JPH04121467A - Cryopump - Google Patents

Cryopump

Info

Publication number
JPH04121467A
JPH04121467A JP23985790A JP23985790A JPH04121467A JP H04121467 A JPH04121467 A JP H04121467A JP 23985790 A JP23985790 A JP 23985790A JP 23985790 A JP23985790 A JP 23985790A JP H04121467 A JPH04121467 A JP H04121467A
Authority
JP
Japan
Prior art keywords
cryogenic
low temperature
gas
cryopanel
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23985790A
Other languages
Japanese (ja)
Inventor
Kozo Matsumoto
松本 孝三
Shigeto Kawamura
河村 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23985790A priority Critical patent/JPH04121467A/en
Publication of JPH04121467A publication Critical patent/JPH04121467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To obtain a compact cryopump capable of regeneration within a short time by providing a gas-liquid separator, a very low temperature coolant forced circulating means, the heating means of the very low temperature coolant, and a cryopanel. CONSTITUTION:At the time of steady exhaust operation, a very low temperature liquefied gas subjected to gas-liquid separation by a gas-liquid separator 11 is passed through an inlet valve 12a and forcedly circulated by a first cryogenic pump 14a. The very low temperature coolant leaving the cryogenic pump 14a cools a cryopanel 16, and is partly liquefied and returned to the gas-liquid separator 11. The very low temperature gas separated there is passed through a very low temperature coolant transfer pipe 30b and returned to a cryogenic refrigerator not shown. At the time of regeneration, a very low temperature coolant feed valve 17 is closed, and a very low temperature coolant bypass valve 20 is opened to hold low temperature coolant transfer pipes 30a, 30b at a very low temperature. The cryogenic pump 14a is stopped, a second cryogenic pump 14b is started, a regenerative bypass valve 21 is opened, and a heater 15 is laid in operating state to conduct evaporation and recovery of the very low temperature liquefied gas in the cryopanel 16 and the heating of cryopanel 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、真空排気装置の1つであるクライオポンプに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cryopump, which is one type of vacuum evacuation device.

[従来の技術1 従来の装置は、例えば低温工学Vo1.21  No、
 2(1986)に示されているように、クライオパネ
ル上部に極低温冷媒(液化ヘリウム、LHeと略称)の
気液分離を有し、定常真空排気中はLHeは自然循環し
てクライオパネルを冷却するようになっていた。
[Conventional technology 1 Conventional equipment includes, for example, cryogenic engineering Vol. 1.21 No.
2 (1986), there is a gas-liquid separation of cryogenic refrigerant (liquefied helium, abbreviated as LHe) in the upper part of the cryopanel, and during steady evacuation, LHe circulates naturally to cool the cryopanel. I was supposed to.

尚、常温からの予冷時は、気液分離器を介さず直接クラ
イオパネルを冷却できるようにバイパスラインが設けら
れている。
Note that a bypass line is provided so that the cryopanel can be directly cooled without using a gas-liquid separator during pre-cooling from room temperature.

この場合において排気される主要なガスは水素である。The main gas exhausted in this case is hydrogen.

[発明が解決しようとする課題] 上記従来技術はクライオパネルの再生時間について配慮
されておらず、再生に長時間を要するという問題があっ
た。
[Problems to be Solved by the Invention] The above-mentioned conventional technology does not take into account the regeneration time of the cryopanel, and has the problem that regeneration takes a long time.

即ち、クライオポンプは原理的に、極低温に冷却された
金属面にガスを吸着、固化させているため、所定量のガ
スを排気した後には、必ず再生によって吸着、固化した
ガスを脱着させる必要がある。脱着はクライオパネルを
ガスの大気圧下での液化温度以上の温度に加温すること
によって行なわれる。例えば、水素の場合は、大気圧下
の液化温度が約20にであり、クライオパネルを約30
〜40Kまで昇温させれば充分である。
In other words, in principle, a cryopump adsorbs and solidifies gas on a metal surface cooled to an extremely low temperature, so after exhausting a predetermined amount of gas, it is necessary to desorb the adsorbed and solidified gas through regeneration. There is. Desorption is performed by heating the cryopanel to a temperature above the liquefaction temperature of the gas at atmospheric pressure. For example, in the case of hydrogen, the liquefaction temperature under atmospheric pressure is about 20°C, and the cryopanel temperature is about 30°C.
It is sufficient to raise the temperature to ~40K.

