JPH04121098A - Controller for air-conditioner - Google Patents

Controller for air-conditioner

Info

Publication number
JPH04121098A
JPH04121098A JP2239410A JP23941090A JPH04121098A JP H04121098 A JPH04121098 A JP H04121098A JP 2239410 A JP2239410 A JP 2239410A JP 23941090 A JP23941090 A JP 23941090A JP H04121098 A JPH04121098 A JP H04121098A
Authority
JP
Japan
Prior art keywords
power factor
instantaneous power
circuit
frequency
instantaneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2239410A
Other languages
Japanese (ja)
Inventor
Kenji Kawagishi
川岸 賢至
Kazuyuki Mitsushima
和行 満嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2239410A priority Critical patent/JPH04121098A/en
Publication of JPH04121098A publication Critical patent/JPH04121098A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance performance of an air-conditioning unit without causing degradation of motor efficiency or increase of the capacity of inverter element by performing constant control of the instantaneous power factor of an induction motor based on a preset reference value so that maximum efficiency can be achieved without being subjected to pulsating instantaneous load torque. CONSTITUTION:In order to perform constant control of the instantaneous power factor at a high efficiency point without being subjected to pulsation of load, phase difference are taken out between phase voltages Vu, Vv, Vw outputted from an inverter 10d and motor currents Iu, Iv, Iw thus producing phase difference signals. Assuming the phase difference signals and an induction motor 1a have four poles, signals are produced twelve times per single revolution. The phase difference signals are fed to an instantaneous power factor detecting circuit 19 thus producing an instantaneous power factor signal cosphi. The instantaneous power factor signal is then compared, in a comparator 21, with a reference power factor command signal cosphi* fed from a reference frequency command-reference power factor command converting circuit 20, and an instantaneous power factor control circuit 22 performs learning control thus controlling the power factor constantly so that the induction motor 1a exhibits a maximum efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、空気調和機に係り、特にその圧縮機用電動
機の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air conditioner, and particularly to a control device for a compressor motor thereof.

[従来の技術] 第13図は例えば昭和62年電気学会全国大会で琵表さ
れた脈動負荷対応形ブラシレス直流モータの速度制御法
があった。
[Prior Art] Fig. 13 shows, for example, a speed control method for a brushless DC motor capable of handling pulsating loads, which was presented at the National Conference of the Institute of Electrical Engineers of Japan in 1986.

第13図に制御装置を空調機に応用したシステムの全体
構成図を示し、第14図に第13図の要部である密閉形
圧縮機の制御システムの構成図をボす。
FIG. 13 shows an overall configuration diagram of a system in which the control device is applied to an air conditioner, and FIG. 14 shows a configuration diagram of a control system for a hermetic compressor, which is the main part of FIG. 13.

図において(1)は圧縮機 (2)は凝縮器、(3)は
キャピラリチューブ、(4)は蒸発器で、これらはそれ
ぞれ閉ループ接続され冷凍サイクルを成している。
In the figure, (1) is a compressor, (2) is a condenser, (3) is a capillary tube, and (4) is an evaporator, which are each connected in a closed loop to form a refrigeration cycle.

(5)は位置検出器で、上記圧縮機(1)の回転位置を
検出する。 (6)、  (7)はそれぞれ上記凝縮器
(2)、蒸発器(4)に設けた検出器で、上記圧縮機(
1)に加わる負荷情報を検出し、ている。
(5) is a position detector that detects the rotational position of the compressor (1). (6) and (7) are detectors installed in the condenser (2) and evaporator (4), respectively;
1) Detects and detects load information applied to

(8)は信号変換部で、上記各検出器(6)、  (7
)等からの出力信号をデジタル量に変換する。 (9)
はこの信号変換部からの入力信号に基づいて演算処理す
る制御部で、マイクロコンピュータ等から成っている。
(8) is a signal conversion unit, and each of the above-mentioned detectors (6), (7
) etc. is converted into a digital quantity. (9)
is a control section that performs arithmetic processing based on the input signal from this signal conversion section, and is composed of a microcomputer or the like.

