JPH04121915A - Forming of insulating coat for aluminum wire rod - Google Patents

Forming of insulating coat for aluminum wire rod

Info

Publication number
JPH04121915A
JPH04121915A JP24023890A JP24023890A JPH04121915A JP H04121915 A JPH04121915 A JP H04121915A JP 24023890 A JP24023890 A JP 24023890A JP 24023890 A JP24023890 A JP 24023890A JP H04121915 A JPH04121915 A JP H04121915A
Authority
JP
Japan
Prior art keywords
film
electrodeposition coating
cationic electrodeposition
anode oxidation
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24023890A
Other languages
Japanese (ja)
Inventor
Akira Morita
彰 森田
Takashi Kajiyama
梶山 隆
Shunichi Yoshida
俊一 吉田
Hiroshi Akashi
赤司 碩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
SWCC Corp
Original Assignee
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd, Showa Electric Wire and Cable Co filed Critical Nikkei Techno Research Co Ltd
Priority to JP24023890A priority Critical patent/JPH04121915A/en
Publication of JPH04121915A publication Critical patent/JPH04121915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PURPOSE:To ensure excellent adhesion, bending work and the like and further high withstanding voltage and reliable insulating characteristic by performing anode oxidation processing on an aluminum wire rod in a caustic soda bath, and forming a coat on this anode oxidation thin film foundation by cationic electrodeposition coating processing so as to form an insulating coat, on the aluminum with rod. CONSTITUTION:(A) Anode oxidation processing condition: (1) bath composition - 0.1-10 percent by weight of caustic soda aqueous solution (2) current density - DC 1-10A/dm<2> (3) bath temperature - 0-50 deg.C (4) processing time - 1 minute-1 hour, then, an anode oxidation thin film is set to 0.1-5mum, preferably 1-3mum is desirable. If it is less than 0.1mum, a problem on the point of strength remains. On the other hand if its thickness exceeds 5mum, the coat is easily broken by bending work, and its withstanding voltage is reduced after the bending work. (B) Cationic electrodeposition coating processing condition: any of cationic electrodeposition paint usually sold on the market is acceptable and either one of clear paint and paint containing pigment is also applicable.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は、アルミニウム線材の絶縁皮膜形成方法に関し
、詳しくは陽極酸化処理による下地処理と電着塗装処理
とにより絶縁皮膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an insulating film on an aluminum wire, and more particularly to a method for forming an insulating film by a base treatment by anodizing treatment and an electrodeposition coating process.

[従来の技術] 各種設備、機器に用いられる電気導体として、アルミニ
ウムの線1条、帯状材料(以下、[アルミニム線材Jと
称する。)か広く用いられている。
[Prior Art] Aluminum wires or strips (hereinafter referred to as "aluminum wires J") are widely used as electrical conductors used in various facilities and devices.

また、実用に際しては、アルミニウム線材に電気絶縁層
を形成する場合か多い。
In addition, in practical use, an electrical insulating layer is often formed on the aluminum wire.

従来、かかる電気絶縁層を形成する方法としては、絶縁
テープを巻回する方法、エナメル塗布方法、陽極酸化皮
膜を形成する方法、電着塗装により絶縁塗膜を形成する
方法のいずれかを採用するのか一般的である。
Conventionally, methods for forming such an electrically insulating layer include winding an insulating tape, applying enamel, forming an anodized film, and forming an insulating film by electrodeposition. Is it common?

すなわち、絶縁テープ巻回方法は、例えはグラスファイ
バーにポリエステル樹脂等を含浸させた厚さ0.5’i
nm程度のテープをアルミニウム線材に巻回する方法で
ある。また、エナメル塗布方法はエナメルを重ね塗りす
る方法である。陽極酸化処理方法は酸性洛中で線材を陽
極として通電しつついわゆる絶縁性陽極酸化皮膜を形成
するものである。さらに、塗膜形成方法は主にアニオン
系樹脂塗料を用いた電着塗装処理によって塗膜を形成す
るものである。
That is, the method of winding the insulating tape is, for example, using glass fiber impregnated with polyester resin or the like to a thickness of 0.5'i.
This is a method of winding a tape of approximately nm size around an aluminum wire. Moreover, the enamel application method is a method of applying enamel in layers. The anodizing method involves forming a so-called insulating anodic oxide film while applying electricity to the wire in an acidic environment using the wire as an anode. Furthermore, the coating film forming method is mainly to form a coating film by electrodeposition coating using an anionic resin paint.

