JPH04121623A - Injection quantity measuring device - Google Patents

Injection quantity measuring device

Info

Publication number
JPH04121623A
JPH04121623A JP24112290A JP24112290A JPH04121623A JP H04121623 A JPH04121623 A JP H04121623A JP 24112290 A JP24112290 A JP 24112290A JP 24112290 A JP24112290 A JP 24112290A JP H04121623 A JPH04121623 A JP H04121623A
Authority
JP
Japan
Prior art keywords
fluid
injection
pressure
measuring
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24112290A
Other languages
Japanese (ja)
Other versions
JP2806019B2 (en
Inventor
Hideaki Hara
秀章 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2241122A priority Critical patent/JP2806019B2/en
Priority to DE19914130394 priority patent/DE4130394C2/en
Publication of JPH04121623A publication Critical patent/JPH04121623A/en
Application granted granted Critical
Publication of JP2806019B2 publication Critical patent/JP2806019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/002Measuring fuel delivery of multi-cylinder injection pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • G01F9/001Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine with electric, electro-mechanic or electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To achieve a high-speed and accurate measurement by injecting a fluid from a fuel injection pump into a closed pressure container when measuring the injection quantity of the fuel injection pump and then measuring pressure change within the above pressure container individually at a plurality of injection points and then performing calculation. CONSTITUTION:A fluid from a fluid injection pump 6 which is driven by a motor 5 is injected into a pressure container 1 through an injection pipe 8 and a flow injection nozzle 7. Output of a pressure sensor 2, a volume measuring means 15, and an encoder 9 is fed to a calculation means 16. The pressure container 1 is filled with the fluid, a specified pressure is maintained by a rear pressure value 4, and an electromagnetic valve 3 closes it. Pilot injection and main injection are performed within one injection process. The calculation means 16 measures pressure increase due to injection with the pressure sensor 2 and calculates the quantity of the injected fluid. When one injection process is completed, the electromagnetic valve 3 is opened and the fluid is discharged through the rear pressure valve 4. The discharged fluid volume is integrated by a volume measuring means 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体の噴射装置に於ける流体の噴射量を計測す
る装置に関するものであり、特に詳しくは、燃料噴射ポ
ンプに於ける燃料噴射量の計測装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for measuring the amount of fluid injected in a fluid injection device, and more specifically, it relates to a device for measuring the amount of fluid injected in a fuel injection pump. The present invention relates to a measuring device.

〔従来の技術〕[Conventional technology]

従来燃料噴射ポンプにおける燃料の噴射量は、噴射ノズ
ルから噴射された燃料を所定の容器に集め、その燃料の
体積を差動トランス、リフトセンサ等で測る方法が使わ
れてきた。然しながらかかる従来における燃料等の流体
の体積を測る方法は、噴射終了後流体の体積が安定する
のに時間がかかり高速でかつ自動的な測定はできない。
Conventionally, the amount of fuel injected by a fuel injection pump has been determined by collecting fuel injected from an injection nozzle into a predetermined container and measuring the volume of the fuel using a differential transformer, a lift sensor, or the like. However, in such conventional methods of measuring the volume of fluid such as fuel, it takes time for the volume of the fluid to stabilize after injection is completed, and high-speed and automatic measurement cannot be performed.

又パイロット噴射機構を持つ燃料噴射ポンプは、パイロ
ット噴射の後に、すぐメイン噴射が(るため噴射量を測
定するための手段としては、高速で応答しえるものが必
要であるが従来の方法では高速で応答しえる体積の測定
手段がないため2つの噴射を分けて測ることは不可能で
あった。
In addition, fuel injection pumps with a pilot injection mechanism perform main injection immediately after the pilot injection, so a means that can respond quickly is required to measure the injection amount, but conventional methods do not respond at high speed. It was impossible to measure the two injections separately because there was no means of measuring volume that could respond to the two injections.

〔発明が解決しようとする課題〕 本発明の目的は上記した従来技術の欠点を改良し高速で
しかも自動的に噴射流体の噴射量を正確に測定しうる流
体噴射量計測装置を提供するものであると同時に所謂、
パイロット噴射機構を持つ燃料等を含む流体の噴射ポン
プにおける、パイロット噴射量とメイン噴射量を自動的
に計測することができるとともに温度の影響を受けるこ
とが少なく高精度に上記した2つの噴射量を独立に計測
できる流体噴射量計測装置を提供するものである。
[Problems to be Solved by the Invention] An object of the present invention is to provide a fluid injection amount measuring device that can improve the above-mentioned drawbacks of the prior art and can accurately measure the injection amount of an injection fluid automatically and at high speed. At the same time, the so-called
It is possible to automatically measure the pilot injection amount and main injection amount in injection pumps for fluids containing fuel, etc., which have a pilot injection mechanism, and to measure the above two injection amounts with high accuracy without being affected by temperature. The present invention provides a fluid injection amount measuring device that can independently measure the amount of fluid ejected.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記した目的を達成するため、以下に記載され
たような技術構成を採用するものである。
In order to achieve the above object, the present invention employs the technical configuration described below.

即ち、基本的にはl噴射工程内に於いて、流体を噴射す
る流体噴射ポンプ、該流体噴射ポンプが噴射した流体を
一次的に貯留する所定の容積を有する密閉状圧力容器、
該密閉状圧力容器内の流体の圧力変化を測定する圧力変
化測定手段及び該圧力変化測定手段の出力から1噴射工
程内の流体の噴射量を計測する計測手段とから構成され
る噴射量計測装置に於いて、該流体噴射ポンプはl噴射
工程内に於いて、該流体を複数回噴射する様に構成され
ていると共に、該流体噴射ポンプから流体が複数回噴射
されるそれぞれの時点に於いて該圧力容器内に於ける圧
力変化を個別に測定してその結果を演算処理する演算手
段が含まれている噴射量計測装置を第1の発明とし、更
に、1噴射工程内に於いて、流体を噴射する流体噴射ポ
ンプ、該流体噴射ポンプが噴射した流体を一次的に貯留
する所定の容積を有する密閉状圧力容器、 該密閉状圧力容器内の流体の圧力変化を測定する圧力変
化測定手段及び該圧力変化測定手段の出力から1噴射工
程内の流体の噴射量を計測する計測手段とから構成され
る噴射量計測装置に於いて、該流体噴射ポンプは1噴射
工程内に於いて、該流体を複数回噴射する様に構成され
ていると共に、該流体噴射ポンプから流体が複数回噴射
されるそれぞれの時点に於いて該圧力容器内に於ける圧
力変化を個別に測定してその結果を算出する圧力変化計
測手段を有すると共に、該密閉状圧力容器から該流体噴
射ポンプにより該密閉状圧力容器内に噴射された流体に
相当する流体を排出する手段が設けられ、且つに、1噴
射工程内に於いて噴射された流体の体積を測定すること
により1噴射工程内に於いて複数回噴射されたそれぞれ
の流体の噴射量を計測しうる流体量算出手段とを含んで
いる噴射量計測装置を第2の発明とするものである。
That is, basically, in the injection process, a fluid injection pump that injects fluid, a closed pressure vessel having a predetermined volume that temporarily stores the fluid injected by the fluid injection pump,
An injection amount measuring device comprising a pressure change measuring means for measuring the pressure change of the fluid in the sealed pressure vessel, and a measuring means for measuring the amount of fluid injected within one injection process from the output of the pressure change measuring means. The fluid injection pump is configured to inject the fluid multiple times during the injection process, and at each time the fluid is injected from the fluid injection pump multiple times. The first invention is an injection amount measuring device that includes calculation means for individually measuring pressure changes in the pressure vessel and calculating the results, and further includes: a fluid injection pump that injects fluid, a sealed pressure vessel having a predetermined volume that temporarily stores the fluid injected by the fluid injection pump, a pressure change measuring means that measures a pressure change of the fluid in the sealed pressure vessel, and In an injection amount measuring device comprising a measuring means for measuring the amount of fluid injected within one injection process from the output of the pressure change measuring means, the fluid injection pump measures the injection amount of the fluid within one injection process. The fluid injection pump is configured to inject fluid multiple times, and the pressure change in the pressure vessel is individually measured at each time the fluid is injected multiple times from the fluid injection pump, and the results are calculated. and a means for discharging a fluid corresponding to the fluid injected into the closed pressure vessel by the fluid injection pump from the closed pressure vessel, and within one injection process. an injection amount measuring device that includes a fluid amount calculation means capable of measuring the injection amount of each fluid injected multiple times in one injection process by measuring the volume of the fluid injected in the injection process. This is the second invention.

