JPH04122046A - Electrostatic attraction device - Google Patents

Electrostatic attraction device

Info

Publication number
JPH04122046A
JPH04122046A JP2241171A JP24117190A JPH04122046A JP H04122046 A JPH04122046 A JP H04122046A JP 2241171 A JP2241171 A JP 2241171A JP 24117190 A JP24117190 A JP 24117190A JP H04122046 A JPH04122046 A JP H04122046A
Authority
JP
Japan
Prior art keywords
substrate
electrode
potential
electrostatic
electrostatic adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2241171A
Other languages
Japanese (ja)
Inventor
Takeshi Ichikawa
武史 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2241171A priority Critical patent/JPH04122046A/en
Publication of JPH04122046A publication Critical patent/JPH04122046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To control potential of a substrate surface while making a large current flow through the substrate and to attract the substrate by static electricity by burying a second electrode which provides potential to the substrate in an insulating material and by bringing it into a surface contact with the substrate. CONSTITUTION:An insulating part 62 is formed to a film thickness of 30mum by alumina flame-spraying on an Mo electrode 61 of a first electrode, and a second electrode 63 of Mo is formed in a groove of a depth of 50mum and a width of 40mum and flattened. The second electrode 63 is led out from a side of an electrostatic attracting device. Thereby, it is possible to set potential of a substrate 64 at a positive side not less than a self-bias of plasma, to realize normal attraction function even while a large current is flowing to the second electrode 63 when a large area substrate is used and to control potential of the substrate freely.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、種々の物体を静電的な吸着によって所定の位
置に保持もしくは固定するための静電吸着装置に関し、
とくにドライエツチング装置、スパッタリング装置、プ
ラズマCVD装置などの真空装置内で、処理すべき基体
を保持するのに適した静電吸着装置に閤するものである
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an electrostatic adsorption device for holding or fixing various objects in a predetermined position by electrostatic adsorption.
In particular, it is attached to an electrostatic chuck device suitable for holding a substrate to be processed in a vacuum device such as a dry etching device, a sputtering device, or a plasma CVD device.

【従来の技術1 従来、物体を保持、固定する装置としては、機械的方法
によるメカニカルチャックや真空チャック、及び静電力
を利用とする静電チャックがある。しかし通常の半導体
製造装置、特にプラズマを用いる製造装置内での基体保
持の場合、メカニカルチャックは 1、基体表面を機械的チャックの一部が覆うために、基
体のその部分には所望の処理を行なうことが不可能であ
る。
[Prior Art 1] Conventionally, as devices for holding and fixing objects, there are mechanical chucks and vacuum chucks using mechanical methods, and electrostatic chucks using electrostatic force. However, when holding a substrate in normal semiconductor manufacturing equipment, especially manufacturing equipment that uses plasma, mechanical chucks: 1. Because a part of the mechanical chuck covers the surface of the substrate, the desired treatment is applied to that part of the substrate. impossible to do.

2、基体表面に機械的チャックの一部が露出するために
、プラズマにさらされ不純物汚染の要因となるうえに、
プラズマの空間分布を不均一なものにしてしまう。
2. Since a part of the mechanical chuck is exposed on the substrate surface, it is exposed to plasma and becomes a cause of impurity contamination.
This makes the spatial distribution of plasma non-uniform.

3、チャッキングの力が基体の一部に不均一にかかるた
め、ストレスを生じる。一方基体を均一にチャックし1
反りを矯正することができない。
3. Stress occurs because the chucking force is applied unevenly to a portion of the base. On the other hand, chuck the substrate uniformly.
It is not possible to correct the warpage.

等の問題点があり、一方真空チャックは、エ、真空装置
内で使用不可能 という大問題がある。これらのチャック装置にたいして
静電チャックは、真空中での使用はもちろんのこと、基
体を均一な力で全面吸着することができ、基体表面全体
を均一なプラズマにさらすことが可能なため、半導体製
造装置の基体保持手段としては非常に有利である。
On the other hand, vacuum chucks have the major problem that they cannot be used in vacuum equipment. In contrast to these chuck devices, electrostatic chucks can not only be used in a vacuum, but also can grip the entire surface of a substrate with uniform force and expose the entire surface of the substrate to uniform plasma, making it ideal for semiconductor manufacturing. It is very advantageous as a means for holding the substrate of the device.