上記従来技術では、再生時に系内に保持しているLHe
の蒸発及び所定温度までの昇温は真空断熱された容器内
でクライオパネルが受ける伝導等の侵入熱によるしかな
いため、再生時間に長時間を要していたものである。
In the above conventional technology, LHe held in the system during regeneration is
The only way to evaporate and raise the temperature to a predetermined temperature is through heat intrusion, such as conduction, received by the cryopanel within a vacuum-insulated container, which requires a long regeneration time.

本発明は短時間に再生可能なりライオポンプを提供する
ことを目的としており、さらにつンバクトなりライオポ
ンプを提供することを目的とする。
An object of the present invention is to provide a lyopump that can be regenerated in a short period of time, and a further object of the present invention is to provide a lyopump that can be regenerated in a short period of time.

r課題を解決するための手段] 上記目的を達成するために、気液分離器と極低冷媒強制
循環手段と極低温冷媒の加熱手段とクライオパネルを設
けて構成した。
Means for Solving the Problem] In order to achieve the above object, a gas-liquid separator, an extremely low temperature refrigerant forced circulation means, an extremely low temperature refrigerant heating means, and a cryopanel are provided.

[作   用] 定常排気時は、極低温冷媒強制循環手段で強制循環され
た極低温冷媒はクライオパネルを気液混相状態で冷却し
た後に気液分離器で気液分離される。
[Function] During steady pumping, the cryogenic refrigerant forcibly circulated by the cryogenic refrigerant forced circulation means cools the cryopanel in a gas-liquid mixed phase state, and then is separated into gas and liquid by the gas-liquid separator.

再生時には、極低温冷媒強制循環手段で強制循環された
極低温冷媒を加熱手段で加温してクライオパネル内に導
入し、クライオパネル内に保持されていた極低温液化冷
媒を蒸発させると共に、クライオパネルを所定温度まで
昇温させクライオパネルにトラップされていた被排気ガ
スを脱着させる。脱着させた後、排気ガスを粗引き系で
排気後、極低温液化ガスを再度、強制循環させてクライ
オパネルを所定の温度まで冷却する。
During regeneration, the cryogenic refrigerant forcibly circulated by the cryogenic refrigerant forced circulation means is heated by the heating means and introduced into the cryopanel, and the cryogenic liquefied refrigerant held in the cryopanel is evaporated, and the cryogenic refrigerant is The panel is heated to a predetermined temperature and the exhaust gas trapped in the cryopanel is desorbed. After desorption, the exhaust gas is exhausted by a roughing system, and the cryopanel is cooled to a predetermined temperature by forcedly circulating the cryogenic liquefied gas again.

上記のように、極低温冷媒を強制循環させながら、必要
最少限の範囲を再生時に加温、冷却するため、再生時間
が短く、稼働率の高いクライオポンプとすることができ
る。更に、強制循環式のため、クライオパネル内の極低
温冷媒通路を少なくすることができコンパクトにするこ
とができる。
As described above, since the minimum necessary range is heated and cooled during regeneration while forcing the cryogenic refrigerant to circulate, a cryopump with short regeneration time and high operating rate can be achieved. Furthermore, because of the forced circulation type, the number of cryogenic refrigerant passages within the cryopanel can be reduced and the cryopanel can be made more compact.

[実 施 例] 以下、本発明の一実施例を第1図により説明する。第1
図において、11は気液分離器、14a及び14bは極
低温冷媒強制循環手段である極低温ポンプ、12a及び
12bは極低温ポンプ人口弁、13は極低温ポンプバイ
パス弁、15は極低温冷媒加熱手段であるヒータ、16
はクライオパネル、17は極低温冷媒供給弁、18は極
低温冷媒戻弁、19は再生時戻弁、20は極低温冷媒バ
イパス弁、21は再生バイパス弁、30a、30b、3
0cは真空断熱された極低温冷媒移送管、10は機器を
内蔵した真空断熱容器である。
[Example] An example of the present invention will be described below with reference to FIG. 1st
In the figure, 11 is a gas-liquid separator, 14a and 14b are cryogenic pumps that are cryogenic refrigerant forced circulation means, 12a and 12b are cryogenic pump artificial valves, 13 is a cryogenic pump bypass valve, and 15 is cryogenic refrigerant heating. Heater as a means, 16
1 is a cryopanel, 17 is a cryogenic refrigerant supply valve, 18 is a cryogenic refrigerant return valve, 19 is a regeneration return valve, 20 is a cryogenic refrigerant bypass valve, 21 is a regeneration bypass valve, 30a, 30b, 3
0c is a vacuum-insulated cryogenic refrigerant transfer pipe, and 10 is a vacuum-insulated container containing equipment.

