122079A JP2244285A JP24428590A JPH04122079A JP H04122079 A JPH04122079 A JP H04122079A JP 2244285 A JP2244285 A JP 2244285A JP 24428590 A JP24428590 A JP 24428590A JP H04122079 A JPH04122079 A JP H04122079A
Authority
JP
Japan
Prior art keywords
cobalt oxide
thermoelectric element
seebeck coefficient
semiconductor ceramic
make
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2244285A
Other languages
Japanese (ja)
Inventor
Yutaka Shimabara
豊 島原
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2244285A priority Critical patent/JPH04122079A/en
Publication of JPH04122079A publication Critical patent/JPH04122079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To manufacture a thermoelectric element at a low cost which has a high Seebeck coefficient and can be used at high temperature by a method wherein 0.01 to 30 atomic% of Li or Na is included in cobalt oxide to perform atomization control. CONSTITUTION:After a cobalt oxide powder and a powder of Li2CO3 and/or Na2CO3 are weighed, mixed and calcined at 1000 deg.C for 2 hours, these are crushed to add an organic binder, water and a dispersant thereto, and mixed and kneaded to make a slurry. Next, it is formed as a green sheet, cut at a predetermined size and burnt in an air at 1250 to 1450 deg.C to make a semiconductor. Next, it is cut at a size of 10X2X0.20mm and further a silver electrode E is provided at both ends. 0.01 to 30 atomic% of Li or Na is added to the cobalt oxide, whereby it is made to set at about 400 to 700muV/ deg.C to make an average Seebeck coefficient high. Thus, a semiconductor ceramic material can be obtained which has a high Seebeck coefficient and can use even at a high temperature.

Description

【発明の詳細な説明】 (a)産業上の利用分野 この発明は、p型半導体セラミックとn型半導体セラミ
ックとを接合して構成される半導体セラミック熱電素子
の材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a material for a semiconductor ceramic thermoelectric element constructed by bonding a p-type semiconductor ceramic and an n-type semiconductor ceramic.

(bl従来の技術 従来の一般的な熱電素子はベルチェ効果を利用した電子
冷却素子や、ゼーベック効果を利用した発電素子として
用いられている。
(bl Prior Art) Conventional general thermoelectric elements are used as electronic cooling elements that utilize the Beltier effect and power generation elements that utilize the Seebeck effect.

また、熱電素子の材料としては、BizTe。Moreover, BizTe is used as a material for the thermoelectric element.

、Sbz Te、 、PbTe、GeTeなどの金属化
合物やFeSi2が用いられている。
, Sbz Te, , PbTe, GeTe, and other metal compounds and FeSi2 are used.

(C)発明が解決しようとする課題 従来の熱電素子材料のうちB 1 z Te3 、S 
bz Tes 、PbTe5GeTeなどの金属化合物
は希少元素を用いており、またプロセスも複雑でコスト
高となる。さらに酸化や分解を起こすため高温下で使用
できないという欠点がある。一方Fe5iz系の材料は
高温下での発電用途として期待されているが、加工性が
低いという欠点があるところで、一般に熱電素子の性能
指数をZとすればZは次の式で示される。
(C) Problems to be solved by the invention Among conventional thermoelectric element materials, B 1 z Te3, S
Metal compounds such as bz Tes and PbTe5GeTe use rare elements, and the process is complicated and costly. Another disadvantage is that it cannot be used at high temperatures due to oxidation and decomposition. On the other hand, Fe5iz-based materials are expected to be used for power generation at high temperatures, but they have the drawback of low workability.Generally, if Z is the figure of merit of a thermoelectric element, Z is expressed by the following formula.

2=α2/にρ ここでαはゼーベック係数、Kは熱伝導率、ρは比抵抗
である。
2=α2/ρ where α is the Seebeck coefficient, K is the thermal conductivity, and ρ is the specific resistance.

従来より用いられている上記熱電素子材料においては比
抵抗ρが小さく性能指数Zが大きい特徴を備えている。
The above-mentioned thermoelectric element materials conventionally used are characterized by a small resistivity ρ and a large figure of merit Z.