静電チャックの原理を簡単に説明する。第3図に示すよ
うに、平面状の電極31土に誘電率ε、膜厚dの絶縁物
32を介して基体33を配置し、電極31と基体33と
の間に電圧Vを印加し、静電力により基体33を吸着さ
せる。このときの吸着力Fは、 F=1/2・ε・S・ (V/d) で表わされる。ここでSは電極面積、■は印加電圧を表
わす1例えば直径2インチの電極を用い、絶縁物として
比誘電率10、膜厚100gmのアルミナを用い、V 
= 1 kVとすると、Fの値は理想的にはあよそ8.
7Nとかなり強い力となり、例えばSiウェハなとは問
題なく吸着されることになる。
The principle of electrostatic chuck will be briefly explained. As shown in FIG. 3, a base body 33 is placed on a planar electrode 31 via an insulator 32 having a dielectric constant ε and a film thickness d, and a voltage V is applied between the electrode 31 and the base body 33. The base 33 is attracted by electrostatic force. The adsorption force F at this time is expressed as F=1/2·ε·S·(V/d). Here, S is the electrode area, and ■ is the applied voltage.1 For example, an electrode with a diameter of 2 inches is used, alumina with a dielectric constant of 10 and a film thickness of 100 gm is used as an insulator, and V
= 1 kV, the value of F is ideally around 8.
The force is quite strong at 7N, and for example, a Si wafer can be adsorbed without any problem.

この静電吸着装置において、基板電位を与える電極に間
しては次のようなものが一般的である。
In this electrostatic adsorption device, the electrodes that apply the substrate potential are generally as follows.

1つは第4図に示すようにビン電極41で基体42の電
位を与える方法であり、絶縁物を介した下地電極43と
の間に電圧をかけ基体を吸着させる。この場合基体電位
は接地させる場合や、第5図に示すような回路構成にす
ることにより基体42に直流電位を与えることも可能で
ある。また、プラズマの電気伝導性を利用し、プラズマ
による自己バイアス値に設定された基体と絶縁物を介し
た下地電極との間の電位差によって静電吸着を行なう方
法も捉案されている。(特開昭55−90228号公報
) [発明が解決しようとしている課1!ilしかしながら
上記静電チャックに間してはまだ問題点も数多く存在す
る。先ずビン電極をもちいた場合、 1、基体と電極とが点接触であるために、接触不良を起
こしやすい。
One method is to apply a potential to the substrate 42 using a bottle electrode 41 as shown in FIG. 4, and a voltage is applied between the base electrode 43 and the base electrode 43 via an insulator to attract the substrate. In this case, the substrate potential may be grounded, or a DC potential may be applied to the substrate 42 by using a circuit configuration as shown in FIG. A method has also been proposed in which electrostatic adhesion is performed by utilizing the electrical conductivity of plasma and using a potential difference between a substrate set to a self-bias value due to the plasma and a base electrode via an insulator. (Unexamined Japanese Patent Publication No. 55-90228) [Problem 1 to be solved by the invention! However, there are still many problems with the above electrostatic chuck. First, when a bottle electrode is used: 1. Since the base and the electrode are in point contact, poor contact is likely to occur.

2 ビンに静電チャックとの平行性が要求されるため、
バネを用いることが一般的であるが、温度変化によりバ
ネ性が変化してしまい静電チャックの力とのバランスが
くずれる。
2. Since the bottle requires parallelism with the electrostatic chuck,
Although it is common to use a spring, the springiness changes due to temperature changes and the balance with the force of the electrostatic chuck is lost.

