JPH04121701A - Antireflection film - Google Patents

Antireflection film

Info

Publication number
JPH04121701A
JPH04121701A JP2243576A JP24357690A JPH04121701A JP H04121701 A JPH04121701 A JP H04121701A JP 2243576 A JP2243576 A JP 2243576A JP 24357690 A JP24357690 A JP 24357690A JP H04121701 A JPH04121701 A JP H04121701A
Authority
JP
Japan
Prior art keywords
film
light
polymer
antireflection film
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2243576A
Other languages
Japanese (ja)
Inventor
Etsuko Sugawa
悦子 須川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2243576A priority Critical patent/JPH04121701A/en
Publication of JPH04121701A publication Critical patent/JPH04121701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To allow the antireflection effective for light of all wavelengths by forming a single-layered film to the bubble density higher nearer the front surface thereof and lower toward the inside in such a manner that the refractive index changes continuously from the front to the rear surface of the film. CONSTITUTION:A polymn. initiator of a relatively low mol. wt. and a crosslinking agent or sensitizer are dissolved into a polymer to form the film. This film is crosslinked by heat and radiations to form the polymer which is insoluble in solvent; thereafter the materials failing to react with the polymer or generated by the reaction are eluted by a solvent. The bubbles formed by the elution of the crosslinking agent and the sensitizer are the sizes below the wavelengths of light and, therefore, light transmittability is not degraded at all and the bubble density is made large on the front surface and gradually smaller toward the inside. The antireflection effective to visible light or the light of the wavelength region longer than the wavelengths thereof is executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、受光体及び受光体保護膜表面等の反射防止膜
に関し、更に詳しくは、ポリマーを主成分とする単層膜
であるにも係らず、表面から内部に向かって屈折率が連
続的に変化することを利用した新規な反射防止膜に関す
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an antireflection film for the surface of a photoreceptor and a photoreceptor protective film, and more specifically, it relates to an antireflection film on the surface of a photoreceptor and a photoreceptor protective film, and more specifically, to Regardless, the present invention relates to a novel antireflection film that utilizes the fact that the refractive index changes continuously from the surface toward the inside.

(従来の技術) 屈折率nの物質表面で波長先の光の反射を防ぐ為には、
屈折率:il””、膜厚=λ/4の反射防止膜が必要で
ある。ところがn1′2を満足する物質はなかなか存在
しない。そこで実際にはこれに近い屈折率の物質を反射
防止膜としているのが現状である。
(Prior art) In order to prevent the reflection of light at the wavelength on the surface of a material with a refractive index of n,
An antireflection film with a refractive index of il'' and a film thickness of λ/4 is required. However, there are very few substances that satisfy n1'2. Therefore, the current situation is that anti-reflection coatings are actually made of substances with refractive indexes close to this.

更に、かかる物質を使用したとしても一層膜につき単一
波長の光にのみ有効であり、複数の波長に関しては多層
構造の反射防止膜が必要となり、技術的にも難しく、且
つコストも高く経済性に劣るという欠点がある。
Furthermore, even if such a substance were used, each layer would be effective only for light of a single wavelength; for multiple wavelengths, a multilayered anti-reflection coating would be required, which would be technically difficult and cost-effective. It has the disadvantage of being inferior to

(発明が解決しようとしている課題) 本発明は従来技術で解決し得なかった上記の課題を解決
するものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems that could not be solved by the prior art.

即ち、本発明の目的は、単層膜であるにも係らずあらゆ
る波長の光に有効な反射防止膜を提供することにある。
That is, an object of the present invention is to provide an antireflection film that is effective against light of all wavelengths even though it is a single layer film.

本発明の別の目的は、製造が容易で経済性に優れた反射
防止膜を提供することにある。
Another object of the present invention is to provide an antireflection film that is easy to manufacture and has excellent economic efficiency.

(課題を解決する為の手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.

即ち、本発明は、ポリマーを主成分とする単層膜からな
り、且つ膜の表面から裏面にかけて連続的に屈折率が変
化することを特徴とするポリマー主体の反射防止膜であ
る。
That is, the present invention is a polymer-based antireflection film which is composed of a single layer film whose main component is a polymer, and whose refractive index changes continuously from the front surface to the back surface of the film.