(10)は可変周波数電力変換部で、可変周波数電力を
圧縮機(1)の誘導電動機(1a)に供給するよう交流
TL流(1oa)を直流に変換する整流器(]、Ob)
と、整流器(1ob)を平滑化する平滑コンデンサ(1
0c)と、直流出力を制御部(9)からの制御信号に基
づいて任意の周波数の三相交流に変換するインバータ 
(1,Od)と、直流電流を検出する直流電力検出器(
loe)とから構成されている。(11)は交流電流検
出器、 (12)は上記制御部(9)から出力されろ電
流指令信号と直流τft検出器(10e)がらの電流値
とを比較演算する電流制御部 (13)は上記制御部(
9)及び電流制御部(]2)からの出力信号を増幅して
インバータ (10d)に送るベースアンプである。
(10) is a variable frequency power converter, which is a rectifier (], Ob) that converts the AC TL flow (1OA) into DC so as to supply variable frequency power to the induction motor (1a) of the compressor (1).
and a smoothing capacitor (1ob) that smoothes the rectifier (1ob).
0c) and an inverter that converts the DC output into three-phase AC of any frequency based on the control signal from the control unit (9).
(1, Od) and a DC power detector (
loe). (11) is an AC current detector; (12) is a current control unit (13) that compares and calculates the current command signal output from the control unit (9) and the current value from the DC τft detector (10e); The above control unit (
This is a base amplifier that amplifies the output signals from the current control section (9) and the current control section (2) and sends it to the inverter (10d).

次に動作について説明する。Next, the operation will be explained.

圧縮機(1)に加わる負荷の情報は、冷凍サイクルの検
出器(6)、  (7)で検出され、圧縮機(1)の回
転位置は位置検出器(5)で検出される。
Information on the load applied to the compressor (1) is detected by detectors (6) and (7) of the refrigeration cycle, and the rotational position of the compressor (1) is detected by a position detector (5).

これらの検出信号は進行変換部(8)でデジタル量に変
換され制御部(9)に送られる。
These detection signals are converted into digital quantities by a progressive conversion section (8) and sent to a control section (9).

制御部(9)では、その信号に基づいて圧縮機(1)の
負荷l・ルクの大きさ及び回転位置を算出判定し、電流
指令信号として出力する。この電流指令信号を受けた電
流制御部(12)では直流電流検出器(10e)で検出
したモータ電流と比較演算し、その差信号をベースアン
プ(13)に出力して、ベースアンプ(13)で増幅さ
れてインバータ (]、0ct)に制御信号として出力
し三相交流電力を制御することにより電動機(1a)を
制御する。
The control unit (9) calculates and determines the magnitude of the load 1 and the rotational position of the compressor (1) based on the signal, and outputs the result as a current command signal. The current control unit (12) that receives this current command signal performs a comparison calculation with the motor current detected by the DC current detector (10e), outputs the difference signal to the base amplifier (13), and outputs the difference signal to the base amplifier (13). The electric motor (1a) is controlled by amplifying the signal and outputting it as a control signal to the inverter (], 0ct) to control the three-phase AC power.

制御された圧縮機(1)では第15図に示す負荷トルク
T3、波形変化と同期したモータ出力トルクT、が出力
される。圧縮機()の回転軸系においても非回転体側加
振トルク(T、、−T、)がゼロとなる。
The controlled compressor (1) outputs the load torque T3 shown in FIG. 15 and the motor output torque T synchronized with the waveform change. Also in the rotating shaft system of the compressor (), the excitation torque (T, , -T,) on the non-rotating body side becomes zero.

し発明が解決しようとする課題1 従来の空気調和機の制御装置は以上のように構成されて
いるので、特に圧縮機の電動機出力トルクを負荷トルク
に追従させる様に制御するため。
Problem 1 to be Solved by the Invention Since the conventional air conditioner control device is configured as described above, it is particularly necessary to control the compressor motor output torque to follow the load torque.

モータ効率の低下とインバータの変換素子の増大を招く
問題点があった。
There were problems that resulted in a decrease in motor efficiency and an increase in the number of conversion elements in the inverter.