3、基体と電極の接触面積が小さいため基体から電極に
大電流が流れたときにジュール熱によりビン電極が融解
してしまう、これは特に基体の11流電位をプラズマに
対する自己バイアスよりも正側に持ち上げたときや大面
積基体を用いた際におこることで、大量の電流がこのビ
ン電極を通して流れてしまう。
3. Because the contact area between the substrate and the electrode is small, the bottle electrode melts due to Joule heat when a large current flows from the substrate to the electrode. This happens when the bottle is lifted up or when a large area substrate is used, causing a large amount of current to flow through this bottle electrode.

等の問題点がある。There are other problems.

また、基体の電位をプラズマによる自己バイアスの値に
し、積極的に直流電位を与えない方法では、 1、基体の電位を制御することが非常に難しく、電位制
御のためには、高周波プラズマにおいて、装置内圧力、
高周波電力、高周波周波数、ガス種等を変化させて所望
の状態にプラズマ状態を設定しなければならない。
In addition, with the method of setting the potential of the substrate to a self-bias value by the plasma and not actively applying a DC potential, 1. It is very difficult to control the potential of the substrate, and in order to control the potential, it is necessary to Pressure inside the device,
The plasma state must be set to a desired state by changing the high frequency power, high frequency frequency, gas type, etc.

2、プラズマが存在しないと吸着力が働かないために、
横向き電極や下向き電極上には、基体を設置することが
できない。
2. Because the adsorption force does not work in the absence of plasma,
A base cannot be placed on a horizontally facing electrode or a downwardly facing electrode.

等の問題点があり、実用化にはなかなか難しいものがあ
った。
There were such problems that it was difficult to put it into practical use.

[課題を解決するための手段(及び作用)J本発明によ
れば、第1の電極上に絶縁物を介して導電性物質もしく
は半導体物質をもつ基体を設置し、前記第1の電極と前
記基体間に電圧を印加し、前記基体を前記第1の電極上
に静電吸着力により保持する静電吸着装置において、基
体に電位を与える第2の電極が前記絶縁物に埋め込まれ
、かつ前記基体に面接触させることにより、プラズマの
自己バイアス以上に正側に基体の電位を設定したり、大
面積基体を用いた際の、大量の電流か前記第2電極に流
れる状態でも正常に吸着機能を果たし、基体の電位を自
由に制御できるような静電吸着装置を提供するものであ
る。
[Means for Solving the Problems (and Effects) J According to the present invention, a base body having a conductive material or a semiconductor material is placed on the first electrode via an insulator, and the first electrode and the In an electrostatic adsorption device that applies a voltage between substrates and holds the substrate on the first electrode by electrostatic adsorption force, a second electrode that applies a potential to the substrate is embedded in the insulator, and By making surface contact with the substrate, the potential of the substrate can be set to the positive side beyond the self-bias of the plasma, and when a large-area substrate is used, the adsorption function can be maintained normally even when a large amount of current flows through the second electrode. The purpose of the present invention is to provide an electrostatic adsorption device that can freely control the potential of the substrate.

「実施態様」 本発明の実施!!!様を図面に基づいて詳細に説明する
6第1図は本発明の実施態様を示す静電吸着装置の概略
的断面図、第2図は概略的平面図である。11で示す第
1電極上に絶縁性材料である12が形成されている。絶
縁物12の表面は深さtの溝が形成され、その内部は第
2電極13が埋め込まれている。この図では第2電極の
引き出し電極を静電吸着装置の中央に1か所取っている
が、特に取り出し位置が限定される必要はなく、また複
数箇所から取ってもよい、また第2電極の形状も特に限
定されるわけではないが2第2電極を流れる電流密度が
小さくなるように、電流経路の断面積が大きく、電流が
1か所に集中しないような構成が望まれる。
“Embodiment” Implementation of the present invention! ! ! 6. FIG. 1 is a schematic sectional view of an electrostatic adsorption device showing an embodiment of the present invention, and FIG. 2 is a schematic plan view. An insulating material 12 is formed on the first electrode 11 . A groove with a depth t is formed on the surface of the insulator 12, and a second electrode 13 is embedded inside the groove. In this figure, the extraction electrode of the second electrode is taken out at one place in the center of the electrostatic adsorption device, but the extraction position does not have to be particularly limited, and it may be taken out from multiple places. Although the shape is not particularly limited, it is desirable to have a configuration in which the current path has a large cross-sectional area so that the current density flowing through the second electrode is small, and the current does not concentrate in one place.