このため、熱電素子の一般的な用途である発電には適し
ている。しかしながら、温度、熱流、赤外線などを検出
するセンサ用途としては電力変換効率よりも、いかに大
きなゼーベッり係数を有するかが重要である。
Therefore, it is suitable for power generation, which is a common use of thermoelectric elements. However, for sensor applications that detect temperature, heat flow, infrared rays, etc., it is more important to have a large Seebe coefficient than power conversion efficiency.

この発明の目的は、安価で高いゼーベック係数を有し、
高温下でも使用できる半導体セラミソピ熱電素子材料、
特にp型熱電素子材料を提供す4ことにある。
The purpose of this invention is to have a high Seebeck coefficient at low cost,
Semiconductor ceramic thermoelectric element material that can be used even at high temperatures.
In particular, the present invention provides a p-type thermoelectric element material.

(d)課題を解決するだめの手段 この発明の半導体セラミック熱電素子材料は、酸化コバ
ルトに対し、LiまたはNaを0.01〜30原子%含
有させて原子化制御を行ったこ2を特徴としている。
(d) Means for Solving the Problems The semiconductor ceramic thermoelectric element material of the present invention is characterized by controlling the atomization of cobalt oxide by containing 0.01 to 30 atomic percent of Li or Na. .

(81作用 発明者らは高温下でも使用可能な種々の半導伺材料の実
験を行い、酸化物中でも特に酸化コハリ【ト系に注目し
、添加物の検討を行った結果、LiまたはNaを0.O
1〜301〜30原子せることにより、従来の熱電素子
材料よりも大きなゼーベック係数を有する半導体セラミ
ック材料が得られることを見出した。
(81 Effect) The inventors conducted experiments on various semiconducting materials that can be used even at high temperatures, and focused on oxides, especially amorphous oxides, and investigated additives. 0.O
It has been found that by adding 1 to 301 to 30 atoms, a semiconductor ceramic material having a larger Seebeck coefficient than conventional thermoelectric element materials can be obtained.

酸化コバルトは高い比抵抗を持つセラミックであるが、
この酸化コバルトにLiまたはNaを源加すると、常温
における比抵抗を3〜10’Ωcmと低くして半導体化
させることができ、いわゆる酸化コバルト系半導体セラ
ミックとして知られている。
Cobalt oxide is a ceramic with high resistivity,
When Li or Na is added to this cobalt oxide, the specific resistance at room temperature can be reduced to 3 to 10' Ωcm, making it a semiconductor, and it is known as a so-called cobalt oxide semiconductor ceramic.

酸化コバルト・系半導体セラミックの特性はその組成物
にほとんど依存しているが、その半導体化機構は、半導
体化剤の添加量に影響され、例えば酸化コバルトにCO
とイオン半径が近く、Coよりも原子価の小さな元素を
加えたとき半導体化するのであり、このときの電気伝導
度の発生:まL iを例にすれば次式で表されると考え
られる。
The properties of cobalt oxide-based semiconductor ceramics mostly depend on their composition, but the semiconducting mechanism is influenced by the amount of semiconducting agent added. For example, if CO is added to cobalt oxide,
When an element with an ionic radius close to Co and with a lower valence than Co is added, it becomes a semiconductor, and the occurrence of electrical conductivity at this time: Using Li as an example, it is thought to be expressed by the following equation. .

Co”O”−+ x L 1 −Co、−X” (Co”・h H) XL iX″O
2すなわち、添加したLiがCoの格子点に入り、原子
価が一つ減る。このとき一部のCoが空孔を形成して電
気的中性を保つが、正孔は準安定状態にあるため、外部
から加えられた電界により容易に移動して電気伝導に寄
与する。こうしてp型の原子価制御型半導体セラミ、り
が得られる。
Co"O"-+ x L 1 -Co, -X"(Co"・h H) XL iX"O
2 That is, the added Li enters the lattice point of Co, and the valence decreases by one. At this time, some Co forms holes and maintains electrical neutrality, but since the holes are in a metastable state, they are easily moved by an externally applied electric field and contribute to electrical conduction. In this way, a p-type valence-controlled semiconductor ceramic is obtained.