また圧縮機の電動機がブラシレス直流モータである場合
、界磁磁石の高温時における特性の劣化と界磁磁石の高
速回転時における脆さに問題点があった。
Further, when the electric motor of the compressor is a brushless DC motor, there are problems in that the characteristics of the field magnet deteriorate at high temperatures and the field magnet becomes brittle when rotated at high speed.

この発明は上記のような問題点を解消するためになされ
たもので、モータ効率の低下及びインバタ素子容量の増
大を招く二となく空調機ユニットの性能を向上できる空
気調和機の制御装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides an air conditioner control device that can improve the performance of an air conditioner unit without causing a decrease in motor efficiency and an increase in inverter element capacity. The purpose is to

また、界6H[石の高温時の特性の劣化、及び高速回転
時の脆さのない誘導電動機で、安定な高速回転と、低振
動の密閉形圧縮機を搭載した空気調和機の制御装置を得
ることを目的とする。
In addition, KAI 6H [an air conditioner control device equipped with a hermetic compressor with stable high-speed rotation and low vibration, using an induction motor that does not cause deterioration of the characteristics of stone at high temperatures or brittleness at high-speed rotation. The purpose is to obtain.

1課題を解決するための手段J 第1の発明に係る空気調和機の制御装置は、可変周波数
電力変換部と、二の可変周波数電力変換部を制御する制
御手段と、三相交流出力端に瞬時力率検知器を備え、上
記瞬時力率検知器からの出力を受ける瞬時力率検知回路
と、基準周波数指令基準力率指令変換回路と、比較器と
、瞬時力率制御回路と、力率/電圧変換回路と、この力
率/電圧変換回路からの出力を増幅して可変周波数電力
変換部のインバータに出力するベースアンプ回路から成
る制御手段としたものである。
Means for Solving the Problem J A control device for an air conditioner according to the first invention includes a variable frequency power converter, a control means for controlling the second variable frequency power converter, and a three-phase AC output terminal. An instantaneous power factor detection circuit comprising an instantaneous power factor detector and receiving an output from the instantaneous power factor detector, a reference frequency command reference power factor command conversion circuit, a comparator, an instantaneous power factor control circuit, and a power factor The control means includes a power factor/voltage conversion circuit and a base amplifier circuit that amplifies the output from the power factor/voltage conversion circuit and outputs the amplified output to the inverter of the variable frequency power conversion section.

第2の発明では、すべり周波数演算回路と1周波数制御
回路とね周波数−電圧変換回路と、この周波数−電圧変
換回路のゆ付勢力を増幅して可変周波数電力変換部のイ
ンバータに供給するベースアンプ回路からなる制御手段
としたものである。
The second invention includes a slip frequency calculation circuit, a single frequency control circuit, a frequency-voltage conversion circuit, and a base amplifier that amplifies the biasing force of the frequency-voltage conversion circuit and supplies it to the inverter of the variable frequency power conversion section. The control means consists of a circuit.

[作用] この第1の発明においては、制御手段が誘導電動機の瞬
時力率を予め設定した基準値に基づいて最大効率になる
様に、すなわち空気調和機の入力電力が最小値になる様
に、負荷トルクの瞬時脈動1ヘルクに影響されることな
く一定に制御するものであるから、電動機の効率及びユ
ニッ1へ効率が高められ、且つインバータ素子容量の増
大を招く二となくユニット性能を向上し得る。
[Operation] In the first invention, the control means controls the instantaneous power factor of the induction motor so that it reaches the maximum efficiency based on a preset reference value, that is, so that the input power of the air conditioner becomes the minimum value. Since it is controlled at a constant level without being affected by the instantaneous pulsation of the load torque of 1 herc, the efficiency of the motor and the efficiency of the unit 1 are increased, and the unit performance is improved without causing an increase in the inverter element capacity. It is possible.

また、第2の発明においては、制御手段が、瞬時電動機
力率より演算した電動機すべり周波数信号により、可変
周波数電力変換部の電源周波数及び電源電圧を操作し、
圧縮機の瞬時回転変動をなくする様に制御するものであ
るから、安定な回転と低振動化された圧縮機が実現する
Further, in the second invention, the control means operates the power supply frequency and power supply voltage of the variable frequency power converter by the motor slip frequency signal calculated from the instantaneous motor power factor,
Since it is controlled to eliminate instantaneous rotation fluctuations of the compressor, a compressor with stable rotation and low vibration can be realized.