〔作 用〕[For production]

本発明にあっては、上記した様な技術構成を採用してい
る事から、流体噴射ポンプから噴射される流体の圧力を
1噴射工程内に於ける各噴射時点毎に正確且つ高速で測
定する事が出来ると共に、該流体噴射ポンプの1噴射工
程内に於いて噴射された流体の体積を同様に正確且つ高
速で測定する事が出来るから、係る各測定値から所定の
演算処理を実行する事によって、該流体噴射ポンプの1
噴射工程内における各噴射時点での流体の噴射量を高速
に且つ精密に計測する事が出来ると共に、複数回の噴射
工程に付いて所定の測定を実行すれば平均値としての各
流体の噴射量を求めることが出来るので、より正確な測
定値を得るとか可能となる。
Since the present invention employs the above-mentioned technical configuration, the pressure of the fluid injected from the fluid injection pump can be measured accurately and at high speed at each injection point in one injection process. Since it is possible to measure the volume of the fluid injected in one injection process of the fluid injection pump accurately and at high speed, it is possible to perform predetermined arithmetic processing from each measurement value. According to one of the fluid injection pumps,
The amount of fluid injected at each injection point in the injection process can be measured quickly and precisely, and if a prescribed measurement is performed for multiple injection steps, the amount of each fluid injected as an average value can be measured. Since it is possible to obtain more accurate measurement values.

〔実施例〕〔Example〕

以下に本発明に係る噴射量計測装置の具体例を図面を参
照しながら説明する。
A specific example of the injection amount measuring device according to the present invention will be described below with reference to the drawings.

本発明に於ける流体は特に限定されるものではなく、全
ての流体が使用しうるが、特には内燃機関等に於ける燃
料供給システムに使用される燃料噴射ポンプに関する燃
料の噴射量を測定するものに適したものである。
The fluid used in the present invention is not particularly limited, and any fluid can be used, but it is particularly suitable for measuring the amount of fuel injected with respect to a fuel injection pump used in a fuel supply system of an internal combustion engine, etc. It is suitable for something.

先ず、本発明に係る噴射量計測装置の一具体例に関する
構成を説明すると、第1図に示される通り、本発明に係
る噴射量計測装置は、基本的には、l噴射工程内に於い
て複数回流体を噴射しうる流体噴射ポンプ6、該流体噴
射ポンプと接続された流体噴射ノズル7を有する密閉状
圧力容器1、該圧力容器に設けられた流体圧力検出手段
2、該圧力容H1に接続され、該圧力容器内の流体を流
出させると共に該圧力容器内の背圧を所定の圧力に保持
する電磁弁3と背圧弁4、該流体噴射ポンプの駆動状態
を検出するエンコーダ9及び該エンコーダ9と該流体圧
力検出手段2からの情報に応答して、該圧力容器内の圧
力変化を測定すると共にその結果を記憶する演算手段1
6とがら構成されているものである。
First, the configuration of a specific example of the injection amount measuring device according to the present invention will be explained. As shown in FIG. 1, the injection amount measuring device according to the present invention basically consists of A fluid injection pump 6 capable of injecting fluid multiple times, a closed pressure vessel 1 having a fluid injection nozzle 7 connected to the fluid injection pump, a fluid pressure detection means 2 provided in the pressure vessel, and a pressure vessel H1. An electromagnetic valve 3 and a back pressure valve 4 are connected to each other to cause the fluid in the pressure vessel to flow out and to maintain the back pressure in the pressure vessel at a predetermined pressure, and an encoder 9 and the encoder to detect the driving state of the fluid injection pump. 9 and calculation means 1 for measuring pressure changes in the pressure vessel in response to information from the fluid pressure detection means 2 and storing the results.
It is composed of 6 and 6 parts.

尚、該流体噴射ポンプ6と該噴射ノズル7とは噴射管8
で接続されており、該流体噴射ポンプ6から圧送された
流体は該噴射管8を通って該噴射ノズル7に到り、該噴
射ノズル7から該圧力容器l内に噴射される。
Note that the fluid injection pump 6 and the injection nozzle 7 are connected to an injection pipe 8.
The fluid pumped from the fluid injection pump 6 passes through the injection pipe 8 to reach the injection nozzle 7, and is injected from the injection nozzle 7 into the pressure vessel l.

該圧力容器は流体の噴射量を測定する為、該圧力容器内
の圧力を測定する時には密閉状に維持され、その他の場
合には該圧力容器内に噴射された流体を排出すると共に
、該圧力容器内を所定の背圧に維持する為電磁弁3と背
圧弁4が該圧力容器に取り付けられている。
Since the pressure vessel measures the amount of fluid injected, it is maintained in a sealed state when measuring the pressure inside the pressure vessel, and in other cases, the fluid injected into the pressure vessel is discharged and the pressure is A solenoid valve 3 and a back pressure valve 4 are attached to the pressure vessel to maintain a predetermined back pressure inside the vessel.

該電磁弁は、該圧力容器内の圧力を測定する時には密閉
状にしその他の場合には該圧力容器内に噴射された流体
を排出するため、2ボ一ト2位置形高速応答可能な電磁
弁である事が好ましい。
The solenoid valve is a 2-bot, 2-position, high-speed response solenoid valve in order to maintain a closed state when measuring the pressure inside the pressure vessel and to discharge the fluid injected into the pressure vessel in other cases. It is preferable that

該電磁弁3は後述する様に、演算手段16からの指令信
号によって、開閉操作が行われる。
As will be described later, the solenoid valve 3 is opened and closed in response to a command signal from the calculation means 16.

又該背圧弁4は該圧力容器内を一定の圧力に保持しうる
ものであれば如何なる構造のものでも使用しうる。
Further, the back pressure valve 4 may have any structure as long as it can maintain a constant pressure inside the pressure vessel.

本発明に使用する流体圧力検出手段2としては、圧力セ
ンサと一般的に称されているものであれば如何なるもの
でも使用しろるが、本発明の目的からして、高速で応答
しうる例えば水晶式圧力センサ等を使用することが好ま
しい。
As the fluid pressure detection means 2 used in the present invention, any device that is generally referred to as a pressure sensor may be used, but for the purpose of the present invention, for example, a quartz sensor that can respond at high speed may be used. It is preferable to use a type pressure sensor or the like.