絶縁性材料12の誘電率をC2膜厚をd、第1電極面積
を51.第2電極面積なS2、基体14の重量なW、第
1電極と基体間に印加する電圧をVとすると、吸着力F
、絶縁材料12の絶縁耐圧E、が満たすべき条件はつぎ
の式で表わされる。
The dielectric constant of the insulating material 12 is C2, the film thickness is d, and the area of the first electrode is 51. If S2 is the area of the second electrode, W is the weight of the base 14, and V is the voltage applied between the first electrode and the base, then the attraction force F is
The conditions that should be satisfied by the dielectric strength voltage E of the insulating material 12 are expressed by the following equation.

F = 1/2・E ・(Sl−Szl ’ (V/d
ν)W  −1llE、>V7 (d−t)     
  −121また1f!2電極の最小断面積を31.、
第2電極を流れる電流密度の上限をj、1.とすると、
基体面積Sに流れる最大電流Iは、I ” J asヨ
×S、、、、となるaJsamの値は明確な値ではない
が、A1の場合I X 10’ A/cm”程度であり
、No、 11等の高融点金属の場合さらに高い値にな
る。基体と第2電極の接点が点接触に近い場合は、基体
に流れる電流が小さい場合でも接触点での電流密度が高
く、電流を第2電極に流すことができないが、本発明に
よる静電@着装嘗のように、基体と第2電極の接点が大
きな面積をもつ面接触の場合は、接触点での電流密度で
は電流は規定されず、第2電極の配線幅りとtの掛は合
わせた断面積S°を流れる電流密度で電流値の最大値が
規定されることになる。電極材は上述の条件を満たせば
特に限定されるものでなく 、A1.11.1io、P
t等の金属、金属シソサイド、及び低抵抗Si等の半導
体物質でも全く構わない。一方絶縁材料も同様に上述の
条件を満たせばよ(、アルミナなどのほか、5iOt、
5iJ4.ポリイミド系の高分子材料でも特に問題はな
い。
F = 1/2・E ・(Sl-Szl' (V/d
ν) W −1llE, >V7 (d-t)
-121 1f again! The minimum cross-sectional area of two electrodes is 31. ,
The upper limit of the current density flowing through the second electrode is j, 1. Then,
The maximum current I flowing in the substrate area S is I '' J as y x S, , , The value of aJsam is not a clear value, but in the case of A1 it is about I x 10'A/cm'', and No. , 11, etc., the value is even higher. When the contact point between the substrate and the second electrode is close to point contact, the current density at the contact point is high even if the current flowing through the substrate is small, and the current cannot flow to the second electrode. In the case of a surface contact where the contact point between the substrate and the second electrode has a large area, as in the case of mounting, the current is not determined by the current density at the contact point, and the wiring width of the second electrode and the multiplication of t are The maximum value of the current value is defined by the current density flowing through the cross-sectional area S°. The electrode material is not particularly limited as long as it satisfies the above conditions, and may be A1.11.1io, P
Metals such as T, metal silicides, and semiconductor materials such as low-resistance Si may also be used. On the other hand, insulating materials should also satisfy the above conditions (in addition to alumina, etc., 5iOt,
5iJ4. There are no particular problems with polyimide-based polymer materials.