[実施例] 実施例1 第1図はこの発明の一実施例による空気調和機の制御装
置であり、(1)は圧縮機、 (,19)は二の圧縮機
を駆動する三相誘4@動機 (14)は上記圧縮機(1
)の吹出側に接続した四方弁、(4)はこの四方弁に冷
媒配v(15)を介して接続した室内熱交換器、 (1
6)は室内ファン、(2)は室外熱交換器で。
[Embodiments] Embodiment 1 Figure 1 shows a control device for an air conditioner according to an embodiment of the present invention, in which (1) is a compressor, and (, 19) is a three-phase induction 4 that drives the second compressor. @Motive (14) is the above compressor (1
), (4) is an indoor heat exchanger connected to this four-way valve via refrigerant distribution v (15), (1
6) is an indoor fan, and (2) is an outdoor heat exchanger.

上記四方弁(]4)に冷媒配管(15)を介して接続さ
れている。(17)は室外ファン、(3)は膨張弁で、
L配室内熱交換器(4)と室外交換器(2)との間に配
設されている。
It is connected to the four-way valve (4) via a refrigerant pipe (15). (17) is an outdoor fan, (3) is an expansion valve,
It is arranged between the L-distributed indoor heat exchanger (4) and the outdoor exchanger (2).

(10)は可変周波数電力変換部で、上記三相誘導電動
機(1a)に三相交流電力を供給するよう、交流電源(
10a)に接続された整流器(101))、平滑コンデ
ンサ(10c)  インバータ (10d)及び直流電
流検出器(1,Oe)とから成り、三相交流出力端は上
記誘導電動機(1a)に接続されている。
(10) is a variable frequency power converter that converts the AC power source (
It consists of a rectifier (101)), a smoothing capacitor (10c), an inverter (10d), and a DC current detector (1, Oe) connected to the induction motor (1a), and the three-phase AC output end is connected to the induction motor (1a). ing.

(18)はこの三相交流出力端側にそれぞれ設けた瞬時
力率検知器、 (19)は瞬時力率検知回路で、上記力
率検知器(18)から出力された力率信号を波形整形し
ている。(20)は基準周波数指令−基準力率指令変換
回路で、外部からの基準周波数指令f。
(18) is an instantaneous power factor detector provided at each of the three-phase AC output ends, and (19) is an instantaneous power factor detection circuit that shapes the power factor signal output from the power factor detector (18) into a waveform. are doing. (20) is a reference frequency command-reference power factor command conversion circuit, which receives a reference frequency command f from the outside.

から基準力率指令cosφ′を求めている。The reference power factor command cosφ' is obtained from .

(21)は比較器で、基準力率指令cosψ″と瞬時力
率検知回路(19)から出力される力率信号c。
(21) is a comparator that outputs the reference power factor command cos ψ'' and the power factor signal c output from the instantaneous power factor detection circuit (19).

Sφを比較演算する。A comparison operation is performed on Sφ.

(22)はこの比較器から出力される瞬時力率を比較演
算する瞬時力率制置回路で、指令cosφ。
(22) is an instantaneous power factor control circuit that compares and calculates the instantaneous power factor output from this comparator, and command cosφ.

を力率/′電圧変換回路(23)に出力している。(2
4)は力率/電圧変換回路(23)により変換された電
圧指令信号V。を入力しているベースアンプ回路で上記
可変周波数電力変換部(10)のインバータ (10d
)に電圧指令信号■。を増幅して供給している。
is output to the power factor/'voltage conversion circuit (23). (2
4) is the voltage command signal V converted by the power factor/voltage conversion circuit (23). The inverter (10d) of the variable frequency power converter (10) is
) to the voltage command signal■. is amplified and supplied.