ここに、例えばトランス用絶縁コイル、リニアモータ・
カー用の絶縁電磁コイル等々に供する場合、テープ巻回
方法では、巻回作業に多大な労力と時間を有するばかり
か、絶縁層が厚くなってしまうので、大型化、コスト高
となる。特に、浮上体が走行する区間全域に亘って配設
される多数のりニヤモータ・カー用地上コイル(浮上用
と推進用とがある)を作るために供する場合等にあって
は、コスト的にもスペースファクター的にも実用性かな
いといって過言でない、また、エナメル塗布方法では、
鋭角的コーナ一部を有する上述の地上コイルのような平
角線ではコーナ一部に均一厚さで塗布することが難しく
、十分な絶縁性を得るためには相当回数の重ね塗りか必
要となるので非常に高価となる。したがって、上記テー
プ巻回方法と同様に実用性に劣る。
Here, for example, insulated coils for transformers, linear motors, etc.
When used in insulated electromagnetic coils for cars, etc., the tape winding method not only requires a great deal of labor and time for the winding operation, but also increases the thickness of the insulating layer, resulting in increased size and cost. In particular, when it is used to make ground coils (for levitation and propulsion) for multiple linear motor cars that are arranged over the entire section where the floating object travels, it is cost-effective. It is no exaggeration to say that it is impractical in terms of space factor, and with the enamel application method,
For flat wires like the above-mentioned ground coils, which have sharp corners, it is difficult to coat the corners with a uniform thickness, and a considerable number of coats are required to obtain sufficient insulation. Very expensive. Therefore, like the tape winding method described above, this method is inferior in practicality.

[・発明が解決しようとする課題] しかしながら、このいずれの方法によっても、次のよう
な問題点がある。
[Problems to be Solved by the Invention] However, both of these methods have the following problems.

■ 通常の酸浴による陽極酸化処理方法(例えば特開昭
63−90105号公報による方法)ては、アルミニウ
ム線材を電磁コイルに巻き上げ加工するときに、陽極酸
化皮膜にクラックが生じるので、結果として絶縁性が低
下する。しがも、この間頭は陽極酸化皮膜か厚いほど生
じ易いという煩わしさかある。また、大幅なコスト増大
を栢く。
■ With the usual method of anodizing using an acid bath (for example, the method disclosed in Japanese Patent Application Laid-Open No. 63-90105), cracks occur in the anodic oxide film when winding the aluminum wire into an electromagnetic coil, resulting in insulation. Sexuality decreases. However, the problem is that the thicker the anodized film on the head, the more likely it is to occur. It also avoids a significant increase in costs.

■ アルミニウム材に対する電着塗装処理方法は、上記
の如くアニオン系樹脂塗料を用いて電着することか汎用
されているか、30μm以上の厚い膜を形成することが
雛しく、得られる##電圧特性に限界かあるいという欠
点がある。また、使用中に樹脂塗膜を透湿して皮膜か腐
食されることがある。
■ Electrodeposition coating treatment methods for aluminum materials are commonly used, such as electrodeposition using an anionic resin paint as described above, or forming a thick film of 30 μm or more, and the voltage characteristics obtained. The disadvantage is that it has some limitations. Also, during use, moisture may permeate through the resin coating and the coating may be corroded.

さらに、アルミニウム線材自体が多少なりとも溶解して
塗料中に混入すると、塗膜形成後の離しい曲げ加工を行
う際に塗膜か剥離し易いという欠陥かある。
Furthermore, if the aluminum wire itself is dissolved to some extent and mixed into the paint, there is a problem in that the paint film is likely to peel off when bending the wire apart after forming the paint film.