又、本発明に於いては、該噴射量計測装置は更に該背圧
弁4が流体の方向切り換え弁10を介して該流体の体積
測定手段15と接続されており、更に前記した該演算手
段は該体積測定手段15からの情報と該エンコーダ9か
らの情報とに応答して該圧力容器1から排出される流体
の体積を測定すると共にその結果を記憶する演算手段を
含んでいるものである。
Further, in the present invention, the injection amount measuring device further includes the back pressure valve 4 connected to the fluid volume measuring means 15 via the fluid direction switching valve 10, and furthermore, the above-mentioned calculation means is connected to the fluid volume measuring means 15. It includes calculation means for measuring the volume of fluid discharged from the pressure vessel 1 in response to the information from the volume measuring means 15 and the information from the encoder 9, and for storing the results.

即ち、該方向切り換え弁10は流体の流れる方向を切り
換えるものであり、例えば、該圧力容器から流体を該体
積測定手段15に排出する場合と該体積測定手段15か
ら測定した流体を外部に排出する場合とで当該流の流れ
る方向を切り換えるものである。又他の方向切り換え弁
10′は該方向切り換え弁10と流れが逆方向になるよ
うに働く。例えば該方向切り換え弁10が該圧力容器か
ら流体を該堆積測定手段15に排出する方向の場合、該
方向切り換え弁10’ は該体積測定手段15から流体
を外部に排出する方向になる。
That is, the direction switching valve 10 is used to switch the direction in which fluid flows, for example, when discharging fluid from the pressure vessel to the volume measuring means 15, and when discharging the measured fluid from the volume measuring means 15 to the outside. The direction of the flow is changed depending on the situation. The other directional valve 10' operates in a direction opposite to that of the directional valve 10. For example, when the directional valve 10 is in the direction to discharge fluid from the pressure vessel to the deposition measuring means 15, the directional valve 10' is in the direction to discharge fluid from the volume measuring means 15 to the outside.

一方、該体積測定手段15は例えば、ピストン式の体積
流量計を使用しても良く、該圧力容器lから排出された
流体の量を該ピストン式体積流量計のピストン12の位
置の変化により測定するものである。
On the other hand, the volume measuring means 15 may be, for example, a piston-type volumetric flowmeter, and the amount of fluid discharged from the pressure vessel l is measured by a change in the position of the piston 12 of the piston-type volumetric flowmeter. It is something to do.

その為、シリンダ11とピストン12とが設けられ、又
該ピストン12と連結されたロッド13が例えば光電式
変位計14等の変位検出手段と接続されている。
For this purpose, a cylinder 11 and a piston 12 are provided, and a rod 13 connected to the piston 12 is connected to displacement detection means such as a photoelectric displacement meter 14, for example.

又、第1図に於いて5は該流体噴射ポンプを駆動するモ
ータ等の駆動手段であり、エンコーダ9は該駆動手段5
0回転を検出して適宜のパルス信号を発生させるもので
ある。
Further, in FIG. 1, 5 is a driving means such as a motor for driving the fluid injection pump, and an encoder 9 is a driving means 5 for driving the fluid injection pump.
It detects 0 rotation and generates an appropriate pulse signal.

尚、該演算手段16は該エンコーダからのパルス信号と
、該流体圧力検出手段2からの情報とさらには該体積測
定手段15からの情報とを受け、流体の噴射量に関する
所定の演算処理を実行するものであり、又該電磁弁の開
閉を制御するものである。
The calculation means 16 receives the pulse signal from the encoder, the information from the fluid pressure detection means 2, and the information from the volume measurement means 15, and executes a predetermined calculation process regarding the amount of fluid to be injected. It also controls the opening and closing of the solenoid valve.

次に本発明に係る流体の噴射量計測装置の作動について
説明する。
Next, the operation of the fluid injection amount measuring device according to the present invention will be explained.

今、第1図において、電磁弁3が閉鎖されている圧力容
器1には燃料等の流体が満たされ、背圧弁4で所定の値
に設定された背圧PKが加わっているものとする。ここ
でモータ5を駆動すると、パイロット噴射機構付流体噴
射ポンプ6が駆動されそれによって圧送された流体は、
噴射管8を通って噴射ノズル7より密閉状態の圧力容器
l内に噴射される。
Now, in FIG. 1, it is assumed that the pressure vessel 1 with the solenoid valve 3 closed is filled with fluid such as fuel, and a back pressure PK set to a predetermined value is applied by the back pressure valve 4. When the motor 5 is driven here, the fluid injection pump 6 with a pilot injection mechanism is driven, and the fluid pumped thereby is
It passes through the injection pipe 8 and is injected from the injection nozzle 7 into the sealed pressure vessel l.

本発明における具体例においては、流体噴射ポンプの1
噴射工程内における流体噴射は1回であるよりも複数回
行わせることが好ましく、それによって、噴射される流
体の量をより正確に計測することが出来る。従って本具
体例においては流体噴射装置としてl噴射工程内で少く
とも2回の流体噴射を行うように設計された流体噴射ポ
ンプを使用するものであり、更に好ましくは該l噴射工
程内における、各噴射時点での流体噴射量を異らせるよ
うにし、1噴射工程内における最初の段階における流体
噴射においては噴射される流体の量を少くし、後の段階
における流体噴射における噴射流体の量を多くするよう
にするものであり、前者をパイロット噴射、後者をメイ
ン噴射と一般的に称される。勿論本発明では1噴射工程
−内で2以上の流体噴射を行ってもよく、又各噴射時点
での噴射流体の量は同じとなるように設計することも出
来る。かかる流体が圧力容器1内に噴射されると、該圧
力容器1内の圧力は噴射された流体の■に比例して上昇
するので、前記圧力検出手段である圧力センサーでこの
圧力の変化を検出し、後述する関係式(1)により噴射
′された流体の量を計測することが出来る。
In a specific example of the present invention, one of the fluid injection pumps is
It is preferable that the fluid be ejected multiple times during the ejection process, rather than once, so that the amount of fluid injected can be measured more accurately. Therefore, in this specific example, a fluid injection pump designed to perform fluid injection at least twice in one injection process is used as the fluid injection device, and more preferably, each injection process in one injection process is The amount of fluid injected at the time of injection is made different, and the amount of fluid injected is reduced in the first stage of fluid injection in one injection process, and the amount of fluid injected in the later stage is increased. The former is generally referred to as pilot injection and the latter as main injection. Of course, in the present invention, two or more fluid injections may be performed within one injection process, and the amount of injection fluid at each injection time may be designed to be the same. When such fluid is injected into the pressure vessel 1, the pressure within the pressure vessel 1 increases in proportion to the injected fluid, so the pressure sensor serving as the pressure detection means detects this change in pressure. However, the amount of fluid injected can be measured using relational expression (1), which will be described later.

尚本発明における圧力容器1は第4図のような構成を有
しており、該圧力容器1には噴射ノズル7、圧力センサ
2、電磁弁3が取り付けられている。又演算手段16の
指令により電磁弁3を閉じると圧力容器が密閉状態とな
りその状態で噴射ノズル7より所定の流体が圧力容器1
内に噴射される。
The pressure vessel 1 according to the present invention has a configuration as shown in FIG. 4, and an injection nozzle 7, a pressure sensor 2, and a solenoid valve 3 are attached to the pressure vessel 1. Further, when the solenoid valve 3 is closed according to a command from the calculation means 16, the pressure vessel is brought into a sealed state, and in this state, a predetermined fluid is injected from the injection nozzle 7 into the pressure vessel 1.
Injected inside.