(25)はこれら瞬時力率検知回路(19)、基準周波
数指令−基準力率指令変換回路(20)、比較器(21
)瞬時力率制御回路(22)、力率/電圧変換回路(2
3)及びベースアンプ回路(24)より構成される制御
手段である。
(25) represents the instantaneous power factor detection circuit (19), the reference frequency command-reference power factor command conversion circuit (20), and the comparator (21).
) Instantaneous power factor control circuit (22), power factor/voltage conversion circuit (2
3) and a base amplifier circuit (24).

第3図は瞬時力率制御回路の周辺及び詳細ブロック図で
ある。
FIG. 3 is a peripheral and detailed block diagram of the instantaneous power factor control circuit.

図において9周波数基準指令−力率基準指令変換回路(
20)は、基準速度信号f。 から、ある周波数似おけ
る電動機(1a)と可変周波数電力変換部(10)の最
大効率を示す力率データを参照する。参照された力率基
準信号は、瞬時力率検知回路(19)から出力される瞬
時力率信号cosφから偏差(差分)を比較器(21)
でとり、瞬時力率制御回路(22)に送る。瞬時力率制
御回路(22)は、瞬時力率信号の各区間ごとに(0°
〜360°区間で12信号(4極モータにおいて))、
瞬時力率信号の差分(△cosφ)を学習(積分)する
In the figure, 9 frequency reference command - power factor reference command conversion circuit (
20) is a reference speed signal f. , power factor data indicating the maximum efficiency of the electric motor (1a) and the variable frequency power converter (10) at a certain frequency is referred to. The referenced power factor reference signal is a deviation (difference) from the instantaneous power factor signal cosφ output from the instantaneous power factor detection circuit (19).
and sends it to the instantaneous power factor control circuit (22). The instantaneous power factor control circuit (22) controls (0°) for each section of the instantaneous power factor signal.
12 signals in ~360° interval (for 4-pole motor),
Learn (integrate) the difference (Δcosφ) of the instantaneous power factor signal.

次に実施例1の発明の制御装置の動作を説明する。先ず
冷媒回路の暖房運転を簡単に説明する。
Next, the operation of the control device of the invention according to the first embodiment will be explained. First, the heating operation of the refrigerant circuit will be briefly explained.

圧縮機(1)で圧縮された冷媒は、高温高圧の状態で四
方弁(14)及び配管(15)を通して室内熱交換器(
4)に流れる。
The refrigerant compressed by the compressor (1) passes through the four-way valve (14) and piping (15) under high temperature and high pressure to the indoor heat exchanger (
4).

ここで、室内側のファン(16)により室内の冷たい空
気が熱交換器(4)を通過することで高温高圧の冷媒と
熱交換され9通風となって室内に吹き出すことにより室
内を暖房する。この時、熱交換器(4)内を流れる冷媒
は、膨張弁(3)により膨張され、低温低圧の液体とな
る。そして、この液体冷媒は室外熱交換器(2)に送ら
れ、熱を吸収して再びガス状になり、圧縮機(1)に戻
って再び圧縮されることになる。
Here, cold air inside the room is passed through the heat exchanger (4) by the fan (16) on the indoor side, and heat is exchanged with the high temperature and high pressure refrigerant, and the air is blown into the room to heat the room. At this time, the refrigerant flowing through the heat exchanger (4) is expanded by the expansion valve (3) and becomes a low-temperature, low-pressure liquid. This liquid refrigerant is then sent to the outdoor heat exchanger (2), absorbs heat, becomes gaseous again, returns to the compressor (1), and is compressed again.

ここで、誘導電動機(1a)は圧縮機(1)に直結され
9回転動作は圧縮動作に変換される。
Here, the induction motor (1a) is directly connected to the compressor (1), and nine rotation operations are converted into compression operations.

このような暖房運転において、圧縮機(1)が。In such heating operation, the compressor (1).