ところで、アニオン系電着塗装処理槽へのアルミニウム
イオンの持込みを防止するには、陽極酸化皮膜下地の厚
さを3μm以上としなければならない、一方、この厚さ
を3μm以上とすると塗膜形成後の曲げ加工によりクラ
ックか発生して耐電圧が大幅に低下する、という相反現
象かあるので曲げ加工の厳しいリニアモータ・カー用地
上コイル、トランスコイル等の用途向は線材には採用で
きない。
By the way, in order to prevent aluminum ions from being brought into the anionic electrodeposition coating treatment tank, the thickness of the anodic oxide film base must be 3 μm or more.On the other hand, if this thickness is 3 μm or more, it will cause damage after the paint film is formed. Due to the contradictory phenomenon that cracks occur during bending and the withstand voltage decreases significantly, wire rods cannot be used for applications such as ground coils for linear motors and cars, transformer coils, etc., which require severe bending.

なお、カチオン系電着塗装処理においては、下地たる陽
極酸化皮膜か厚膜であると電着塗装処理中に剥離されて
しまうことから、アルミニウム材に対しては多用されて
いない6 ■ 一方、リニアモータ・カー用コイルの場合、例えば
特開昭57−134915号公報に見られるように巻上
げて加工されたコイル全体が最終的に樹脂封止されてい
る。そのため、樹脂封止に際しての耐熱性や使用時の昇
温に対する耐熱性が要求される。ここで、耐熱性は、耐
軟化特性で表示することができるが、できるたけ安定し
たものであ′ることが望ましい。
In addition, in cationic electrodeposition coating treatment, if the base anodic oxide film is thick, it will peel off during the electrodeposition coating treatment, so it is not widely used on aluminum materials.6 On the other hand, linear In the case of a coil for a motor car, the entire coil is wound and processed and finally sealed with resin, as shown in, for example, Japanese Patent Application Laid-Open No. 57-134915. Therefore, heat resistance during resin sealing and heat resistance against temperature rise during use are required. Here, heat resistance can be expressed in terms of softening resistance, but it is desirable that it be as stable as possible.

本発明は、上記事情に鑑みなされたもので、その目的は
皮膜の均一性、耐食性、加工性に優れ、安定した耐軟化
特性と共に耐電圧の高い確実な絶縁性を保証できる低コ
ストで適応性の広いアルミニウム線材の絶縁皮膜形成方
法を提供することにある。
The present invention was developed in view of the above circumstances, and its purpose is to provide a film with excellent uniformity, corrosion resistance, and workability, and to ensure stable softening resistance as well as reliable insulation with high withstand voltage, at a low cost, and with adaptability. An object of the present invention is to provide a method for forming an insulating film on a wide range of aluminum wires.

[課題を解決するための手段] 本発明は、上記陽極酸化処理と電着塗装処理との組合せ
により、新規かつ有用な絶縁皮膜形成方法を確立すべく
行なった幾多の試験・研究に基づき創成されたもので、
陽極酸化処理による陽極酸化皮膜はカチオン系電着樹脂
塗料による電着塗装処理(以下、単に「カチオン系電着
塗装処理」という。)時に剥離するという従来認識を打
破し、陽極酸化処理をカセイソーダ水溶液中で行なうこ
とを前提としつつ、その後にカチオン系電着塗装処理を
行なって絶縁皮膜を形成する方法である。
[Means for Solving the Problems] The present invention was created based on numerous tests and studies conducted in order to establish a new and useful method for forming an insulating film by combining the above-mentioned anodic oxidation treatment and electrodeposition coating treatment. With something that
Breaking away from the conventional perception that the anodized film produced by anodizing peels off during electrodeposition coating treatment using a cationic electrodeposition resin paint (hereinafter simply referred to as "cationic electrodeposition coating treatment"), the anodization treatment is performed using a caustic soda aqueous solution. This is a method in which an insulating film is formed by performing a cationic electrodeposition coating treatment afterward.