ここで流体噴射ノズル7から流体が1噴射工程内で上記
したようなパイロット噴射Pとメイン噴射Mとに分けて
噴射される例について説明する。尚以下においてパイロ
ット噴射で噴射される流体噴射量をパイロット噴射量、
メイン噴射で噴射される流体噴射量をメイン噴射量とす
る。
Here, an example will be described in which the fluid is injected from the fluid injection nozzle 7 in one injection process in a manner that is divided into the above-mentioned pilot injection P and main injection M. In the following, the fluid injection amount injected by pilot injection is referred to as pilot injection amount,
The amount of fluid injected in the main injection is defined as the main injection amount.

今、第1図の装置において流体が第2図(a)に示され
る波形に従ってそれぞれ噴射されたとすると噴射された
流体の量Δqと圧力容器内の圧力変化ΔPの関係は に ΔP=    Δq        ・・・(1)■ で表わせる。
Now, if fluid is injected in the apparatus shown in Fig. 1 according to the waveforms shown in Fig. 2(a), the relationship between the amount Δq of the injected fluid and the pressure change ΔP in the pressure vessel is ΔP= Δq...・(1) It can be expressed as ■.

一方該圧力容器1内の圧力変化ΔPは圧力センサ2で測
定され第2図(b)で示す波形をもつ圧力信号が出力さ
れる。
On the other hand, the pressure change ΔP in the pressure vessel 1 is measured by a pressure sensor 2, and a pressure signal having a waveform shown in FIG. 2(b) is output.

従って、上記圧力信号からパイロット噴射による圧力変
化ΔPP、メイン噴射による圧力変化ΔPMが計測でき
る。
Therefore, the pressure change ΔPP due to the pilot injection and the pressure change ΔPM due to the main injection can be measured from the pressure signal.

即ち、第2図(b)の波形において、パイロット噴射P
を行う前の圧力容器l内の背圧はP。であったとすると
、パイロット噴射を行った結果その圧力はP、に上昇し
、又メイン噴射を行った結果その圧力はP、からP、4
に上昇する。従って、パイロット噴射Pによる圧力変化
ΔP、はΔPp=Pr  P。     ・・・(2)
として表わされ、 又メイン噴射Mによる圧力変化ΔPMはΔPM=PM 
 PP      ・・・(3)として表わされる。
That is, in the waveform of FIG. 2(b), the pilot injection P
The back pressure inside the pressure vessel l before performing is P. Assuming that, as a result of pilot injection, the pressure rises to P, and as a result of main injection, the pressure increases from P, to P,4.
rise to Therefore, the pressure change ΔP due to the pilot injection P is ΔPp=Pr P. ...(2)
Also, the pressure change ΔPM due to main injection M is expressed as ΔPM=PM
PP is expressed as (3).

従って上記式(1)と式(2)又は(3)とからそれぞ
れの噴射における噴射流体の量を算出することが出来る
。尚本発明においてl噴射工程が終了すると演算手段1
6の制御によって、電磁弁3が開かれ、圧力容器内に噴
射された流体の量に相当する量の流体が背圧弁4を通っ
て排出され、該圧力容器内は背圧弁によって予め設定さ
れた背圧PKに維持される。
Therefore, the amount of injection fluid in each injection can be calculated from the above equation (1) and equation (2) or (3). In the present invention, when the injection process is completed, the calculation means 1
6, the solenoid valve 3 is opened, and an amount of fluid corresponding to the amount of fluid injected into the pressure vessel is discharged through the back pressure valve 4, and the inside of the pressure vessel is set in advance by the back pressure valve. The back pressure is maintained at PK.

本具体例では上述した初期圧力P0はこの背圧PKと等
しいものである。一方接圧力容器から排出された流体は
第1図に示されるシリンダ11に流入し、その流体圧力
でピストン12を移動させる。
In this specific example, the above-mentioned initial pressure P0 is equal to this back pressure PK. On the other hand, the fluid discharged from the contact pressure vessel flows into the cylinder 11 shown in FIG. 1, and the piston 12 is moved by the fluid pressure.

その変位置lは該ピストン12とロッド13で連結され
た適宜の表示手段(例えば光電式変位計)14のスケー
ル上に表示される。
The displacement position l is displayed on a scale of a suitable display means (for example, a photoelectric displacement meter) 14 connected to the piston 12 by a rod 13.

次に本発明における上記の噴射流体量計測方法を実行す
る手順を第2図のチャートと第5図の演算手段の構成を
示すブロック図を用いて説明する。
Next, the procedure for carrying out the above-mentioned injection fluid amount measuring method according to the present invention will be explained using the chart of FIG. 2 and the block diagram of FIG. 5 showing the configuration of the calculation means.

本発明における第1図の具体例においてモータ5の回転
を検出するエンコーダ9は、2種類の回転信号RTS 
 1とRTS 2を発生する。即ちRTS  1はモー
タ1回転につき1パルスの信号(I P/Rev)を発
生し、RTS 2はモータ1回転につき?20のパルス
信号(720P/Reν)を発生するようにセットされ
ている。つまり、RTS 1はエンコーダが1回転、換
言すれば流体噴射ポンプが1回転で1個のパルスを発生
させるものであり回転の短体位置を検出するものである
。従って該回転信号RTS 1のパルスとパルスの間は
1噴射工程内を意味するものである。一方回転信号RT
S 2は流体噴射ポンプが1回転する間に720個のパ
ルスを発注するものであって、このパルスは後述する圧
力容器内の圧力の検出と記憶を実行させるため、パイロ
ット噴射実行前、パイロット噴射実行後の所定の期間経
過後及びメイン噴射実行後の所定の期間経過後にそれぞ
れ発生させるトリガーパルス(TRG 1. TRG 
2゜TRG3)の発生時期を制御するタイミングパルス
として使用される。尚本発明における該回転信号RTS
 2のパルス数は720P/Revに限定されるもので
はなく、任意のパルス数を採用することが出来る。
In the specific example of FIG. 1 according to the present invention, the encoder 9 that detects the rotation of the motor 5 outputs two types of rotation signals RTS.
1 and RTS 2. That is, RTS 1 generates a signal (I P/Rev) of one pulse per motor revolution, and RTS 2 generates a signal (IP/Rev) per motor revolution. It is set to generate 20 pulse signals (720P/Rev). That is, the RTS 1 generates one pulse when the encoder rotates once, or in other words, when the fluid injection pump rotates once, and detects the position of the rotating short body. Therefore, the period between pulses of the rotation signal RTS1 means within one injection process. On the other hand rotation signal RT
S2 is to order 720 pulses during one rotation of the fluid injection pump, and these pulses are used to detect and store the pressure inside the pressure vessel, which will be described later. Trigger pulses (TRG 1. TRG
It is used as a timing pulse to control the timing of generation of 2°TRG3). Note that the rotation signal RTS in the present invention
The number of pulses 2 is not limited to 720P/Rev, and any number of pulses can be adopted.