(作  用) 本発明の反射防止膜は、単層膜であるにも係らず、膜の
表面から裏面にかけて屈折率が連続的に変化する為、あ
らゆる波長の光に対し有効な反射防止膜となる。
(Function) Although the anti-reflection film of the present invention is a single-layer film, the refractive index changes continuously from the front surface to the back surface of the film, so it is an effective anti-reflection film against light of all wavelengths. Become.

又、本発明の反射防止膜は、あらゆる受光体及びその保
護膜に適用可能である。
Further, the antireflection film of the present invention can be applied to any photoreceptor and its protective film.

(好ましい実施態様) 次に好ましい実施態様について、図面に従って本発明の
詳細な説明する。
(Preferred Embodiment) Next, the present invention will be described in detail with reference to the drawings regarding a preferred embodiment.

第1図は本発明の反射防止膜の概略構成図である。FIG. 1 is a schematic diagram of the antireflection film of the present invention.

図において1は、屈折率nlの物質(A)、2は本発明
の反射防止膜、5は屈折率n3の物質(B)である。
In the figure, 1 is a substance (A) with a refractive index of nl, 2 is an antireflection film of the present invention, and 5 is a substance (B) with a refractive index of n3.

反射防止膜2は、受光体又はその保護膜である物質Bの
表面に付けられ、反射防止膜2と物質Bとの間に界面4
を形成する。
The anti-reflection film 2 is attached to the surface of the photoreceptor or the substance B which is its protective film, and there is an interface 4 between the anti-reflection film 2 and the substance B.
form.

屈折率n1の物質(A)としては1例えば、空気(n岬
100)、水(nゎ” =1.333)等の低屈折率の
媒質が挙げられる。
Examples of the substance (A) having a refractive index n1 include a medium having a low refractive index such as air (n 100) and water (n'' = 1.333).

屈折率n3の物質(B)としては、例えば、ガラス(n
41.5)、プラスチック(n=1.4〜1.6)等で
、物質(A)よりも屈折率の高い物質が考えられる。
As the substance (B) having a refractive index n3, for example, glass (n
41.5), plastic (n=1.4 to 1.6), etc., which have a higher refractive index than substance (A).

本発明の反射防止膜2を形成する材料としては、PVC
z (ポリビニルカルバゾール)やスチレン−ジビニル
ベンゼン重合体、ポリ塩化ビニル、ナイロン、ポリアク
リルアミド、ポリ桂皮酸ビニル等が挙げられる。
The material for forming the antireflection film 2 of the present invention is PVC.
z (polyvinylcarbazole), styrene-divinylbenzene polymer, polyvinyl chloride, nylon, polyacrylamide, polyvinyl cinnamate, and the like.

これらの材料を用い単層膜の屈折率を連続的に変化させ
る好ましい方法としては、単層膜中に用いたポリマー材
料よりも溶解性の高い材料を包含させ、単層膜の表面か
ら上記溶解性の高い材料を溶解するがポリマーを溶解し
ない溶剤で処理する方法が挙げられる。この方法によれ
ば、単層膜の表面から順次溶解性の高い材料が溶出され
るので、単層膜の表面程生成する気泡の密度が高く、内
部に行(程その密度が低下して、膜の表面から裏面にか
けて連続的に屈折率が変化するようになる。
A preferred method for continuously changing the refractive index of a monolayer film using these materials is to include a material with higher solubility than the polymer material used in the monolayer film, and to increase the dissolution from the surface of the monolayer film. An example of this method is treatment with a solvent that dissolves highly resistant materials but does not dissolve polymers. According to this method, highly soluble materials are sequentially eluted from the surface of the monolayer film, so the density of the bubbles generated is higher at the surface of the monolayer film, and the density decreases as they move toward the inside. The refractive index changes continuously from the front surface to the back surface of the film.