例えば、ロータリ圧縮機のような場合、誘電電動機(1
a)の効率nは第4図(c)に示す様に、第4図(b)
に示すすべり変化を受けて脈動することになり、効率の
平均値が低下する。そこで第1の発明の実施例に示す制
御装置にあっては、瞬時力率を脈動負荷の影響を受けず
に高い効率点で一定に制御するためには、第5図に示す
様に、インバータ(lod)の出力する各相の電圧(V
、、V、、V、)と、モータ電流(1,、I、、I、)
の位相差をとり1位相差信号とする。位相差信号は誘導
電動機(1a)が4極であるとすると1回転のうち12
回。
For example, in the case of a rotary compressor, a dielectric motor (1
As shown in Fig. 4(c), the efficiency n of a) is as shown in Fig. 4(b).
It will pulsate due to the slip change shown in Figure 2, and the average value of efficiency will decrease. Therefore, in the control device shown in the embodiment of the first invention, in order to control the instantaneous power factor constant at a high efficiency point without being affected by the pulsating load, an inverter is used as shown in FIG. The voltage (V) of each phase outputted by (lod)
,,V,,V,) and motor current (1,,I,,I,)
The phase difference is taken and used as one phase difference signal. If the induction motor (1a) has 4 poles, the phase difference signal is 12 out of 1 rotation.
times.

信号が得られる。この位相差信号を瞬時力率検出回路(
19)に送りと瞬時力率信号(COSφ)を得る。
I get a signal. This phase difference signal is sent to the instantaneous power factor detection circuit (
19) Obtain the feed and instantaneous power factor signal (COSφ).

この瞬時力率信号を基準周波数指令−基準力率指令変換
回路(20)からの基準力率指令信号cosφ′とを比
較器(21)で比較し、瞬時力率検出回路(22)で学
習制御させることにより、誘導電動機(1a)の瞬時力
率が最大効率を示す力率に常に一定制御される。
A comparator (21) compares this instantaneous power factor signal with a reference power factor command signal cosφ' from a reference frequency command-reference power factor command conversion circuit (20), and learning control is performed by an instantaneous power factor detection circuit (22). By doing so, the instantaneous power factor of the induction motor (1a) is always controlled to be a power factor that exhibits maximum efficiency.

誘導電動機(1a)の瞬時力率が一定に制御されると効
率も第6図(c)に示すように高く一定制御される。
When the instantaneous power factor of the induction motor (1a) is controlled to be constant, the efficiency is also controlled to be high and constant as shown in FIG. 6(c).

又電動機電流の脈動もない。この様子を表わしたのが第
6図a、bである。
Also, there is no pulsation in the motor current. This situation is shown in FIGS. 6a and 6b.

また、電動機効率及び可変周波数電力変換部(lO)の
変換効率は空調ユニット性能に直接関係するので、結果
として高いC2○、P(性能係数)を得ることが出来る
Furthermore, since the motor efficiency and the conversion efficiency of the variable frequency power converter (lO) are directly related to the performance of the air conditioning unit, high C2○, P (performance coefficient) can be obtained as a result.

なお、第7図はモータカ率の変化をモータ特性図上で表
わしたものであり、大まかに言って、モータカ率は脈動
負荷に従って矢印の変化をする。
Incidentally, FIG. 7 shows changes in the motor power ratio on a motor characteristic diagram, and roughly speaking, the motor power ratio changes as indicated by the arrows in accordance with the pulsating load.

実施例2 第2実施例は第1実施例の第1図及び第2図の可変周波
数電力変換部(10)及び瞬時力率検知回路(19)ま
では同一なので説明を除く。
Embodiment 2 The second embodiment is the same as the first embodiment up to the variable frequency power converter (10) and instantaneous power factor detection circuit (19) shown in FIGS. 1 and 2, so their explanation will be omitted.