かかる回転信号RTS 1とRTS 2とは該演算手段
16にとり込まれ、タイミング信号発生回路29によっ
て、該RTs 1信号の入力時点からRTS 2信号の
パルスをカウントし始め、予め設定されたタイミングで
トリガ信号TRY;  1. TRG 2. TRG 
3及び排出信号Hを出力する。各トリガ信号と排出信号
のタイミングの設定は外部から任意に設定できる。
The rotation signals RTS 1 and RTS 2 are taken into the calculation means 16, and the timing signal generation circuit 29 starts counting the pulses of the RTS 2 signal from the time the RTs 1 signal is input, and is triggered at a preset timing. Signal TRY; 1. TRG 2. TRG
3 and outputs a discharge signal H. The timing of each trigger signal and discharge signal can be arbitrarily set externally.

第2図(e)の波形で示されるトリガTRG  1はパ
イロット噴射の直前の適当な時期に、又第2図(f)で
示されるトリガTRG 2はパイロット噴射Pとメイン
噴射Mの間の適当な時期に、更には第2図(g)で示さ
れるトリガTRG 3はメイン噴射Mの後の適当な時期
にそれぞれパルス信号が出力するように設定される。又
該排出信号I]はトリガTRG 3の後に出力されるよ
うに設定され、その11は流体が圧力容器1から排出で
きる時間を設定する。
Trigger TRG 1 shown by the waveform in FIG. 2(e) is set at an appropriate time immediately before the pilot injection, and trigger TRG 2 shown by the waveform in FIG. 2(f) is set at an appropriate time between the pilot injection P and the main injection M. In addition, the trigger TRG 3 shown in FIG. 2(g) is set to output a pulse signal at an appropriate time after the main injection M. Further, the discharge signal I] is set to be output after the trigger TRG 3, and its 11 sets the time during which fluid can be discharged from the pressure vessel 1.

噴射ポンプ6が回転すると、まずトリガTRG 1が設
定されたタイミングで出力され、ラッチ回路21に入力
される。該ラッチ回路21は圧力センサー7からの圧力
検出信号を該演算手段16内に設けられたコンピュータ
27に取り込むまでの間、ラッチするための回路で、ト
リガTRG 1により噴射前の該圧力容器内1の圧力P
。がラッチされる。その後トリガTRG 2によりパイ
ロット噴射P後の圧力P、がラッチ回路22によりラッ
チされ、又トリガTRG 3によりメイン噴射M後の圧
力PMがラッチ回路23においてラッチされる。ラッチ
された各圧力値は、アナログ−デジタル変換回路24〜
26(A/D変換器)でアナログ値からデジタル値に変
換され、コンピュータ27に取り込まれる。尚コンピュ
ータ27に記憶された情報は適宜の指令により、そのま
まもしくは適宜の演算処理された上で必要に応じ表示手
段28に表示される。そして、前述した式(2)、及び
(3)によって パイロット噴射による圧力変化 ΔPp=Pp  P。
When the injection pump 6 rotates, the trigger TRG 1 is first output at a set timing and input to the latch circuit 21. The latch circuit 21 is a circuit for latching the pressure detection signal from the pressure sensor 7 until it is input into the computer 27 provided in the calculation means 16. pressure P
. is latched. Thereafter, the pressure P after the pilot injection P is latched by the latch circuit 22 by the trigger TRG 2, and the pressure PM after the main injection M is latched by the latch circuit 23 by the trigger TRG 3. Each latched pressure value is converted into an analog-to-digital conversion circuit 24 to
26 (A/D converter) converts the analog value into a digital value and inputs it into the computer 27. The information stored in the computer 27 is displayed on the display means 28 according to appropriate commands, either as is or after being subjected to appropriate arithmetic processing. Then, the pressure change due to pilot injection is ΔPp=PpP according to the above-mentioned equations (2) and (3).

及び メイン噴射による圧力変化 ΔPM=PN  PF が該コンピュータにおける演算処理により求められる。as well as Pressure change due to main injection ΔPM=PN PF is obtained through arithmetic processing in the computer.

トリガTRG 3が出力された後、所定の期間経過後排
出信号Hが出力されると電磁弁を開閉する駆動回路30
が作動し、電磁弁3が開く。電磁弁3が開くことにより
流体は背圧弁4を通り圧力容器1より排出される。該排
出は圧力容器1内の圧力が、背圧弁4で予め設定された
圧力PKになるまで行なわれる。つまり、噴射された流
体の量(パイロット噴射量子メイン噴射量)が排出され
ることになる。
A drive circuit 30 that opens and closes the solenoid valve when a discharge signal H is output after a predetermined period has elapsed after the trigger TRG 3 is output.
operates, and the solenoid valve 3 opens. When the solenoid valve 3 opens, fluid passes through the back pressure valve 4 and is discharged from the pressure vessel 1. The discharge is continued until the pressure inside the pressure vessel 1 reaches a pressure PK preset by the back pressure valve 4. In other words, the amount of the injected fluid (pilot injection quantum main injection amount) is discharged.

かくして排出した流体はシリンダ11に流入し、ピスト
ン12を動かす。ピストン12とロッド13で連結され
た光電式変位計14は、ピストン12の変位lに比例し
たパルスを出力し、該パルスは該演算手段16内のカウ
ンタ20にてカウントされ、ピストン変位lがデジタル
値としてコンピュータ27に取す込まれる。ピストン1
2の変位量lとピストン12の断面積Aとより、1噴射
工程で噴射された流体のIQ、は Q、=Ax1         山(4)として求めら
れる。即ち1噴射工程で噴射された流体の量を体積に変
換して求めることが出来る。
The thus discharged fluid flows into the cylinder 11 and moves the piston 12. A photoelectric displacement meter 14 connected to the piston 12 by a rod 13 outputs a pulse proportional to the displacement l of the piston 12, and the pulse is counted by a counter 20 in the calculation means 16, and the piston displacement l is digitally calculated. The value is read into the computer 27 as a value. piston 1
2 and the cross-sectional area A of the piston 12, the IQ of the fluid injected in one injection process is determined as Q,=Ax1 peak (4). That is, it can be determined by converting the amount of fluid injected in one injection process into volume.

この流体の噴射量Q0をパイロット噴射Pとメイン噴射
Mにおけるそれぞれの圧力変化の比で比例配分すること
により、次式(5)及び(6)に示すように、 パイロット噴射IQ、 、メイン噴射量Q、を求めるこ
とができる。以上が流体噴射ポンプの1噴射工程内にお
ける流体の全噴射量と、各噴射時点におけるそれぞれの
噴射量を求める手順である。
By proportionally distributing the injection amount Q0 of this fluid according to the ratio of the respective pressure changes in the pilot injection P and the main injection M, as shown in the following equations (5) and (6), the pilot injection IQ, , the main injection amount Q can be found. The above is the procedure for determining the total injection amount of fluid within one injection process of the fluid injection pump and the respective injection amounts at each injection time.