特に好ましい方法はポリマー中に比較的低分子量の重合
開始剤や架橋剤又は増感剤を溶解させて膜を形成し、こ
れを熱や放射線により架橋させて、ポリマーを溶剤不溶
性にし、然る後ポリマーに反応しなかった、或は反応に
よって生じた物質を溶剤によって溶出させる方法である
。この様な方法によれば、上記の架橋剤や増感剤の溶出
によって生成した気泡は光の波長以下の大きさであるの
で、光透過性は何ら低下せず、且つ処理条件を適切に設
定することにより気泡の密度を表面を大に且つ内部に行
く程徐々に低下させることが出来る。
A particularly preferred method is to form a film by dissolving a relatively low molecular weight polymerization initiator, crosslinking agent or sensitizer in the polymer, crosslinking this with heat or radiation to make the polymer solvent insoluble, and then This is a method in which substances that have not reacted with the polymer or that have been generated by the reaction are eluted with a solvent. According to this method, the bubbles generated by the elution of the crosslinking agent and sensitizer described above are smaller in size than the wavelength of light, so the light transmittance does not decrease at all, and the processing conditions can be appropriately set. By doing so, the density of the bubbles can be gradually reduced from the surface to the inside.

以上の如き方法に使用出来る好ましい架橋剤や重合開始
剤及び増感剤としては、例えば、PVCz、スチレン−
ジビニルベンゼン共重合体、ポリ塩化ビニルに関しては
、過酸化ベンゾイル等の有機過酸化やアゾビスイソブチ
ロニトリル等アゾ化合物や、好ましくは塩素、臭素、四
塩化炭素等のハロゲン化合物が重合開始剤として挙げら
れる。
Preferred crosslinking agents, polymerization initiators, and sensitizers that can be used in the above methods include, for example, PVCz, styrene-
For divinylbenzene copolymers and polyvinyl chloride, organic peroxides such as benzoyl peroxide, azo compounds such as azobisisobutyronitrile, and preferably halogen compounds such as chlorine, bromine, and carbon tetrachloride are used as polymerization initiators. Can be mentioned.

ナイロン、ポリアクリルアミドに関しては塩化亜鉛の複
塩等のテトラゾニウム塩が架橋剤として挙げられる。又
、ポリ桂皮酸ビニルに関しては、架橋剤としてベンゾフ
ェノン、アントラキノン誘導体が挙げられ、更に、P−
ニトロジフェニル等の芳香族ニトロ化合物或いはベンズ
アルデヒド等の芳香族ケトン類が増感剤として挙げられ
る。
For nylon and polyacrylamide, examples of crosslinking agents include tetrazonium salts such as double salts of zinc chloride. Regarding polyvinyl cinnamate, crosslinking agents include benzophenone and anthraquinone derivatives, and P-
Aromatic nitro compounds such as nitrodiphenyl or aromatic ketones such as benzaldehyde may be used as sensitizers.

又、好ましい溶剤としては、PVCz、スチレンジビニ
ルベンゼン共重合体ではn−ヘキサン、キシレン等、ポ
リ塩化ビニルではエチルメチルケトン、ジオキサン等、
ナイロンではギ酸等の希釈液、ポリアクリルアミド、ポ
リ桂皮酸ビニルではトリクレン等が挙げられる。
Preferred solvents include n-hexane, xylene, etc. for PVCz and styrene divinylbenzene copolymers, and ethyl methyl ketone, dioxane, etc. for polyvinyl chloride.
For nylon, examples include diluted solutions such as formic acid, polyacrylamide, and for polyvinyl cinnamate, tricrene and the like.

例えば、PVCzを用いた場合には、増感剤を添加した
PVCzを成膜した後、光重合及び溶剤による増感剤抜
き取り工程を経ると、内部に極微細な気泡を生ずること
が分かつている。
For example, when PVCz is used, it is known that after forming a film of PVCz with a sensitizer added, microscopic air bubbles are generated inside the film when it undergoes photopolymerization and a sensitizer removal process using a solvent. .

従って、PVCzの分子量分布、増感剤の量及び溶剤に
よる処理条件を適度に設定すると、第1図に示す様に光
波長以下の気泡3が形成され、この時の気泡密度は表面
から内部に行くに従って減少する。
Therefore, if the molecular weight distribution of PVCz, the amount of sensitizer, and the treatment conditions with solvent are appropriately set, bubbles 3 with a wavelength below the light wavelength will be formed as shown in Figure 1, and the bubble density will increase from the surface to the inside. It decreases as you go.

この結果、PVCz膜は表面からPVCzと物質(B)
との界面4の間での屈折率が、n:1゜35〜1.65
まで連続的に変化し、反射防止作用を有する膜とするこ
とが出来る。
As a result, the PVCz film is separated from the PVCz and substance (B) from the surface.
The refractive index between the interface 4 with n: 1°35 to 1.65
It is possible to obtain a film having an antireflection effect.