すなわち、カチオン系電着塗装処理に着目すると、電着
塗装中におけるアルミニウム線材と電着塗膜との界面は
アルカリ性になる。このアルカリ度合は塗膜が厚くなる
程、つまり塗装電流が大きく若しくは通電時間が長い程
、強くなる。
That is, when focusing on cationic electrodeposition coating treatment, the interface between the aluminum wire and the electrodeposition coating film becomes alkaline during electrodeposition coating. The degree of alkalinity increases as the coating becomes thicker, that is, as the coating current increases or the current application time increases.

一方、陽極酸化処理浴には、大別して酸化浴。On the other hand, anodizing baths can be broadly classified into oxidation baths.

中性浴7アルカリ性浴がある6中性浴では、いわゆるバ
リヤー型皮膜と呼ばれる非常に薄い膜(100〜5oo
入)が生成される。また、酸性浴やアルカリ性情では、
厚膜の多孔性(ポーラス型)皮膜(0,1〜50μm)
か生成される。
Neutral bath 7 Alkaline bath 6 Neutral bath has a very thin film (100 to 50 mm) called a barrier type film.
input) is generated. In addition, in acidic baths and alkaline conditions,
Thick porous film (0.1-50μm)
or generated.

ここにおいて、これら皮膜が電@塗装中に上記界面アル
カリと接触した場合、バリヤー型皮膜は薄いために溶は
易い、このためアルミニウム(被塗物)の表面か溶出し
て塗膜中に混入する結果、塗膜の電気抵抗、可撓性およ
び密着性か低下する。
Here, when these films come into contact with the above-mentioned interfacial alkali during electrocoating, the barrier type film is thin and easily melts, so the surface of the aluminum (subject to be coated) is eluted and mixed into the paint film. As a result, the electrical resistance, flexibility and adhesion of the coating film decrease.

この皮膜溶解は、耐軟化特性試験において、温度上昇に
伴って塗膜が軟化したとき、荷重(鋼球等)とアルミニ
ウム材との電気的短絡か起ることからも明らかである。
This film dissolution is also evident from the fact that, in a softening resistance test, an electrical short circuit occurs between the load (such as a steel ball) and the aluminum material when the film softens as the temperature rises.

また、酸性浴で生成したポーラス型皮膜もアルカ′り零
囲気では溶解し易いので、上記バリヤー型の場合と同様
の欠陥を有するといえる。
Furthermore, since the porous type film formed in an acidic bath is easily dissolved in an alkaline atmosphere, it can be said that it has the same defects as the barrier type film described above.

これに対して、アルカリ洛中で生成した皮膜は、耐アル
カリ性か強いから上記欠陥を生じ龍い。
On the other hand, the film formed in alkaline water is highly resistant to alkali and therefore suffers from the above-mentioned defects.

ここに、各種アルカリ洛中、特にカセイソーダ浴による
場合には、耐アルカリ性の強い良質な皮膜が安価に得ら
れることになる。この理由は皮膜中に陰イオン(例えば
804′−やpo、’−)か含まれないことによるもの
と考えられる。
When using various alkali baths, especially caustic soda baths, a high-quality coating with strong alkali resistance can be obtained at low cost. The reason for this is thought to be that anions (eg 804'-, po, '-) are not contained in the film.

以上の解析から陽極酸化処理浴としてカセイソーダ浴を
用い、かつこれにより生成された皮膜上に、アニオン系
電着塗装処理に比較して、塗膜の厚さを所要の耐電圧に
応じて大きく形成できる等の利点を有するカチオン系電
着塗装処理を施すことによって、耐電圧、密着性等の優
れた絶縁皮膜を形成することを見出したのである。
Based on the above analysis, a caustic soda bath is used as the anodizing bath, and the thickness of the coating is formed to be larger depending on the required withstand voltage than with anionic electrodeposition coating. They have discovered that an insulating film with excellent voltage resistance, adhesion, etc. can be formed by applying a cationic electrodeposition coating treatment, which has advantages such as high voltage resistance and adhesion.