本発明では、噴射流体の量をより正確に測定するため上
記の計測方法を複数回繰り返し、その平均値を求めるこ
とが好ましい。そこで上述の計測方法をn回くり返した
場合の平均噴射量を計測する方法について、第6図のフ
ローチャートを使って説明する。まず噴射計測回数nを
設定しくステップa)、計測開始時のピストン12の位
置し、を測定し入力する(ステップb)。次でステップ
Cにおいて、トリガ信号TRG  1−TRG 3の出
力タイミングで前記した各圧力Pa 、PP 、PMを
測定し圧力ΔP P r 八PMの測定を行って記憶す
る。
In the present invention, in order to more accurately measure the amount of ejected fluid, it is preferable to repeat the above measurement method multiple times and obtain the average value. Therefore, a method of measuring the average injection amount when the above-mentioned measuring method is repeated n times will be explained using the flowchart of FIG. 6. First, the number of injection measurements n is set (step a), and the position of the piston 12 at the start of measurement is measured and input (step b). Next, in step C, the aforementioned pressures Pa, PP, and PM are measured at the output timing of the trigger signals TRG1 to TRG3, and the pressure ΔPr8PM is measured and stored.

そしてこの操作を繰り返し噴射計測回数がn回になるま
で行なう(ステップd)。
This operation is repeated until the number of injection measurements reaches n times (step d).

噴射計測回数がn回になった時、ピストン12の位置L
Eを測定し、入力する(ステップe)。
When the number of injection measurements reaches n times, the position L of the piston 12
Measure and input E (step e).

次で、第3図に示すように、ピストン12の初期位置し
3と最終位置1.E との差からピストン12の変位f
f1L=L、−LSが求められ、前述したと同じように
ピストン断面積A、ピストン総変位量りとにより流体の
総噴射量がわかり、噴射ポンプの回転した回数nで割る
ことにより、ポン11回転当たりの平均噴射量−Q゛。
Next, as shown in FIG. 3, the initial position 3 and the final position 1. Displacement f of the piston 12 from the difference with E
f1L=L, -LS is calculated, and the total injection amount of fluid is found from the piston cross-sectional area A and the piston total displacement scale in the same way as described above, and by dividing by the number of times the injection pump rotates, n, the pump turns 11 times. Average injection amount per unit - Q゛.

が次式(7)で求まる。is determined by the following equation (7).

ステップfで上記演算を行った後、n回計測した場合に
おける各1噴射工程中のパイロット噴射時における圧力
変化とメイン噴射時における圧力変化とのそれぞれの総
和ΣΔP、とΣΔPHとをコンピュータに記憶された情
報から算出しくステップgL次式(8)及び(9)によ
る比例配分式から、 n回噴射計測させた時の平均パイロット噴射量−q−7
、平均メイン噴射1頁、を求める(ステップh)。
After performing the above calculation in step f, the total sums ΣΔP and ΣΔPH of the pressure change during pilot injection and the pressure change during main injection during each injection process when measured n times are stored in the computer. From the proportional distribution formula using the following equations (8) and (9), calculate the average pilot injection amount when measuring n injections -q-7
, average main injection 1 page, is determined (step h).

本発明は、圧力を使うことにより高速な計測が可能で、
しかも、パイロット噴射からメイン噴射という短期間の
圧力の比を使うこと及び圧力と体積とを組み合せて、計
測するものであるため温度の影響を受けにくい精度のよ
い噴射量計測を行うことができる。
The present invention enables high-speed measurement by using pressure.
Moreover, since the measurement is performed by using the short-term pressure ratio from pilot injection to main injection and by combining pressure and volume, it is possible to measure the injection amount with high precision, which is less susceptible to temperature effects.

又本発明において1噴射工程で噴射された量を測る方法
として、ピストン式体積流量針を例にあげたが、他の流
量を計測する手段、例えばギヤポンプ式流量計を用いて
も計測可能である。
Furthermore, in the present invention, a piston-type volumetric flow needle is used as an example of a method for measuring the amount injected in one injection process, but it is also possible to measure the amount by using other means for measuring the flow rate, such as a gear pump-type flowmeter. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る噴射量計測装置の一具体例を示す
概略図である。 第2図は本発明に使用される各信号のタイミングチャー
トを示す図である。 第3図は本発明に於ける噴射計測回数とピストンの変位
量との関係を示すグラフである。 第4図は本発明に使用される圧力容器の構造例を示す断
面図である。 第5図は本発明に使用される演算手段の構成例を示すブ
ロック図である。 第6図は本発明に係る噴射量計測方法を実行するための
フローチャートである。 1・・・圧力容器、 2・・・圧力変化測定手段、圧力センサ、3・・・電磁
弁、     4・・・背圧弁、5・・・モータ、  
    6・・・流体噴射ポンプ、7・・・流体噴射ノ
ズル、  8・・・噴射管、9・・・エンコーダ、 lO・・・流体方向切り換え弁、 11・・・シリンダ、     12・・・ピストン、
l4・・・光電式変位計、 16・・・演算手段、 13・・・ロンド、 15・・・体積測定手段、 20・・・カウンタ、 2L22,23・・・ラッチ回路、 24.25.26・・・アナログ−デジタル変換器、2
7・・・コンピュータ、  2B・・・表示装置29・
・・タイミング信号発生回路、 30・・・電磁弁駆動回路。
FIG. 1 is a schematic diagram showing a specific example of an injection amount measuring device according to the present invention. FIG. 2 is a diagram showing a timing chart of each signal used in the present invention. FIG. 3 is a graph showing the relationship between the number of injection measurements and the amount of displacement of the piston in the present invention. FIG. 4 is a sectional view showing a structural example of a pressure vessel used in the present invention. FIG. 5 is a block diagram showing an example of the configuration of the calculation means used in the present invention. FIG. 6 is a flowchart for carrying out the injection amount measuring method according to the present invention. DESCRIPTION OF SYMBOLS 1... Pressure vessel, 2... Pressure change measuring means, pressure sensor, 3... Solenoid valve, 4... Back pressure valve, 5... Motor,
6... Fluid injection pump, 7... Fluid injection nozzle, 8... Injection pipe, 9... Encoder, lO... Fluid direction switching valve, 11... Cylinder, 12... Piston,
l4...Photoelectric displacement meter, 16...Calculating means, 13...Rondo, 15...Volume measuring means, 20...Counter, 2L22, 23...Latch circuit, 24.25.26 ...analog-digital converter, 2
7... Computer, 2B... Display device 29.
...Timing signal generation circuit, 30...Solenoid valve drive circuit.

Claims (1)