次に、上記のように構成された本実施例の動作について
説明する。最初に定常の排気運転時について説明する。
Next, the operation of this embodiment configured as described above will be explained. First, the steady exhaust operation will be explained.

気液分離器11で気液分離された極低温液化ガスは、第
1の極低温ポンプ人口弁12aを通り第1の極低温ポン
プ14aで強制循環する。第1の極低温ポンプ14aを
出た極低温冷媒は、オフ状態のヒータ15を通り、クラ
イオパネル16に導入されてクライオパネル16を冷却
し、一部ガス化して気液分離器11に戻る。クライオポ
ンプ系で必要な極低温液化ガスは、第1の極低温冷媒移
送管30aて供給され、極低温冷媒供給弁17で気液分
離器11の液位を保持供給される。気液分離器11で分
離された極低温ガスは、極低温冷媒戻弁18、第2の極
低温冷媒移送管30bを通り、図示省略している極低温
冷凍磯に戻る。極低温ポンプバイパス弁13は、第1の
極低温ポンプ14a停止時にも最少の極低温液化ガスが
自然循環するように予備的に設けているものである。他
の弁及び第2の極低温ポンプ14bは閉止及び作動停止
状態にある。
The cryogenic liquefied gas separated into gas and liquid by the gas-liquid separator 11 passes through the first cryogenic pump artificial valve 12a and is forcedly circulated by the first cryogenic pump 14a. The cryogenic refrigerant that has exited the first cryogenic pump 14 a passes through the heater 15 in the OFF state, is introduced into the cryopanel 16 , cools the cryopanel 16 , is partially gasified, and returns to the gas-liquid separator 11 . The cryogenic liquefied gas required by the cryopump system is supplied through the first cryogenic refrigerant transfer pipe 30a, and is supplied while maintaining the liquid level in the gas-liquid separator 11 with the cryogenic refrigerant supply valve 17. The cryogenic gas separated by the gas-liquid separator 11 passes through the cryogenic refrigerant return valve 18 and the second cryogenic refrigerant transfer pipe 30b, and returns to the cryogenic freezing rock (not shown). The cryogenic pump bypass valve 13 is provisionally provided so that a minimum amount of cryogenic liquefied gas is naturally circulated even when the first cryogenic pump 14a is stopped. The other valves and the second cryogenic pump 14b are closed and inoperative.

次(二再生時の動作について説明する。極低温冷媒供給
弁17は閉とし、第1及び第2の極低温冷媒移送管30
a及び30bを極低温に保持するために必要な極低温冷
媒を極低温冷媒バイパス弁を開けて流す。第1の極低温
ポンプ14aを停止し、第1の極低温ポンプ入口弁12
aを閉止して、再生温度までの極低温ガスを循環するた
めの第2の極低温ポンプ]、4bを起動し、再生バイパ
ス弁21を開とする。ヒータ15を作動状態にし、クラ
イオパネル16内の極低温液化ガスの蒸発、回収及びク
ライオパネル16の加温を開始する。気液分離器11か
らの戻りガス温度が充分低い間は、極低温冷媒戻弁18
で戻るが、ガス温度が上昇してきたら再生時、戻弁19
に切り替えられ、第3の極低温冷媒移送管30cて極低
温冷凍機に戻る。クライオパネル16が所定の温度に昇
温されたらヒータ15で所定温度に保持される。
Next (Second) The operation during regeneration will be explained. The cryogenic refrigerant supply valve 17 is closed, and the first and second cryogenic refrigerant transfer pipes 30
The cryogenic refrigerant necessary to maintain a and 30b at a cryogenic temperature is allowed to flow by opening the cryogenic refrigerant bypass valve. The first cryogenic pump 14a is stopped and the first cryogenic pump inlet valve 12
4b is started, and the regeneration bypass valve 21 is opened. The heater 15 is activated, and the evaporation and recovery of the cryogenic liquefied gas in the cryopanel 16 and the heating of the cryopanel 16 are started. While the temperature of the return gas from the gas-liquid separator 11 is sufficiently low, the cryogenic refrigerant return valve 18
However, when the gas temperature rises, the return valve 19
The refrigerant is switched to the third cryogenic refrigerant transfer pipe 30c and returns to the cryogenic refrigerator. Once the cryopanel 16 is heated to a predetermined temperature, the heater 15 maintains the temperature at the predetermined temperature.