本発明の処理条件は、次の通りである。The processing conditions of the present invention are as follows.

(A)陽極酸化処理条件: ■浴組成−0.1〜10重量%カセイソーダ水溶液 ■電流密度−直流1〜IOA/dr/ ■浴温−0〜50℃ ■処理時間−1分〜1時間 なお、陽極酸化薄膜(皮膜)は、0.1〜5μm、好ま
しくは1〜3μmが望ましい。
(A) Anodizing treatment conditions: ■ Bath composition - 0.1 to 10% by weight caustic soda aqueous solution ■ Current density - DC 1 to IOA/dr / ■ Bath temperature - 0 to 50°C ■ Processing time - 1 minute to 1 hour The thickness of the anodized thin film (film) is preferably 0.1 to 5 μm, preferably 1 to 3 μm.

0.1μm未満では、皮膜が薄すぎて、例えば耐軟化特
性試験時に荷重鋼球によって破壊される如く、強度の点
に問題か残るからである。一方、5μmを越える厚さと
すると、曲げ加工によって皮膜が破壊され易く、曲げ加
工後の耐電圧か低下するからである。
If the thickness is less than 0.1 μm, the film is too thin and there remains a problem in terms of strength, for example, as it may be broken by a loaded steel ball during a softening resistance test. On the other hand, if the thickness exceeds 5 μm, the film is likely to be destroyed by bending, and the withstand voltage after bending will decrease.

(B)カチオン系電着塗装処理条件: 通常市販されているカチオン系電着塗料のいずれでもよ
く、クリヤー塗料でも顔料入り塗料でもよい。
(B) Cationic electrodeposition coating treatment conditions: Any commercially available cationic electrodeposition coating may be used, and either a clear coating or a pigment-containing coating may be used.

一般的には、カチオン系電着樹脂塗料として汎用されて
いるエポキシ樹脂、アミノエポキシイソシアネート樹脂
、アミンエポキシ樹脂、エポキシアミノアクリル樹脂等
を主成分とする樹脂塗料が適用される。
Generally, resin paints whose main components are epoxy resins, aminoepoxy isocyanate resins, amine epoxy resins, epoxy aminoacrylic resins, etc., which are widely used as cationic electrodeposited resin paints, are used.

・ここに、電圧、を流密度、浴温、処理時間等は、選択
した塗料と、生成すべき塗膜厚さとに対応させて適宜に
決定されるものである0次いで、160〜250℃で1
0〜40分間焼付処理される。
・Here, the voltage, flow density, bath temperature, processing time, etc. are determined as appropriate depending on the selected paint and the coating film thickness to be produced. 1
Baking is performed for 0 to 40 minutes.

ここに、本発明は、カセイソーダ洛中で陽極酸化処理を
行ないアルミニウム線材上に陽極酸化薄膜下地を形成し
、しかる後にカチオン系樹脂塗料を用いた電着塗装処理
を施すことを特徴とする。
Here, the present invention is characterized in that an anodizing treatment is performed in a caustic soda bath to form an anodized thin film base on the aluminum wire, and then an electrodeposition coating treatment using a cationic resin paint is performed.

[作 用] 本発明によれは、カセイソーダ洛中で陽極酸化処理を行
ないアルミニウム線材上に陽極酸化薄膜下地を形成する
。この陽極酸化薄膜<tt膜)は耐アルカリが強い。
[Function] According to the present invention, an anodic oxidation treatment is performed in caustic soda to form an anodized thin film base on the aluminum wire. This anodic oxidation thin film <tt film) has strong alkali resistance.

しかる後に、カチオン系電着塗装処理を施して陽極酸化
薄膜下地上に塗膜を形成する。
Thereafter, a cationic electrodeposition coating process is performed to form a coating film on the anodized thin film base.