[実施例] 以下本発明のIIII実施例を説明する。静電吸着装置
の概略的断面図、概略的平面図をそれぞれ第6図、及び
第7図に示す、61に示す下地直径3インチの第1電極
はMo電極である。アルミナ溶射により絶!を郡62を
膜厚300μmで形成、深さ50μm、輻40μmの溝
に勤の第2電極63を形成し平坦化しである。第2電極
の引き出しは静電吸着装置の側面から行なった。このア
ルミナ絶縁膜の絶縁破壊耐圧はおよそI X 10 ’
 V / c■であり、 2500V/250μmであ
るため、大気中で100(IVを印加し4インチウェハ
を吸着させたところ0.2 N/cm”以上の力で吸着
した。この静電吸着装置を第8図に示すrf−dc結合
のバイアススパッタ装置(T−Ohmi、 T、 Ic
hikawa et al。
[Example] Example III of the present invention will be described below. A schematic cross-sectional view and a schematic plan view of the electrostatic adsorption device are shown in FIGS. 6 and 7, respectively. The first electrode 61 having a base diameter of 3 inches is a Mo electrode. Absolutely perfect with alumina spraying! A group 62 is formed to have a film thickness of 300 μm, and a second electrode 63 is formed in a groove having a depth of 50 μm and a radius of 40 μm and is flattened. The second electrode was drawn out from the side of the electrostatic chuck device. The dielectric breakdown voltage of this alumina insulating film is approximately I x 10'
V/c■, and 2500V/250μm, so when a 4-inch wafer was attracted by applying 100V (IV) in the atmosphere, it was attracted with a force of 0.2 N/cm or more.This electrostatic adsorption device The RF-DC coupling bias sputtering equipment (T-Ohmi, T, Ic
Hikawa et al.

J、 Appi、 phys、 66、 pp−475
6−476611989))の基板−及びターゲット側
に用いて実験を行なった。
J, Appi, phys, 66, pp-475
6-476611989)) was used for the substrate and target sides.

81は真空チャンバ、82は5インチSiターゲット、
83は永久磁石、84は4インチsi基板、85.86
が本発明による静電吸着装置、87が100MHz高周
波電源、88はマツチング回路、89.90はターゲッ
ト及び基板の電位を決定する直流電源、91.92はロ
ーパスフィルタ、93は電極シールドである。実験条件
を下記に示す。
81 is a vacuum chamber, 82 is a 5-inch Si target,
83 is a permanent magnet, 84 is a 4 inch Si board, 85.86
is an electrostatic adsorption device according to the present invention, 87 is a 100 MHz high frequency power supply, 88 is a matching circuit, 89.90 is a DC power supply that determines the potential of the target and the substrate, 91.92 is a low-pass filter, and 93 is an electrode shield. The experimental conditions are shown below.

投入ガス・=Ar ガス圧力・・・8■Torr ターゲット直流電位−−−200V 投入高周波電カー400W 基板直流電位−・+5V 基板温度−300℃・ この場合、基板に流れ込む電流を測定すると1.8Aで
あるが電極材等の発熱、断線などの問題は生ぜず、静電
吸着装置に吸着した基板上には良質なSi単結晶が成長
した。−力筒2電極がインコネルのビン電極である静電
吸着装置を用いて同様の実験を行な7たところ、前記イ
ンコネルのビンが大電流により発熱し融解してしまい基
板が静電吸着装置から滑り落ちてしまった。また第2電
極無の静電吸着装置を用いた場合は、基板の自己バイア
スはおよそ一5Vであり静電吸着により基板は吸着され
たが、基板に照射されるイオンエネルギーが高すぎて基
板にダメージが生じてしまい、基板上に成長した結晶は
結晶性の良くないアモルファスSiであった。
Input gas = Ar Gas pressure...8 Torr Target DC potential - -200V Input high frequency electric car 400W Substrate DC potential - +5V Substrate temperature -300°C In this case, when measuring the current flowing into the board, it is 1.8A However, there were no problems such as heat generation or disconnection of the electrode material, and high-quality Si single crystals were grown on the substrate that was attracted by the electrostatic attraction device. - When a similar experiment was conducted using an electrostatic chuck device in which the second electrode of the force cylinder was an Inconel bottle electrode, the Inconel bottle was heated and melted due to the large current, and the substrate was removed from the electrostatic chuck device. I slipped. Furthermore, when using an electrostatic adsorption device without a second electrode, the self-bias of the substrate was approximately 15 V and the substrate was adsorbed by electrostatic adsorption, but the ion energy irradiated to the substrate was too high and the substrate Damage occurred, and the crystal grown on the substrate was amorphous Si with poor crystallinity.