クライオパネル16から脱着された被排気ガスが図示省
略された粗引き系で排気後、ヒータ15は停止、第2の
極低温ポンプ14b停止、再生バイパス弁21は閉とす
る。第1の極低温ポンプ人口弁12aを開とし第1の極
低温ポンプ14aを起動する。合わせて、極低温冷媒バ
イパス弁20は閉止し、極低温冷媒供給弁17て気液分
離器11の液面制御を開始する。気液分離器11からの
戻りガス温度が充分低下したら再生時、戻り弁19から
極低温冷媒戻弁18に切り替えられる。以上によって、
クライオパネル16が所定の温度まで再冷却されたら再
生が完了である。尚、第2の極低温ポンプ人口弁12b
は、極低温液化ガスの強制循環にも使用できるように予
備的に設Cづられている。
After the exhaust gas desorbed from the cryopanel 16 is exhausted by a rough evacuation system (not shown), the heater 15 is stopped, the second cryogenic pump 14b is stopped, and the regeneration bypass valve 21 is closed. The first cryogenic pump artificial valve 12a is opened and the first cryogenic pump 14a is activated. At the same time, the cryogenic refrigerant bypass valve 20 is closed, and the liquid level control of the gas-liquid separator 11 is started by the cryogenic refrigerant supply valve 17. When the temperature of the return gas from the gas-liquid separator 11 drops sufficiently, the return valve 19 is switched to the cryogenic refrigerant return valve 18 during regeneration. By the above,
Regeneration is complete when the cryopanel 16 is recooled to a predetermined temperature. In addition, the second cryogenic pump artificial valve 12b
is preliminarily installed so that it can also be used for forced circulation of cryogenic liquefied gas.

本実施例によれば、再生時間が短く稼働率の高いクライ
オポンプとできる効果がある。更に又、クライオポンプ
を小形化できるという効果があ本実施例では、クライオ
ポンプを内蔵する断熱真空容器を1個としているが、配
置上の制約が有る場合は、断熱真空容器を複数に分割し
、その間を極低温冷媒移送管で接続することができる。
According to this embodiment, there is an effect that a cryopump with a short regeneration time and a high operating rate can be achieved. Furthermore, this embodiment has the effect of making the cryopump smaller. Although the cryopump is housed in a single insulated vacuum container, if there are restrictions on placement, the insulated vacuum container can be divided into multiple parts. , and can be connected by a cryogenic refrigerant transfer pipe.

又、制御装置を設け、再生操作等を自動化することで、
装置の信顆性を向上させると共に、運転操作性を向上さ
せることができる。
In addition, by installing a control device and automating playback operations, etc.
The reliability of the device can be improved, as well as the operability of the device.