すると、耐アルカリが強いことから陽極酸化皮膜の溶解
・剥離は生ずることなく、アルミニウムイオンも溶出し
ない、したがって、良質の塗膜を能率良く生成できる。
Then, because of its strong alkali resistance, the anodic oxide film will not dissolve or peel, and aluminum ions will not be eluted, so a high-quality coating film can be produced efficiently.

よって、アルミニウム線材に、陽極酸化皮膜と塗膜とか
らなる耐電圧、密着性等々の優れた絶縁皮膜を形成する
ことができる。
Therefore, an insulating film consisting of an anodic oxide film and a coating film with excellent voltage resistance, adhesion, etc. can be formed on the aluminum wire.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

(第1実施例) 純度99.8重量%アルミニウム製の横断面が3.8m
+X10m+でコーナ一部か半径0.5n+nの円弧形
状とされた長さ30■のリニアモータ・カー用地上コイ
ル向はアルミ平角線(アルミニウム線材)に、次の処理
方法によって、2〜3μmの陽極酸化皮膜と40μmの
塗膜とを生成して絶縁皮膜を形成した。
(First example) Made of aluminum with a purity of 99.8% by weight, the cross section is 3.8m
The ground coil for a linear motor car with a length of 30 cm, which has an arc shape with a radius of 0.5n+n and a part of the corner of the + An oxide film and a coating film of 40 μm were formed to form an insulating film.

脱脂処理:5重量%カセイソータ(NaOH)溶液、5
0℃×30分。
Degreasing treatment: 5% by weight caustic sorta (NaOH) solution, 5
0°C x 30 minutes.

水    洗 中   和:3vo1%硝酸、室温X30秒。Water washing Medium sum: 3vol 1% nitric acid, room temperature x 30 seconds.

水    洗 陽4iii酸化:5g/、llカセイソーダ溶液、17
〜20℃。
Water Washing 4iii oxidation: 5g/, 1l caustic soda solution, 17
~20℃.

直流4A/da&X5分通電。DC 4A/da&X energized for 5 minutes.

水    洗 電着塗装:エポキシ樹脂系カチオン電着塗料パワートッ
プU−100<日本ペ イント製)の10重量%溶液、2 7℃、O,IA/dcdX2分、最 終電月320■、 焼 付 け:170°CX30分。
Water washing Electrodeposition coating: 10% by weight solution of epoxy resin cationic electrodeposition paint Power Top U-100 (manufactured by Nippon Paint), 27℃, O, IA/dcdX 2 minutes, final electric month 320cm, Baking: 170°C for 30 minutes.

この絶縁皮膜は、第1表に示す如く、比較例1(第1実
施例において、陽fli酸化処理工程を省略し、同一条
件の電@塗装処理等を行なった。)の絶縁皮膜に比較し
て、塗膜の密着性が優れているため、曲げ加工後、伸長
後の耐電圧(V)を著しく高く維持できる。また、耐軟
化特性やカセイソーダ浴による下地皮膜の耐食性ら優れ
たものであることかわかる (第2実施例) この実施例は、第1実施例において、電着塗装処理条件
を、次のように代えて、2〜3μmの陽極酸化皮膜上に
50μmの塗膜を生成した場合である。
As shown in Table 1, this insulating film was compared to the insulating film of Comparative Example 1 (in the first example, the anodic oxidation process was omitted and the electrolyte painting process was performed under the same conditions). In addition, since the adhesion of the coating film is excellent, the withstand voltage (V) after bending and stretching can be maintained at a significantly high level. It can also be seen that the softening resistance and the corrosion resistance of the base film due to the caustic soda bath are excellent (Example 2). Instead, this is a case where a 50 μm coating film is formed on a 2 to 3 μm anodic oxide film.

すなわち、20重量%溶液、浴温29℃の下に電流密度
0.1A/d−で180秒間通電して塗膜を形成した。
That is, a coating film was formed by applying current to a 20% by weight solution at a bath temperature of 29° C. for 180 seconds at a current density of 0.1 A/d−.