第8図において(26)はすべり周波数演算回路で瞬時
力率検知回路(19)から出力される瞬時力率信号から
、電動機(1a)のすべり周波数fsを演算する。(2
7)は周波数制御回路で、すベリ周波数fSと周波数基
準信号f。′とから周波数指令信号f0を比較演算する
。(28)は周波数−電圧変換回路で周波数制御回路(
27)から出力される周波数指令信号f。を電圧指令信
号■。に変換する。(24)はこの周波数−電圧変換回
路(28)から出力される信号を増幅して可変周波数電
力変換部(10)のインバータに(10d)供給するベ
ースアンプ回路である。
In FIG. 8, (26) is a slip frequency calculation circuit which calculates the slip frequency fs of the electric motor (1a) from the instantaneous power factor signal output from the instantaneous power factor detection circuit (19). (2
7) is a frequency control circuit that controls the frequency fS and the frequency reference signal f. ′, the frequency command signal f0 is compared and calculated. (28) is a frequency-voltage conversion circuit and a frequency control circuit (
Frequency command signal f output from 27). ■ Voltage command signal. Convert to (24) is a base amplifier circuit that amplifies the signal output from this frequency-voltage conversion circuit (28) and supplies it (10d) to the inverter of the variable frequency power conversion section (10).

第9図は2周波数制御回路の詳細ブロックである。図に
おいで すベリ周波数演算回路(26)から演算された
すべり周波数fsは、遅延器(27at)(27a2)
(27as)(27a4)、加算器(27b、 )(2
7b2) (27b3)(27b4)、増幅器(27c
)などにより瞬時力率信号の各区間ごと(0°〜360
’区間30°ごと(4極モータの場合))に学習制御各
区間ごとに積分される。学習制御されたすベリ周波数は
周波数基準信号f。”と加算器(27b、)で加算され
て周波数指令信号f。どなる。
FIG. 9 is a detailed block diagram of the two-frequency control circuit. In the figure, the slip frequency fs calculated from the Veri frequency calculation circuit (26) is calculated by the delay device (27at) (27a2).
(27as) (27a4), adder (27b, ) (2
7b2) (27b3) (27b4), amplifier (27c
) etc. for each section of the instantaneous power factor signal (0° to 360
'Learning control is integrated for each section (in the case of a 4-pole motor) every 30° section (for a 4-pole motor). The learning-controlled frequency is the frequency reference signal f. ” and are added by the adder (27b,) to produce the frequency command signal f.

次に実施例2の発明の制御装置の動作を説明する。ここ
で冷媒回路の暖房運転は実施例1と同じなので説明をは
ふき、圧縮機(1)が1例えばロタリ圧縮機の制御の場
合を説明する。
Next, the operation of the control device according to the second embodiment of the invention will be explained. Here, since the heating operation of the refrigerant circuit is the same as in the first embodiment, the explanation will be omitted, and the case where the compressor (1) is one, for example, a rotary compressor, will be explained.

負荷トルクは第10図のT6の様になる。この時誘導電
動機(1a)の発生トルクがT。の様にほぼ一定だとす
るとT6−T工の差分トルクが誘導電動機(1a)の回
転子を加振することになる。
The load torque becomes T6 in FIG. At this time, the torque generated by the induction motor (1a) is T. Assuming that the torque is almost constant as shown in FIG.

従って負荷トルクToに対して発生トルクを追従させる
様に制御すれば誘導電動機(1a)の回転子は加振され
ることなくスムーズな回転をする。
Therefore, if the generated torque is controlled to follow the load torque To, the rotor of the induction motor (1a) will rotate smoothly without being vibrated.

次に負荷トルクT。に対して発生トルクT、が完全に追
従する制御方法について述べる。
Next is the load torque T. A control method in which the generated torque T completely follows the torque will be described below.

第5図に示す様に、インバータ (10d)の出力する
各相の電圧(V、、V、、VW)とモータ電流(1,、
Iヮ、IvN)の位相差を各相の極性が変わるごとに検
出し1位相差信号とする。位相差信号は誘導電動機(1
a)が4極であるとすると1回転のうち12回信号が得
られる。この位相差信号を瞬時力率検知回路(19)に
送り瞬時力率信号を得る。
As shown in Figure 5, the voltage (V, , V, , VW) of each phase output from the inverter (10d) and the motor current (1, , ,
The phase difference between Iヮ, IvN) is detected every time the polarity of each phase changes and is used as one phase difference signal. The phase difference signal is generated by an induction motor (1
Assuming that a) has four poles, a signal is obtained 12 times in one rotation. This phase difference signal is sent to an instantaneous power factor detection circuit (19) to obtain an instantaneous power factor signal.