LiまたはNaの含有量を0.O11原子以上としたの
は、0,01原子%未満では比抵抗が大きくなりすぎる
こと、また30原子%以下としたのは、これを超えると
Coの格子点に置換固溶するLi濃度が過剰となり、比
抵抗が増加し、更にゼーベック係数が小さくなることが
明らかとなったからである。
The content of Li or Na is 0. The reason for setting O11 atoms or more is that if it is less than 0.01 atom%, the specific resistance becomes too large, and the reason for setting it to be 30 atom% or less is because if it exceeds this, the concentration of Li substituted as a solid solution at the lattice points of Co will be excessive. This is because it has become clear that the specific resistance increases and the Seebeck coefficient further decreases.

(f)実施例 ■先ず酸化コバルト粉末と1i2Co、および/または
Na2CO3の粉末を秤量し、混合し、1000°Cで
2時間仮焼した。
(f) Example ■ First, cobalt oxide powder and 1i2Co and/or Na2CO3 powder were weighed, mixed, and calcined at 1000°C for 2 hours.

■これを粉砕し、粉末に有機バインダ、水、分散剤を加
えて混練し、スラリーを作成した。
(2) This was pulverized, and an organic binder, water, and a dispersant were added to the powder and kneaded to create a slurry.

■スラリーをドクターブレード法にてグリーンシートと
して形成し、13Xi3X0.25mmのサイズにカッ
トした。
(2) The slurry was formed into a green sheet using a doctor blade method and cut into a size of 13Xi3X0.25 mm.

■これを空気中で1250〜1450℃で焼成すること
によってバインダ成分を燃焼させるとともに半導体化を
行った。
(2) This was fired in air at 1250 to 1450°C to burn off the binder component and convert it into a semiconductor.

■焼成後、ダイヤモンドカッタで10X2X0.20m
mのサイズにカットし、さらに図に示すように両端に銀
電極Eを設けた。
■After firing, use a diamond cutter to 10X2X0.20m
It was cut into a size of m, and silver electrodes E were provided at both ends as shown in the figure.

このような試料を添加剤とその添加量の条件を変えて複
数種作成し、比抵抗と平均ゼーベック係数を測定した。
Multiple types of such samples were prepared by changing the conditions of additives and amounts added, and the specific resistance and average Seebeck coefficient were measured.

ここで比抵抗は試料の画電極間の抵抗値を測定し計算に
より求め、また平均ゼーベック係数は試料の両端に5℃
の温度差を与えてゼーベック係数を測定し、温度を0〜
5℃から400〜405℃まで変化させて平均を求めた
Here, the specific resistance is calculated by measuring the resistance value between the picture electrodes of the sample, and the average Seebeck coefficient is 5°C at both ends of the sample.
Measure the Seebeck coefficient by giving a temperature difference of 0 to
The temperature was varied from 5°C to 400-405°C and the average was determined.

その結果を表に示す。The results are shown in the table.

表 なお、表において*印と**印を付したものは比較例で
あり、それ以外はこの発明の範囲内のものである。
In the table, those marked with * and ** are comparative examples, and the others are within the scope of this invention.

表から明らかなように、酸化コバルトにLiまたはNa
を0.01〜30原子%添加したことにより、約400
〜700μV/”Cと高い平均ゼーベック係数を得るこ
とができた。同表において試料番号1に示すように添加
′#Liの添加蓋が0゜01原子%未満である0、00
5原子%のとき比抵抗は10bと高い値を示した。また
、試料番号9に示すようにNaの添加量が30原子%を
超える40原子%であれば比抵抗は105と高い値を示
した。
As is clear from the table, Li or Na is added to cobalt oxide.
By adding 0.01 to 30 at% of
We were able to obtain a high average Seebeck coefficient of ~700 μV/''C.
At 5 at%, the specific resistance showed a high value of 10b. Further, as shown in sample number 9, when the amount of Na added was 40 at%, which exceeded 30 at%, the specific resistance showed a high value of 105.