(実施例) 実施例1 次に本発明を実施例を挙げて更に詳細に説明する。(Example) Example 1 Next, the present invention will be explained in more detail with reference to Examples.

本発明の反射防止膜は以下の様にして製造される。The antireflection film of the present invention is manufactured as follows.

先ず、重合開始剤として四ヨウ化炭素を40重量%混入
した、分子量5万〜12万のPVCzを暗所にて、2イ
ンチガラス基板上に膜厚的5μmとなる様スピンコード
した。この時、溶媒としては塩化ベンゾイルを用いた。
First, PVCz having a molecular weight of 50,000 to 120,000 and containing 40% by weight of carbon tetraiodide as a polymerization initiator was spin-coded on a 2-inch glass substrate to a film thickness of 5 μm in a dark place. At this time, benzoyl chloride was used as the solvent.

次にこれを乾燥後、100Wの蛍光灯にて5分間全面露
光し重合反応させた。
Next, after drying, the entire surface was exposed to light for 5 minutes using a 100 W fluorescent lamp to cause a polymerization reaction.

その後40℃のキシレン中に5分間浸し膜を膨潤させ、
PVCz膜内に未反応で残存している四ヨウ化炭素を溶
出させた。
The membrane was then immersed in xylene at 40°C for 5 minutes to swell.
Carbon tetraiodide remaining unreacted in the PVCz film was eluted.

次に20℃のn−ヘキサン中に2分間浸すと、膨潤して
いた膜は収縮し、この過程でPVCz膜内部に数100
Å以下の気泡3が形成された。
Next, when immersed in n-hexane at 20°C for 2 minutes, the swollen membrane contracts, and in this process several hundreds of particles are deposited inside the PVCz membrane.
Bubbles 3 of Å or less were formed.

この様にして作成した本発明の反射防止膜2の断面構造
をSEMにより観察したところ、第1図に示す様に、内
部に形成された気泡3の密度は表面で高(、膜内部に行
く程減少し、ガラス基板側では殆ど形成されていないこ
とが分かった。
When the cross-sectional structure of the anti-reflection film 2 of the present invention prepared in this manner was observed by SEM, as shown in FIG. It was found that there was a slight decrease in the number of particles, and that there was almost no formation on the glass substrate side.

更に、上記の方法により作成した本発明の反射防止膜2
をガラスに付着し、そのガラスの可視域(ん= 400
nm〜700nm )における分光透過率を測定したと
ころ、反射防止膜の付着していないガラスのみの場合と
比べ、各波長で5%〜10%の透過率の向上が見られた
Furthermore, antireflection film 2 of the present invention prepared by the above method
is attached to the glass, and the visible range of the glass (n = 400
When the spectral transmittance was measured at wavelengths (nm to 700 nm), it was found that the transmittance was improved by 5% to 10% at each wavelength compared to the case of only glass to which no antireflection film was attached.

実施例2 重合開始剤として四塩化炭素を30重量%混入した、分
子量5万〜7万のポリ塩化ビニルを暗所にて、2インチ
ガラス基板上に膜厚的5μmとなる様スピンコードした
。この時、溶媒としてはシクロヘキサノンを用いた。
Example 2 Polyvinyl chloride having a molecular weight of 50,000 to 70,000 and containing 30% by weight of carbon tetrachloride as a polymerization initiator was spin-coded on a 2-inch glass substrate to a film thickness of 5 μm in a dark place. At this time, cyclohexanone was used as the solvent.

次にこれを乾燥後、100Wの蛍光灯にて5分間全面露
光し重合反応させた。
Next, after drying, the entire surface was exposed to light for 5 minutes using a 100 W fluorescent lamp to cause a polymerization reaction.

その後40℃のジオキサン中に5分間浸し膜を膨潤させ
、ポリ塩化ビニル膜内に未反応で残存している四塩化炭
素を溶出させた。
Thereafter, the membrane was immersed in dioxane at 40° C. for 5 minutes to swell it, and unreacted carbon tetrachloride remaining in the polyvinyl chloride membrane was eluted.