【特許請求の範囲】 1、1噴射工程内に於いて、流体を噴射する流体噴射ポ
ンプ、該流体噴射ポンプが噴射した流体を一次的に貯留
する所定の容積を有する密閉状圧力容器、該密閉状圧力
容器内の流体の圧力変化を測定する圧力変化測定手段及
び該圧力変化測定手段の出力から1噴射工程内の流体の
噴射量を計測する計測手段とから構成される噴射量計測
装置に於いて、該流体噴射ポンプは1噴射工程内に於い
て、該流体を複数回噴射する様に構成されていると共に
、該流体噴射ポンプから流体が複数回噴射されるそれぞ
れの時点に於いて該圧力容器内に於ける圧力変化を個別
に測定してその結果を演算処理する演算手段が含まれて
いる事を特徴とする噴射量計測装置。 2、該演算手段は該流体噴射ポンプから流体が複数回噴
射されるそれぞれの時点に於いて該圧力容器内に於ける
圧力変化を個別に測定してその時点に於ける流体の噴射
量を算出するものである事を特徴とする請求項1記載の
噴射量計測装置。 3、該圧力容器の内部は常時は所定の背圧に設定されて
いる事を特徴とする請求項1記載の噴射量計測装置。 4、1噴射工程内に於いて、流体を噴射する流体噴射ポ
ンプ、該流体噴射ポンプが噴射した流体を一次的に貯留
する所定の容積を有する密閉状圧力容器、該密閉状圧力
容器内の流体の圧力変化を測定する圧力変化測定手段及
び該圧力変化測定手段の出力から1噴射工程内の流体の
噴射量を計測する計測手段とから構成される噴射量計測
装置に於いて、該流体噴射ポンプは1噴射工程内に於い
て、該流体を複数回噴射する様に構成されていると共に
、該流体噴射ポンプから流体が複数回噴射されるそれぞ
れの時点に於いて該圧力容器内に於ける圧力変化を個別
に測定してその結果を算出する圧力変化計測手段を有す
ると共に、該密閉状圧力容器から該流体噴射ポンプによ
り該密閉状圧力容器内に噴射された流体に相当する流体
を排出する手段が設けられ、且つに、1噴射工程内に於
いて噴射された流体の体積を測定することにより1噴射
工程内に於いて複数回噴射されたそれぞれの流体の噴射
量を計測しうる流体量算出手段とを含んでいる事を特徴
とする噴射量計測装置。 5、該流体は燃料である事を特徴とする請求項1乃至4
の何れかに記載の噴射量計測装置。 6、該流体量算出手段による演算結果と該圧力変化計測
手段の計測結果とから、1噴射工程内に於いて複数回噴
射された流体のそれぞれの時点に於ける噴射量を演算処
理する手段が設けられている事を特徴とする請求項4記
載の噴射量計測装置。 7、該流体量算出手段による得られた1噴射工程内の流
体の噴射量を、1噴射工程内に於けるそれぞれの噴射時
点での圧力変化で比例配分することによって、各噴射時
点に於ける各流体の噴射量を計測する手段をさらに含ん
でいる事を特徴とする請求項4記載の噴射量計測装置。 8、複数回の該噴射工程を繰り返して各1噴射工程内に
於いてえられた、各噴射時点での流体の該圧力変化と該
噴射流体の量とからそれぞれの平均値を算出する演算処
理を行う演算処理手段を含んでいる事を特徴とする請求
項4に記載の噴射量計測装置。 9、1噴射工程内に於いて複数回実行される流体噴射は
、パイロット噴射とメイン噴射である事を特徴とする請
求項1乃至8の何れかに記載の噴射量計測装置。 10、1噴射工程内に於いて複数回流体を噴射しうる流
体噴射ポンプ、該流体噴射ポンプと接続された流体噴射
ノズルを有する密閉状圧力容器、該圧力容器に設けられ
た流体圧力検出手段、該圧力容器に接続され、該圧力容
器内の流体を流出させると共に該圧力容器内の背圧を所
定の圧力に保持する電磁弁と背圧弁、該流体噴射ポンプ
の駆動状態を検出するエンコーダ及び該エンコーダと該
流体圧力検出手段からの情報に応答して、該圧力容器内
の圧力変化を測定すると共にその結果を記憶する演算手
段とから構成されている事を特徴とする噴射量計測装置
。 11、該背圧弁が流体の方向切り換え弁を介して該流体
の体積測定手段と接続されている事を特徴とする請求項
10記載の噴射量計測装置。 12、該演算手段は更に該体積測定手段からの情報と該
エンコーダからの情報とに応答して該圧力容器から排出
される流体の体積を測定すると共にその結果を記憶する
演算手段を含んでいる事を特徴とする請求項11記載の
噴射量計測装置。 13、該電磁弁は該演算手段により制御されるものであ
る事を特徴とする請求項10乃至12の何れかに記載の
噴射量計測装置。
[Scope of Claims] 1. A fluid injection pump that injects fluid in the injection process, a sealed pressure vessel having a predetermined volume for temporarily storing the fluid injected by the fluid injection pump, and the hermetically sealed pressure vessel. An injection amount measuring device comprising a pressure change measuring means for measuring a pressure change of a fluid in a pressure vessel, and a measuring means for measuring an injection amount of fluid within one injection process from the output of the pressure change measuring means. The fluid injection pump is configured to inject the fluid multiple times in one injection process, and the pressure is increased at each point in time when the fluid is injected multiple times from the fluid injection pump. An injection amount measuring device characterized by including calculation means for individually measuring pressure changes in a container and calculating the results. 2. The calculation means individually measures the pressure change in the pressure vessel at each point in time when fluid is injected multiple times from the fluid injection pump, and calculates the amount of fluid injected at that point. 2. The injection amount measuring device according to claim 1, wherein the injection amount measuring device is characterized in that: 3. The injection amount measuring device according to claim 1, wherein the inside of the pressure vessel is always set at a predetermined back pressure. 4. In the injection process, a fluid injection pump that injects fluid, a sealed pressure vessel having a predetermined volume that temporarily stores the fluid injected by the fluid injection pump, and a fluid in the sealed pressure vessel. In an injection amount measuring device comprising a pressure change measuring means for measuring a pressure change of the fluid injection pump and a measuring means for measuring an injection amount of fluid within one injection process from the output of the pressure change measuring means, the fluid injection pump is configured to inject the fluid multiple times in one injection process, and the pressure in the pressure vessel at each time the fluid is injected multiple times from the fluid injection pump. A pressure change measuring means for individually measuring changes and calculating the results, and means for discharging a fluid corresponding to the fluid injected into the closed pressure vessel by the fluid injection pump from the closed pressure vessel. is provided, and by measuring the volume of the fluid injected in one injection process, a fluid amount calculation that can measure the injection amount of each fluid injected multiple times in one injection process. An injection amount measuring device characterized by comprising means. 5. Claims 1 to 4, wherein the fluid is fuel.
The injection amount measuring device according to any one of the above. 6. Means for calculating the injection amount at each point in time of the fluid injected multiple times within one injection process from the calculation result by the fluid amount calculation means and the measurement result by the pressure change measurement means. 5. The injection amount measuring device according to claim 4, further comprising: an injection amount measuring device. 7. By proportionally distributing the amount of fluid injected within one injection process obtained by the fluid amount calculation means based on the pressure change at each injection time in one injection process, 5. The injection amount measuring device according to claim 4, further comprising means for measuring the injection amount of each fluid. 8. Arithmetic processing for calculating an average value from the pressure change of the fluid at each injection point and the amount of the injection fluid obtained in each injection process by repeating the injection process a plurality of times. The injection amount measuring device according to claim 4, further comprising arithmetic processing means for performing the following. 9. The injection amount measuring device according to any one of claims 1 to 8, wherein the fluid injections executed multiple times within one injection process are a pilot injection and a main injection. 10. A fluid injection pump capable of injecting fluid multiple times in one injection process, a closed pressure vessel having a fluid injection nozzle connected to the fluid injection pump, a fluid pressure detection means provided in the pressure vessel, An electromagnetic valve and a back pressure valve that are connected to the pressure vessel to drain the fluid in the pressure vessel and maintain the back pressure in the pressure vessel at a predetermined pressure; an encoder that detects the driving state of the fluid injection pump; An injection amount measuring device comprising an encoder and a calculating means for measuring pressure changes in the pressure vessel in response to information from the fluid pressure detecting means and storing the results. 11. The injection amount measuring device according to claim 10, wherein the back pressure valve is connected to the fluid volume measuring means via a fluid direction switching valve. 12. The computing means further includes computing means for measuring the volume of fluid discharged from the pressure vessel in response to information from the volume measuring means and information from the encoder and storing the result. The injection amount measuring device according to claim 11, characterized in that: 13. The injection amount measuring device according to any one of claims 10 to 12, wherein the solenoid valve is controlled by the calculation means.
JP2241122A 1990-09-13 1990-09-13 Injection amount measuring device Expired - Lifetime JP2806019B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2241122A JP2806019B2 (en) 1990-09-13 1990-09-13 Injection amount measuring device
DE19914130394 DE4130394C2 (en) 1990-09-13 1991-09-12 Method and device for determining a quantity of fluid injected during an injection process in a specific quantity distribution and its distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2241122A JP2806019B2 (en) 1990-09-13 1990-09-13 Injection amount measuring device