以下本発明の第2実施例を説明する。形成した静電吸着
装置の概略的断面図、概略的平面図を第9図、及び第1
0図に示す、101に示す下地直径3インチの第1電極
はW電極である。アルミナ溶射により絶縁部102を膜
厚300μmで形成、中央部に直径2c園深さ50um
の溝にWの第2電極103が形成され、平坦化しである
。第2電極の引き出しは静電吸着装置の裏面から行なっ
た。このアルミナ絶縁部102の絶縁破壊耐圧はおよそ
1xlO’V/cmであり、2500V / 250 
cmであるため、大気中で100OVを印加して6イン
チウェハを吸着させたところ完全に吸着した。この静電
吸着装置を第8図に示すrf−dc結合のバイアススパ
ッタ装置の基板側及びターゲット側に用いてターゲット
、基板サイズを6インチにし、高周波投入電力を900
Wとした以外は実施例1と同様な実験を行なったところ
、基板に流れ込むt流は4.OAで、電極材等の発熱、
断線などの問題は生ぜず、静電吸着装置に吸着した基板
上には実施例1と同様の良質なSi単結晶が成長した。
A second embodiment of the present invention will be described below. A schematic cross-sectional view and a schematic plan view of the formed electrostatic adsorption device are shown in FIG. 9 and 1.
The first electrode 101 shown in FIG. 0 and having a base diameter of 3 inches is a W electrode. Insulating part 102 is formed with a film thickness of 300 μm by alumina spraying, with a diameter of 2 cm and a depth of 50 μm in the center.
A second electrode 103 of W is formed in the groove and is planarized. The second electrode was drawn out from the back side of the electrostatic adsorption device. The dielectric breakdown voltage of this alumina insulating part 102 is approximately 1xlO'V/cm, which is 2500V/250V/cm.
cm, so when a 6-inch wafer was adsorbed by applying 100 OV in the air, it was completely adsorbed. This electrostatic adsorption device was used on the substrate side and target side of the RF-DC coupled bias sputtering device shown in Fig. 8, the target and substrate sizes were set to 6 inches, and the high frequency input power was set at 900.
When the same experiment as in Example 1 was conducted except that W was used, the t flow flowing into the substrate was 4. With OA, heat generation from electrode materials, etc.
No problems such as wire breakage occurred, and a high-quality Si single crystal similar to that in Example 1 grew on the substrate adsorbed by the electrostatic adsorption device.

以下本発明の第3実施例を説明する。形成した静電吸着
装置の概略的断面図、概略的平面図を第1I図、及び第
12図に示す、111に示す下地直径3インチの第1電
極は0.001Ω・c+w p型S1電極である。絶J
i部112は膜厚50umの5102であり、絶縁[1
112の深さ20gm、幅40umの溝に、o、oot
Ω・cm poly−3i第2電極113を埋め込み、
平坦化した。第2電極の引き出しは静電吸着装置の側面
の20c1深さ、輻5薯1のライン115から行なった
。このS10□絶縁膜の絶縁破壊耐圧はおよそ6X10
’V/cmであり、 18000v/30μmである。
A third embodiment of the present invention will be described below. A schematic cross-sectional view and a schematic plan view of the formed electrostatic chuck device are shown in FIG. 1I and FIG. be. Absolute J
The i part 112 is 5102 with a film thickness of 50 um, and has an insulation [1
o, oot in the groove of 112 depth 20gm and width 40um
Ω・cm poly-3i second electrode 113 is embedded,
Flattened. The second electrode was drawn out from a line 115 at a depth of 20c1 and a radius of 1 on the side surface of the electrostatic adsorption device. The dielectric breakdown voltage of this S10□ insulating film is approximately 6X10
'V/cm and 18000v/30μm.