次に0℃のジオキサン中に2分間浸すと、膨潤していた
膜は収縮し、この過程でポリ塩化ビニル膜内部に数10
0Å以下の気泡3が形成された。
Next, when immersed in dioxane at 0°C for 2 minutes, the swollen membrane contracts, and during this process several tens of tens of
Bubbles 3 of 0 Å or less were formed.

この様にして作成した本発明の反射防止膜2の断面構造
をSEMにより観察したところ、第1図に示す様に、内
部に形成された気泡3の密度は表面で高(、膜内部に行
く程減少し、ガラス基板側では殆ど形成されていないこ
とが分かった。
When the cross-sectional structure of the anti-reflection film 2 of the present invention prepared in this manner was observed by SEM, as shown in FIG. It was found that there was a slight decrease in the number of particles, and that there was almost no formation on the glass substrate side.

更に、上記の方法により作成した本発明の反射防止膜2
をガラスに付着し、そのガラスの可視域(λ=400n
m〜700nm )における分光透過率を測定したとこ
ろ、反射防止膜の付着していないガラスのみの場合と比
べ、各波長で5%〜10%の透過率の向上が見られた。
Furthermore, antireflection film 2 of the present invention prepared by the above method
is attached to the glass, and the visible range of the glass (λ = 400n
When measuring the spectral transmittance at wavelengths of 700 nm to 700 nm, it was found that the transmittance was improved by 5% to 10% at each wavelength compared to the case of only glass without an antireflection film attached.

実施例3 架橋剤としてベンゾフェノンを10重量%、増感剤とし
てベンズアルデヒドを5重量%混入した、分子量5万〜
7万のポリ柱皮酸ビニルを暗所にて、2インチガラス基
板上に膜厚的5μmとなる様スピンコードした。この時
、溶媒としてはクロロベンゼンを用いた。
Example 3 10% by weight of benzophenone as a crosslinking agent and 5% by weight of benzaldehyde as a sensitizer, molecular weight 50,000~
70,000 polyvinyl pyramidate was spin-coded on a 2-inch glass substrate in a dark place to a film thickness of 5 μm. At this time, chlorobenzene was used as the solvent.

次にこれを乾燥後、100Wの蛍光灯にて10分間全面
露光し架橋反応させた。
Next, after drying this, the entire surface was exposed to light for 10 minutes using a 100 W fluorescent lamp to cause a crosslinking reaction.

その後40℃のトリクレン中に5分間浸し膜を膨潤させ
、ポリ柱皮酸ビニル膜内に未反応で残存しているベーン
シフエノン及びベンズアルデヒドを溶出させた。
Thereafter, the membrane was immersed in trichlene at 40° C. for 5 minutes to swell it, and unreacted remaining vanesiphenone and benzaldehyde in the polyvinyl pyramidate membrane were eluted.

次に0℃のトリクレン中に2分間浸すと、膨潤していた
膜は収縮し、この過程でポリ柱皮酸ビニル膜内部に数1
00Å以下の気泡3が形成された。
Next, when immersed in triclene at 0°C for 2 minutes, the swollen membrane contracts, and during this process several tens of thousands
Bubbles 3 of 00 Å or less were formed.

この様にして作成した本発明の反射防止膜2の断面構造
をSEMにより観察したところ、第1図に示す様に、内
部に形成された気泡3の密度は表面で高(、膜内部に行
(程減少し、ガラス基板側では殆ど形成されていないこ
とが分かった。
When the cross-sectional structure of the anti-reflection film 2 of the present invention prepared in this manner was observed by SEM, as shown in FIG. (It was found that it decreased by a certain amount, and was hardly formed on the glass substrate side.

更に、上記の方法により作成した本発明の反射防止膜2
をガラスに付着し、そのガラスの可視域(λ= 400
nm〜700nm )における分光透過率を測定したと
ころ、反射防止膜の付着していないガラスのみの場合と
比べ、各波長で5%〜15%の透過率の向上が見られた
Furthermore, antireflection film 2 of the present invention prepared by the above method
is attached to the glass, and the visible range of the glass (λ = 400
When the spectral transmittance was measured at wavelengths (nm to 700 nm), it was found that the transmittance was improved by 5% to 15% at each wavelength compared to the case of only glass to which no antireflection film was attached.