(g)発明の効果 以上のようにこの発明によればゼーベック係数が大きく
、高温下でも使用可能な半導体セラミック材料を得るこ
とができるため、たとえば熱流センサや自動車排気温検
知センサ等、高温雰囲気中でも使用できる高感度な温度
センサを容易に構成することができる。
(g) Effects of the Invention As described above, according to the present invention, it is possible to obtain a semiconductor ceramic material that has a large Seebeck coefficient and can be used even under high temperatures. A usable highly sensitive temperature sensor can be easily constructed.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施例に係る試料の寸法を表す図である
The figure is a diagram showing the dimensions of a sample according to an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化コバルトに対しLiまたはNaを0.01〜
30原子%含有させて原子価制御を行った半導体セラミ
ック熱電素子材料。
(1) Li or Na is added from 0.01 to cobalt oxide
Semiconductor ceramic thermoelectric element material containing 30 atom% and controlling valence.
JP2244285A 1990-09-13 1990-09-13 Semiconductor ceramic thermoelectric element material Pending JPH04122079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2244285A JPH04122079A (en) 1990-09-13 1990-09-13 Semiconductor ceramic thermoelectric element material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2244285A JPH04122079A (en) 1990-09-13 1990-09-13 Semiconductor ceramic thermoelectric element material

Publications (1)

Publication Number Publication Date
JPH04122079A true JPH04122079A (en) 1992-04-22

Family

ID=17116471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2244285A Pending JPH04122079A (en) 1990-09-13 1990-09-13 Semiconductor ceramic thermoelectric element material

Country Status (1)

Country Link
JP (1) JPH04122079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157362A (en) * 2012-01-26 2013-08-15 Toyota Motor Corp Thermoelectric semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157362A (en) * 2012-01-26 2013-08-15 Toyota Motor Corp Thermoelectric semiconductor

Similar Documents

Publication Publication Date Title
Tsubota et al. Transport properties and thermoelectric performance of (Zn1–yMgy) 1–xAlxO
Li et al. Synthesis and thermoelectric properties of the new oxide ceramics Ca3− xSrxCo4O9+ δ (x= 0.0–1.0)
JP2010037131A (en) OXIDE SINTERED COMPACT HAVING n-TYPE THERMOELECTRIC CHARACTERISTIC
JP4867618B2 (en) Thermoelectric conversion material
WO2006109884A1 (en) Thermoelectric conversion material, method for production thereof and thermoelectric conversion element
Behera et al. Synthesis, structure and thermoelectric properties of La _ 1-x Na _ x CoO _ 3 La 1-x Na x CoO 3 perovskite oxides
Zhou et al. Influence of Mn-site doped with Ru on the high-temperature thermoelectric performance of CaMnO3− δ
Moon et al. Ca-doped RCoO3 (R= Gd, Sm, Nd, Pr) as thermoelectric materials
Paengson et al. Improvement in thermoelectric properties of CaMnO3 by Bi doping and hot pressing
JP2006062951A (en) Thermoelectric conversion material and its manufacturing method
He et al. High temperature thermoelectric properties of Bi 2− x Na x Sr 2 Co 2 O y ceramics
JP3069701B1 (en) Composite oxide with high Seebeck coefficient and high electrical conductivity
JP4876721B2 (en) Thermoelectric conversion material and method for producing the same
JPH04122079A (en) Semiconductor ceramic thermoelectric element material
JPH01231383A (en) Thermoelement material of ceramic semiconductor
JP2009196821A (en) Perovskite-based oxide, its producing method and thermoelectric element using it
Kulawik et al. Fabrication and characterization of bulk and thick film perovskite NTC thermistors
Xu et al. Utilization of doping and compositing strategy for enhancing the thermoelectric performance of CaMnO3 perovskite
JP2808580B2 (en) Thermoelectric semiconductor materials
JP2007149996A (en) Layered oxide thermoelectric material having delafossite structure
JPH0617225B2 (en) Thermoelectric conversion material
JP2007059491A (en) N-type thermoelectric conversion material and thermoelectric conversion element
JP3088039B2 (en) Thermoelectric semiconductor element
JP3051922B1 (en) Oxide members for thermoelectric conversion elements
Zhu et al. Composition-Dependent Thermoelectric Properties of (PbTe) 100− x (Bi2Te3-Sb2Te3) x (0.1≤ x≤ 5)