この絶縁皮膜は、第1表に示す如く、比較例2(第2実
施例において、カセイソーダ浴の陽極酸化処理を省略し
て塗膜生成した場合である。)に比較して、各々バラツ
キか少なく安定した耐電圧耐軟化特性および耐食性か得
られることか明白に理解される。
As shown in Table 1, this insulating film has less or less variation compared to Comparative Example 2 (in the second example, the coating film was formed by omitting the anodizing treatment in the caustic soda bath). It is clearly understood that stable voltage resistance, softening resistance and corrosion resistance can be obtained.

ここに、第1実施例と対比すれば、カセイソーダ洛中に
生成しな陽極酸化薄膜下地上にカチオン系電着塗装処理
を施せば、下地の耐食性、塗膜密着性も同じである。し
たがって、耐電圧は塗膜厚に比例的に高くなると理解さ
れる。
In contrast to the first embodiment, if a cationic electrodeposition coating treatment is applied to the anodic oxide thin film substrate that does not form during caustic soda, the corrosion resistance and coating adhesion of the substrate are the same. Therefore, it is understood that the withstand voltage increases in proportion to the coating thickness.

なお、第1表に示すデータは次の測定法に基づくもので
ある。
Note that the data shown in Table 1 is based on the following measurement method.

曲げ加工は、J I 5H6864規格(変形ひび割れ
抵抗性試験)及びJISC3003規格に準じ、線の厚
さ方向に沿ってそれぞれ10,15゜2′0及び25■
Rで180°曲けを行なった。伸長試験は、JISC3
003に準じ、それぞれ1゜3.5及び10%の伸長を
行なった。耐電圧測定は、JISC2110規格及びJ
ISC3003規格の耐電圧測定法に準じて、巾約10
節のAJI箔を直線部あるいは曲げ部分に巻き付け、耐
電圧測定装置にて測定した。表面硬度は、J I 5K
5400規格及びJ I 5C3003規格の鉛筆硬度
測定法に基づいて測定した。耐軟化性は、JISC30
03規格の鋼球法に準じて、昇温した時に鋼球と試片の
アルミニウムとか接触する時に温度を測定した。また、
耐食性試験は、カチオン系電着塗装前のサンプルについ
て下記の試験を行なった。湿潤試験、50℃で湿度か9
8〜100%の雰囲気下で50時間放置して行なった。
The bending process was performed in accordance with the JI 5H6864 standard (deformation cracking resistance test) and the JISC3003 standard, with bending angles of 10, 15° 2'0 and 25°, respectively, along the thickness direction of the wire.
A 180° bend was made at R. The extension test is JISC3
003, elongation was performed by 1°3.5 and 10%, respectively. Withstand voltage measurement is based on JISC2110 standard and J
According to the withstand voltage measurement method of the ISC3003 standard, the width is approximately 10
A knotted AJI foil was wrapped around a straight section or a bent section, and the withstand voltage was measured using a withstand voltage measuring device. Surface hardness is J I 5K
The hardness was measured based on the pencil hardness measuring method according to the 5400 standard and the J I 5C3003 standard. Softening resistance is JISC30
According to the 03 standard steel ball method, the temperature was measured when the steel ball came into contact with the aluminum sample when the temperature was raised. Also,
For the corrosion resistance test, the following test was conducted on the sample before cationic electrodeposition coating. Humidity test, humidity at 50℃ 9
The test was carried out by leaving it for 50 hours in an atmosphere of 8 to 100%.