(発明の効果) 以上説明した様に、本発明の反射防止膜は単層膜である
にもかかわらず内部屈折率が連続的に変化する為、受光
体及び受光体保護膜に付着して使用すれば、可視光或い
はそれよりも長波長域の光に対し効果的な反射防止が出
来る。
(Effects of the Invention) As explained above, the antireflection film of the present invention continuously changes its internal refractive index even though it is a single layer film, so it is used by being attached to a photoreceptor and a photoreceptor protective film. By doing so, it is possible to effectively prevent reflection of visible light or light in a longer wavelength range.

又、本発明の反射防止膜は単層膜である為、多層構造の
反射防止膜と比べ、製造コストがかからず、経済性に優
れる。
Furthermore, since the antireflection film of the present invention is a single-layer film, it is less expensive to manufacture and more economical than an antireflection film with a multilayer structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明における反射防止膜及びそれを支持す
る物質(B)の概略断面構成図である。 1:低屈折率n1の物質(A) 2:反射防止膜 3:反射防止膜内部に形成された気泡 4:反射防止膜/物質(B)界面
FIG. 1 is a schematic cross-sectional configuration diagram of an antireflection film and a substance (B) that supports it in the present invention. 1: Substance with low refractive index n1 (A) 2: Antireflection film 3: Bubbles formed inside the antireflection film 4: Antireflection film/substance (B) interface

Claims (2)

【特許請求の範囲】[Claims] (1)ポリマーを主成分とする単層膜からなり、且つ膜
の表面から裏面にかけて連続的に屈折率が変化すること
を特徴とするポリマー主体の反射防止膜。
(1) A polymer-based antireflection film, which is composed of a single layer film whose main component is a polymer, and whose refractive index changes continuously from the front surface to the back surface of the film.
(2)ポリマー内部に光波長以下の気泡を形成し、内部
屈折率を変化させた請求項1に記載の反射防止膜。
(2) The antireflection film according to claim 1, wherein bubbles having a wavelength equal to or smaller than the light wavelength are formed inside the polymer to change the internal refractive index.
JP2243576A 1990-09-12 1990-09-12 Antireflection film Pending JPH04121701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243576A JPH04121701A (en) 1990-09-12 1990-09-12 Antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243576A JPH04121701A (en) 1990-09-12 1990-09-12 Antireflection film

Publications (1)

Publication Number Publication Date
JPH04121701A true JPH04121701A (en) 1992-04-22

Family

ID=17105886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243576A Pending JPH04121701A (en) 1990-09-12 1990-09-12 Antireflection film

Country Status (1)

Country Link
JP (1) JPH04121701A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512641A (en) * 1999-10-19 2003-04-02 ロリク アーゲー Topologically structured polymer coatings
JP2003207391A (en) * 2002-01-17 2003-07-25 Nissan Motor Co Ltd Infrared detecting element and method and device for manufacturing the same
JP2006505395A (en) * 2002-11-06 2006-02-16 デーエスエム アイピー アセッツ ベー. ヴェー. Preparation of mechanically durable single layer coatings with anti-reflective properties
JP2006131881A (en) * 2004-09-13 2006-05-25 Nitto Denko Corp Method for manufacturing porous member, porous member, antireflection coating, method for manufacturing antireflection sheet and antireflection sheet
JP2007213079A (en) * 2006-02-08 2007-08-23 Dongwoo Fine-Chem Co Ltd Low reflection film and its manufacturing method
JP2009211078A (en) * 2009-04-10 2009-09-17 Hitachi Ltd Antireflection film, image display device having the same, optical recording medium, solar power generation module, and method for forming antireflection film
US8133638B2 (en) * 2006-05-30 2012-03-13 Brady Worldwide, Inc. All-polymer grating microstructure
WO2012086560A1 (en) * 2010-12-24 2012-06-28 宇部日東化成株式会社 Anti-reflection material
JP2013524295A (en) * 2010-04-14 2013-06-17 スリーエム イノベイティブ プロパティズ カンパニー Patterned gradient polymer film and method
JP2013242340A (en) * 2012-05-17 2013-12-05 Dainippon Printing Co Ltd Method of manufacturing antireflection film
WO2020153144A1 (en) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 Color conversion element
JP2020118946A (en) * 2019-01-25 2020-08-06 パナソニックIpマネジメント株式会社 Color conversion element