Publications (2)

Publication Number Publication Date
JPH04121623A true JPH04121623A (en) 1992-04-22
JP2806019B2 JP2806019B2 (en) 1998-09-30

Family

ID=17069616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2241122A Expired - Lifetime JP2806019B2 (en) 1990-09-13 1990-09-13 Injection amount measuring device

Country Status (2)

Country Link
JP (1) JP2806019B2 (en)
DE (1) DE4130394C2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801308A (en) * 1996-03-07 1998-09-01 Denso Corporation Measuring apparatus for measuring an injected quantity of liquid
CN102137998A (en) * 2008-09-05 2011-07-27 Efs股份有限公司 Method for analysing the step-by-step injection rate provided by a fuel injection system used in a high power heat engine
JP2011158378A (en) * 2010-02-02 2011-08-18 Denso Corp Injection quantity measurement apparatus
CN102939457A (en) * 2010-05-28 2013-02-20 陈盛根 Test device and test method whereby the fuel injection valve of marine diesel engine can easily be repeatedly measured
JP2016044662A (en) * 2014-08-26 2016-04-04 株式会社小野測器 Injection measuring device
JP2016089789A (en) * 2014-11-10 2016-05-23 株式会社小野測器 Injection amount measurement device and injection amount measuring method
CN113340369A (en) * 2021-04-16 2021-09-03 中国民用航空适航审定中心 Signal processing method and device for turbine fuel mass flowmeter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861979A3 (en) * 1997-03-01 1999-08-18 LUCAS INDUSTRIES public limited company Injector test apparatus
FR2795139B1 (en) * 1999-06-18 2001-07-20 Efs Sa DEVICE FOR INSTANTLY ANALYZING THE CUT-BY-CUT INJECTION FLOW PROVIDED BY AN INJECTION SYSTEM USED IN A HEAT ENGINE
DE10100065B4 (en) * 2001-01-02 2005-04-07 Robert Bosch Gmbh Method, computer program and device for measuring the injection quantity of injection systems, in particular for motor vehicles
DE10331228B3 (en) 2003-07-10 2005-01-27 Pierburg Instruments Gmbh Device for measuring time-resolved volumetric flow processes
EP2295788A1 (en) * 2009-08-06 2011-03-16 Continental Automotive GmbH Method and arrangement for determining a mass flow of an injection process of an injection valve
DE102010002898A1 (en) * 2010-03-16 2011-09-22 Robert Bosch Gmbh Method and device for evaluating an injection device
JP5672133B2 (en) * 2011-04-28 2015-02-18 株式会社デンソー Flow measuring device
CN109386420B (en) * 2018-10-15 2021-02-02 哈尔滨工程大学 Method for measuring multi-time fuel injection rule
US12006900B1 (en) 2023-07-28 2024-06-11 Caterpillar Inc. System and method for measuring fluid delivery from a multi-fluid injector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2061401B (en) * 1979-09-15 1983-09-01 Lucas Industries Ltd Test equipment
GB2105407B (en) * 1981-09-03 1984-09-05 Hartridge Ltd Leslie Volumetric metering equipment for fuel injection systems
DE3139831C2 (en) * 1981-10-07 1987-02-05 Daimler-Benz Ag, 7000 Stuttgart Measuring device for measuring successive fuel injection quantities
DE3245148A1 (en) * 1982-12-07 1984-06-07 Alfred Prof. Dr.-Ing. 3305 Obersickte Urlaub Method for determining the delivery characteristics of injection pumps for internal combustion engines and device for implementing the method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801308A (en) * 1996-03-07 1998-09-01 Denso Corporation Measuring apparatus for measuring an injected quantity of liquid
CN102137998A (en) * 2008-09-05 2011-07-27 Efs股份有限公司 Method for analysing the step-by-step injection rate provided by a fuel injection system used in a high power heat engine
JP2012502217A (en) * 2008-09-05 2012-01-26 ウエフエス・エスアー Method for analyzing the stepwise injection rate produced by a fuel injection system used in a high power heat engine
JP2011158378A (en) * 2010-02-02 2011-08-18 Denso Corp Injection quantity measurement apparatus
CN102939457A (en) * 2010-05-28 2013-02-20 陈盛根 Test device and test method whereby the fuel injection valve of marine diesel engine can easily be repeatedly measured
JP2016044662A (en) * 2014-08-26 2016-04-04 株式会社小野測器 Injection measuring device
JP2016089789A (en) * 2014-11-10 2016-05-23 株式会社小野測器 Injection amount measurement device and injection amount measuring method
CN113340369A (en) * 2021-04-16 2021-09-03 中国民用航空适航审定中心 Signal processing method and device for turbine fuel mass flowmeter
CN113340369B (en) * 2021-04-16 2022-05-03 中国民用航空适航审定中心 Signal processing method and device for turbine fuel mass flowmeter

Also Published As

Publication number Publication date
DE4130394C2 (en) 1996-06-13
DE4130394A1 (en) 1992-03-19
JP2806019B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JPH04121623A (en) Injection quantity measuring device
JP3632282B2 (en) Injection quantity measuring device
US7254993B2 (en) Device for measuring time-resolved volumetric flow processes
AU645537B2 (en) Pump control system
KR900001562B1 (en) Apparatus for controlling fuel injection timing of a fuel injection pump
CA2643907A1 (en) Volume measurement using gas laws
JP5575264B2 (en) System and method for measuring an injection process
US3831011A (en) Method and apparatus for compensating a manifestation of fluid flow for temperature and specific gravity
US20030177823A1 (en) Method, computer program, and device for measuring the amount injected by an injection system
US4378695A (en) Apparatus for measuring fuel injection timing
US4748447A (en) Timing signal generating apparatus for rotating devices
JPS5877623A (en) Method and device for measuring flow rate of fluid
WO1993008401A2 (en) Volumetric metering equipment
JPS6160980B2 (en)
GB2256478A (en) Flow measurement device
JP4304885B2 (en) Inspection method and apparatus for measuring injection quantity
JPS5837485B2 (en) Injection amount measurement method and measuring device
CN110397534A (en) The ultrasonic measuring device and measurement method of differential pressure type single injection of fuel quality
JPS614860A (en) Injection-rate meter
CN105371928B (en) The measurement method of continuous metering fluid flowmeter
JPH0681751A (en) Measuring device for fuel injection quantity and fuel injection rate
RU2084834C1 (en) Device for measuring consumption of fuel of internal combustion engine
CN207583611U (en) A kind of metering pump flow measurement device
JPS5477823A (en) Device for measuring rate of discharge from fuel injection pump
JPS611862A (en) Everytime injection gauge

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13