[発明の効果] 本発明によれば、極低温冷媒を強制循環させ再生時には
必要最少限の範囲のみを加温、冷却できるため、再生時
間が短く稼働率が高い装置にできる効果がある。又、ク
ライオポンプを小形化できる効果がある。
[Effects of the Invention] According to the present invention, a cryogenic refrigerant is forced to circulate and only the minimum necessary range can be heated and cooled during regeneration, so that the regeneration time is short and the device has a high operating rate. Further, there is an effect that the cryopump can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のクライオポンプの系統図で
ある。
FIG. 1 is a system diagram of a cryopump according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、極低温冷媒で冷却されたクライオパネルでガスを吸
着排気するクライオポンプにおいて、前記極低温冷媒の
気液分離器と極低温冷媒強制循環手段と極低温冷媒の加
熱手段とクライオパネルとを有することを特徴とするク
ライオポンプ。 2、前記極低温冷媒の加熱手段としてヒータを使用した
第1請求項に記載のクライオポンプ。 3、前記極低温冷媒強制循環手段として極低温ポンプを
使用した第1請求項に記載のクライオポンプ。 4、前記極低温冷媒強制循環手段をバイパスするライン
を設けた第1請求項に記載のクライオポンプ。 5、前記極低温冷媒強制循環手段として、極低温液化冷
媒用と極低温ガス冷媒用と、少なくとも2種類を有する
第1請求項に記載のクライオポンプ。 6、クライオポンプを構成する機器を内蔵する断熱真空
容器を複数に分割し、その間を真空断熱された極低温冷
媒移送管で接続した第1請求項に記載のクライオポンプ
。 7、前記クライオパネル出口から極低温冷媒強制循環手
段入ロへのバイパスラインを設けた第1請求項に記載の
クライオポンプ。 8、制御装置を設け、再生操作等を自動化した第1請求
項に記載のクライオポンプ。
[Scope of Claims] 1. A cryopump that adsorbs and exhausts gas using a cryopanel cooled with a cryogenic refrigerant, which comprises a gas-liquid separator for the cryogenic refrigerant, a cryogenic refrigerant forced circulation means, and a cryogenic refrigerant heating means. A cryopump comprising: and a cryopanel. 2. The cryopump according to claim 1, wherein a heater is used as heating means for the cryogenic refrigerant. 3. The cryopump according to claim 1, wherein a cryogenic pump is used as the forced circulation means for the cryogenic refrigerant. 4. The cryopump according to claim 1, further comprising a line that bypasses the cryogenic refrigerant forced circulation means. 5. The cryopump according to claim 1, wherein the forced circulation means for cryogenic refrigerant includes at least two types, one for cryogenic liquefied refrigerant and one for cryogenic gas refrigerant. 6. The cryopump according to claim 1, wherein the insulated vacuum container housing the equipment constituting the cryopump is divided into a plurality of parts, and the parts are connected by a vacuum-insulated cryogenic refrigerant transfer pipe. 7. The cryopump according to claim 1, further comprising a bypass line from the cryopanel outlet to the cryogenic refrigerant forced circulation means input. 8. The cryopump according to claim 1, which is provided with a control device to automate regeneration operations and the like.
JP23985790A 1990-09-12 1990-09-12 Cryopump Pending JPH04121467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23985790A JPH04121467A (en) 1990-09-12 1990-09-12 Cryopump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23985790A JPH04121467A (en) 1990-09-12 1990-09-12 Cryopump

Publications (1)

Publication Number Publication Date
JPH04121467A true JPH04121467A (en) 1992-04-22

Family

ID=17050915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23985790A Pending JPH04121467A (en) 1990-09-12 1990-09-12 Cryopump

Country Status (1)

Country Link
JP (1) JPH04121467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736423A1 (en) * 1995-06-08 1997-01-10 Air Liquide Refrigeration of cryogenic panels for test chambers - regulating flow rate of cryogenic fluid, separating vapour and replenishing cryogenic fluid to maintain refrigeration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736423A1 (en) * 1995-06-08 1997-01-10 Air Liquide Refrigeration of cryogenic panels for test chambers - regulating flow rate of cryogenic fluid, separating vapour and replenishing cryogenic fluid to maintain refrigeration

Similar Documents

Publication Publication Date Title
CN100436965C (en) Method for cooling a product, particularly, for liquefying a gas, and device for implementing this method
US4597267A (en) Fast cycle water vapor cryopump
US8024941B2 (en) Method of operating an adsorption refrigeration system
JPH04121467A (en) Cryopump
KR100869518B1 (en) Method and apparatus for Cryogenic Helium Purification
JP3195986B2 (en) Helium gas supply method and device
JP2507653B2 (en) Helium refrigerator
JPH05340620A (en) Normal temperature type refining device for cryogenic freezer device
JPH01297120A (en) Regeneration of adsorption device for refining helium gas
JPH06107402A (en) Helium refiner
JP2000283395A (en) Liquefied gas storage and supply facility
JPS6353470B2 (en)
JP2856892B2 (en) Vacuum evacuation system for fusion reactor and its cryopump
JP3370154B2 (en) Cooling system
KR20240040173A (en) Xenon-Krypton Mixed Gas Component Separation System
KR20240039800A (en) Neon-Helium Mixed Gas Component Separation System
JPS6138178A (en) Vacuum exhauster
JPH04159200A (en) Space environment testing device
JPS646121B2 (en)
JPH0784961B2 (en) Helium liquefier
JPH0233877B2 (en)
JPH05340666A (en) Production of super-high purity nitrogen and equipment therefor
JPH01216081A (en) Vacuum chamber cooling method
JPS6342177B2 (en)
JPH01123957A (en) Cryogenic freezing device