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906458B2 (en) 1999-10-19 2014-12-09 Rolic Ag Topologically structured polymer coating
JP4928038B2 (en) * 1999-10-19 2012-05-09 ロリク アーゲー Topologically structured polymer coating
JP2003512641A (en) * 1999-10-19 2003-04-02 ロリク アーゲー Topologically structured polymer coatings
JP2003207391A (en) * 2002-01-17 2003-07-25 Nissan Motor Co Ltd Infrared detecting element and method and device for manufacturing the same
JP2006505395A (en) * 2002-11-06 2006-02-16 デーエスエム アイピー アセッツ ベー. ヴェー. Preparation of mechanically durable single layer coatings with anti-reflective properties
JP2006131881A (en) * 2004-09-13 2006-05-25 Nitto Denko Corp Method for manufacturing porous member, porous member, antireflection coating, method for manufacturing antireflection sheet and antireflection sheet
JP2007213079A (en) * 2006-02-08 2007-08-23 Dongwoo Fine-Chem Co Ltd Low reflection film and its manufacturing method
US8133638B2 (en) * 2006-05-30 2012-03-13 Brady Worldwide, Inc. All-polymer grating microstructure
JP2009211078A (en) * 2009-04-10 2009-09-17 Hitachi Ltd Antireflection film, image display device having the same, optical recording medium, solar power generation module, and method for forming antireflection film
JP2016040608A (en) * 2010-04-14 2016-03-24 スリーエム イノベイティブ プロパティズ カンパニー Patterned gradient polymer film and method
JP2013524295A (en) * 2010-04-14 2013-06-17 スリーエム イノベイティブ プロパティズ カンパニー Patterned gradient polymer film and method
US9403300B2 (en) 2010-04-14 2016-08-02 3M Innovative Properties Company Patterned gradient polymer film and method
US10302823B2 (en) 2010-04-14 2019-05-28 3M Innovative Properties Company Patterned gradient polymer film and method
WO2012086560A1 (en) * 2010-12-24 2012-06-28 宇部日東化成株式会社 Anti-reflection material
JP2013242340A (en) * 2012-05-17 2013-12-05 Dainippon Printing Co Ltd Method of manufacturing antireflection film
WO2020153144A1 (en) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 Color conversion element
JP2020118946A (en) * 2019-01-25 2020-08-06 パナソニックIpマネジメント株式会社 Color conversion element

Similar Documents

Publication Publication Date Title
JPH04121701A (en) Antireflection film
JP2949125B2 (en) Photopolymerizable mixture and recording material prepared therefrom
JPH0296170A (en) Method of forming colored photographic image
US7147994B2 (en) Top ARC polymers, method of preparation thereof and top ARC compositions comprising the same
JPH0646301B2 (en) Photosensitive composition that can be treated with an aqueous system containing core-shell microgel
JPH0588365A (en) Photosensitive polymer composition capable of being developed by aqueous solvent at high speed
WO2007123062A1 (en) Photosensitive element, method for formation of resist pattern, and method for production of print circuit board
TWI303252B (en) Top anti-reflective coating polymer, its preparation method and top anti-reflective coating composition comprising the same
JP2590025B2 (en) Photosensitive material and image forming method
JPH0312307B2 (en)
US2719141A (en) Hydantoin esters of maleic anhydride copolymers
JPH0616720A (en) Composition for plastic optical waveguide and production of plastic optical waveguide
US3615545A (en) Novel mordant compositions and photographic elements containing same
JP2526316B2 (en) Release layer for flexographic printing plates which can be treated with water or semi-water
JPH02136858A (en) Photosensitive resin composition
JPS589936B2 (en) Photopolymerizable composition
JPH0373852B2 (en)
JP3088796B2 (en) Optical element
JPS62223750A (en) Radiation sensitive positive type resist and such resist composition
JPS5893047A (en) Positive type far ultraviolet resist
JPS63195648A (en) Image forming material
JPS58169143A (en) Formation of polymer image
JP2795663B2 (en) Photoconductor and volume phase hologram member formed using the same
JPS6279446A (en) Crosslinkable copolymer and positive type resist composed of its copolymer
JPS63123038A (en) Image forming material