(以下余白) [発明の効果] 以上の説明から明らかの通り、本発明によれば、カセイ
ソーダ洛中で陽lI!酸化処理を施し、その陽1ii酸
化薄膜下地上にカチオン系電着塗装処理により塗膜を生
成してアルミニウム線材に絶縁皮膜を形成する方法であ
るから、密着性1曲げ加工等に優れかつ耐電圧の高く確
実な絶縁性を保証することかできる。したがって、リニ
アモータ・カー用地上コイル、トランスコイル等を大幅
な小型軽量化と低コストで生産できるなど適用性の広い
絶縁アルミニウム線材を提供できるという優れた効果を
奏する。
(The following is a blank space) [Effects of the Invention] As is clear from the above explanation, according to the present invention, caustic soda Rakuchu positive lI! This method forms an insulating film on the aluminum wire by performing oxidation treatment and then forming a coating film on the cationic oxide thin film base by cationic electrodeposition coating, so it has excellent adhesion, bending, etc., and voltage resistance. Can guarantee high and reliable insulation properties. Therefore, it is possible to provide an insulated aluminum wire with wide applicability, such as making it possible to produce ground coils for linear motors and cars, transformer coils, etc. at a significantly reduced size and weight and at low cost.

Claims (1)

【特許請求の範囲】[Claims] (1)カセイソーダ浴中で陽極酸化処理を行ないアルミ
ニウム線材上に陽極酸化薄膜下地を形成し、しかる後に
カチオン系樹脂塗料を用いた電着塗装処理を施して絶縁
皮膜を形成することを特徴とするアルミニウム線材の絶
縁皮膜形成方法。
(1) It is characterized by performing anodization treatment in a caustic soda bath to form an anodized thin film base on the aluminum wire, and then performing electrodeposition coating treatment using a cationic resin paint to form an insulating film. Method for forming an insulating film on aluminum wire.
JP24023890A 1990-09-11 1990-09-11 Forming of insulating coat for aluminum wire rod Pending JPH04121915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24023890A JPH04121915A (en) 1990-09-11 1990-09-11 Forming of insulating coat for aluminum wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24023890A JPH04121915A (en) 1990-09-11 1990-09-11 Forming of insulating coat for aluminum wire rod

Publications (1)

Publication Number Publication Date
JPH04121915A true JPH04121915A (en) 1992-04-22

Family

ID=17056512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24023890A Pending JPH04121915A (en) 1990-09-11 1990-09-11 Forming of insulating coat for aluminum wire rod

Country Status (1)

Country Link
JP (1) JPH04121915A (en)

Similar Documents

Publication Publication Date Title
TWI391525B (en) Stranded copper-plated aluminum cable, and method for its fabrication
US4724345A (en) Electrodepositing mica on coil connections
CA2270390A1 (en) Anode, process for anodizing, anodized wire and electric device comprising such anodized wire
JPS59207509A (en) Method of producing flat type insulated wire
CN105914040B (en) A kind of chemical conversion lead-out wire and preparation method thereof for solid-state capacitor
TW202125538A (en) Method for manufacturing flexibleconductive wire with ceramic insulating layer
US2161636A (en) Method of protectively coating aluminum or aluminum alloys
KR100297348B1 (en) Method of forming a robust electrical insulating layer on the surface of copper material
EP3764371A1 (en) Insulated flat rectangular conductor, coil and method for producing insulated flat rectangular conductor
US2665243A (en) Method of providing aluminum with a flexible oxide coating
JPH04121915A (en) Forming of insulating coat for aluminum wire rod
US3525652A (en) Method of manufacturing an insulated foil conductor
JPH04121914A (en) Insulated aluminum wire rod and its manufacture
US3378801A (en) Strip electrical coils
US3410738A (en) Method of making coils of electrical conductors
US3455021A (en) Method of making electrically insulated copper strip conductors
US3235472A (en) Method of making strip electrical coils
GB2026035A (en) Electrolytically cleaning wire
JP3035154B2 (en) Enamelled copper wire with enhanced adhesion to copper conductors
US3075893A (en) Aluminum strip electromagnetic windings and method
JP3483681B2 (en) Method of manufacturing tab terminal for electrolytic capacitor
JP2009200224A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH11286794A (en) Surface treatment of copper or copper alloy material
US1844556A (en) Electroplating apparatus
US4085013A (en) Chromium plating process employing manganese dioxide coated anodes