大気中、i5よび1×10Torrの減圧化で100O
Vを印加し4インチウェハを吸着させたところ完全に吸
着した。この静電吸着装置を第8図に示すrf−dc結
合のバイアススパッタ装置の基板側及びターゲット側に
用いて実施例1と同様な実験を行なったところ実施例1
と同様に、基板に流れ込む電流は1.8 Aであるが発
熱、断線などの問題は生ぜず、静電吸着装置に吸着した
基板上には良質なSi単結晶が成長した。
In the atmosphere, 100O with i5 and 1×10Torr depressurization
When V was applied and a 4-inch wafer was adsorbed, it was completely adsorbed. Example 1 An experiment similar to Example 1 was conducted using this electrostatic adsorption device on the substrate side and target side of the RF-DC coupled bias sputtering device shown in FIG.
Similarly, although the current flowing into the substrate was 1.8 A, no problems such as heat generation or disconnection occurred, and a high-quality Si single crystal grew on the substrate that was attracted by the electrostatic attraction device.

[発明の効果] 以上説明したように、第1の電極上に絶縁物を介して導
電性物質もしくは半導体物質をもつ基体を設置し、前記
第1の電極と前記基体間に電圧を印加し、前記基体を前
記第1の電極上に静電吸着力により保持する静電吸着装
置において、基体に電位を与える第2の電極な前記絶縁
物に埋めこみ、かつ前記基体に面接触させることにより
、基体を通して大電流を流しながら基体表面の電位を制
御し、静電力により基体を吸着させることが可能となっ
た。特にプラズマによる自己バイアスから正側に電位を
制御する場合や、大面積基板を用いる場合に有効である
[Effects of the Invention] As explained above, a base having a conductive material or a semiconductor material is placed on a first electrode via an insulator, and a voltage is applied between the first electrode and the base, In an electrostatic adsorption device that holds the substrate on the first electrode by electrostatic adsorption force, a second electrode that applies a potential to the substrate is embedded in the insulator and brought into surface contact with the substrate. By controlling the potential of the substrate surface while passing a large current through it, it became possible to attract the substrate using electrostatic force. This is particularly effective when controlling the potential from the self-bias caused by plasma to the positive side or when using a large-area substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

111図は本発明の静電吸着装置の概念を示す縦断面図
、第2図はその平面図、第3図〜第5図は一般的な静電
チャックの原理を説明するための説明図、第6図は本発
明の第1実施例による静電吸着装置の概略的断面図5第
7図はその平面図、第8図は第6図および第7図に示し
た静電吸着装置をバイアススパッタ装置に適用した場合
を示す概略的断面図、第9図は本発明の第2実施例によ
る静電吸着装置の概略的断面図、第10図はその平面図
、第11図は本発明の第3実施例による静電吸着装置の
概略的断面図、第12図はその平面図である。 11.31.43.]]01.1ll−−−第1電極1
232.44.62.102.112−−一絶縁物13
.63,103.113.115 =−第2電極14、
42.64.104.114・−基体枚理人  弁理士
 山 下 槽 平 第 図 第 図 第 図 第 図 第 図 第 図 第 図 第 図
FIG. 111 is a vertical cross-sectional view showing the concept of the electrostatic chuck device of the present invention, FIG. 2 is a plan view thereof, and FIGS. 3 to 5 are explanatory diagrams for explaining the principle of a general electrostatic chuck. FIG. 6 is a schematic cross-sectional view of the electrostatic chuck device according to the first embodiment of the present invention, FIG. 7 is a plan view thereof, and FIG. 8 is a biased electrostatic chuck device shown in FIGS. 9 is a schematic sectional view of an electrostatic chuck device according to a second embodiment of the present invention, FIG. 10 is a plan view thereof, and FIG. 11 is a schematic sectional view of an electrostatic chuck device according to a second embodiment of the present invention FIG. 12 is a schematic cross-sectional view of the electrostatic adsorption device according to the third embodiment, and a plan view thereof. 11.31.43. ] ]01.1ll --- First electrode 1
232.44.62.102.112--Insulator 13
.. 63,103.113.115 =-second electrode 14,
42.64.104.114・-Substance Attorney Patent Attorney Yamashita Tank Taira Figure Figure Figure Figure Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] (1)第1の電極上に、絶縁物を介して導電性物質もし
くは半導体物質をもつ基体を配置し、前記第1の電極と
前記基体との間に電圧を印加することによって、前記第
1の電極上に前記基体を静電吸着力により保持するよう
になされた静電吸着装置において、前記基体に所定の電
位を付与するための第2の電極が前記絶縁物中に埋め込
まれ、かつ前記第2の電極が前記基体に対して面接触し
ていることを特徴とする静電吸着装置。
(1) A base body having a conductive material or a semiconductor material is disposed on the first electrode via an insulator, and a voltage is applied between the first electrode and the base body. In an electrostatic adsorption device configured to hold the substrate on an electrode by electrostatic adsorption force, a second electrode for applying a predetermined potential to the substrate is embedded in the insulator, and a second electrode for applying a predetermined potential to the substrate; An electrostatic adsorption device characterized in that a second electrode is in surface contact with the base.
JP2241171A 1990-09-13 1990-09-13 Electrostatic attraction device Pending JPH04122046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2241171A JPH04122046A (en) 1990-09-13 1990-09-13 Electrostatic attraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2241171A JPH04122046A (en) 1990-09-13 1990-09-13 Electrostatic attraction device

Publications (1)

Publication Number Publication Date
JPH04122046A true JPH04122046A (en) 1992-04-22

Family

ID=17070302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2241171A Pending JPH04122046A (en) 1990-09-13 1990-09-13 Electrostatic attraction device

Country Status (1)

Country Link
JP (1) JPH04122046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764979A2 (en) * 1995-09-20 1997-03-26 Hitachi, Ltd. Electrostatically attracting electrode and a method of manufacture thereof
JP2019530981A (en) * 2016-10-03 2019-10-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method and apparatus using PVD ruthenium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764979A2 (en) * 1995-09-20 1997-03-26 Hitachi, Ltd. Electrostatically attracting electrode and a method of manufacture thereof
EP0764979A3 (en) * 1995-09-20 1998-07-15 Hitachi, Ltd. Electrostatically attracting electrode and a method of manufacture thereof
JP2019530981A (en) * 2016-10-03 2019-10-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method and apparatus using PVD ruthenium

Similar Documents

Publication Publication Date Title
KR100242529B1 (en) Stage having electrostatic chuck and plasma processing apparatus using same
US5946184A (en) Electrostatic chuck, and method of and apparatus for processing sample
US5539179A (en) Electrostatic chuck having a multilayer structure for attracting an object
JP3064409B2 (en) Holding device and semiconductor manufacturing apparatus using the same
JP4559595B2 (en) Apparatus for placing object to be processed and plasma processing apparatus
JP3911787B2 (en) Sample processing apparatus and sample processing method
JP4354983B2 (en) Substrate processing equipment
EP0049588A2 (en) Method and apparatus for dry etching and electrostatic chucking device used therein
JP2638649B2 (en) Electrostatic chuck
JPH0779122B2 (en) Electrostatic chuck with diamond coating
JP5851131B2 (en) Electrostatic chuck, vacuum processing equipment
KR20000035641A (en) Improved substrate support apparatus and method for fabricating same
JPS63194345A (en) Electrostatic chuck
JP3191139B2 (en) Sample holding device
JPH07335732A (en) Electrostatic chuck, plasma treatment equipment using electrostatic chuck and its manufacture
JP2767282B2 (en) Substrate holding device
JP2003282692A (en) Substrate carrying tray and substrate processing apparatus using this tray
JPH01200625A (en) Semiconductor wafer processing equipment
JPH07130826A (en) Electrostatic chuck
JPH04122046A (en) Electrostatic attraction device
JPH06124998A (en) Plasma process equipment
JPH09260472A (en) Electrostatic chuck
JP2004349663A (en) Electrostatic chuck
JPH02130915A (en) Plasma processing equipment
JPS6325706B2 (en)