この瞬時力率信号を第7図に示すモータ特性図などによ
り、すべり周波数に演算する。この回路は上述の様にす
べり周波数演算回路(26)である。得られたすベリ周
波数f5を周波数制御回路(27)により、瞬時力率信
号ごとに遅延器(27a)で遅延させ、さらに加算器(
27b)で加算、記憶することで学習機能が働き、かつ
周波数−電圧変換回路(28)で電圧指令信号に変換す
ることで、第10図(c)に示すように、負荷トルクT
。に対して発生トルクT、が追従制御され電動機(1a
)の回転変動のない制御系が実現できる。
This instantaneous power factor signal is calculated into a slip frequency using the motor characteristic diagram shown in FIG. This circuit is the slip frequency calculation circuit (26) as described above. The frequency control circuit (27) delays the obtained full frequency f5 for each instantaneous power factor signal by a delay device (27a), and further delays the obtained frequency f5 by an adder (
27b), the learning function works, and the frequency-voltage conversion circuit (28) converts the load torque T into a voltage command signal, as shown in FIG. 10(c).
. The generated torque T is controlled to follow the electric motor (1a
) can realize a control system without rotational fluctuations.

従ってこの様に制御されたこの発明の制御装置では速度
変動のまったくない低振動の密閉形圧縮機の制御が可能
となる。
Therefore, with the control device of the present invention controlled in this manner, it is possible to control a hermetic compressor with low vibration and no speed fluctuations.

[発明の効果] この発明は1以上説明したように構成されているので、
以下に記載されるような効果を奏する。
[Effect of the invention] Since this invention is configured as explained above,
This produces the effects described below.

請求項1の発明においては、制御手段を瞬時力率検知回
路と 基準周波数指令−基準力率指令変換回路と、比較
器の出力により瞬時力率を制御する瞬時力率制御回路と
、力率/電圧変換回路と。
In the invention of claim 1, the control means includes an instantaneous power factor detection circuit, a reference frequency command-reference power factor command conversion circuit, an instantaneous power factor control circuit that controls the instantaneous power factor using the output of the comparator, and a power factor/ With voltage conversion circuit.

この力率/電圧変換回路からの出力を増幅して上記可変
周波数電力変換部に供給するベースアンプ回路より構成
したので、インバータ素子容量の増大を招くことなく、
高いユニット性能を得ることができる。
Since the base amplifier circuit amplifies the output from this power factor/voltage conversion circuit and supplies it to the variable frequency power conversion section, the inverter element capacity does not increase.
High unit performance can be obtained.

また、請求項2の発明においては、制御手段を瞬時力率
検知回路と、すベリ周波数演算回路と。
Further, in the invention of claim 2, the control means includes an instantaneous power factor detection circuit and a perfect frequency calculation circuit.

すべり周波数制御回路と2周波数−電圧変換回路と、こ
の周波数−電力変換回路の出力を増幅して上記可変周波
数電力変換部に供給するベースアンプ回路より構成した
ので、速度変動のまったくない安価で低振動の密閉形圧
縮機を搭載した制御装置を得る効果がある。
It consists of a slip frequency control circuit, a dual frequency-voltage conversion circuit, and a base amplifier circuit that amplifies the output of this frequency-power conversion circuit and supplies it to the variable frequency power conversion section, so it is inexpensive and has no speed fluctuations. This has the effect of obtaining a control device equipped with a vibrating hermetic compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例1である空気調和機の全体構
成図、第2図は第1図の制御装置を示すブロック図、第
3図は第2図の要部を示すブロック図、第4図は誘導電
動機の効率を示す特性図。 第5図は三相の位相差信号を示す特性図、第6図は電動
機の瞬時力率を最大効率に制御した場合の特性図、第7
図は電動機の力率変化特性図、第8図はこの発明の実施
例2である制御装置を示すブロック図、第9図は第8図
の要部を示すブロック図、第10図は実施例2の制御装
置の負荷トルクを示す特性図、第1,1図は従来の制御
装置の全体構成図、第12図は電動機の制御システム構
成図第13図は第12図の負荷トルクを表わした特性図
である。 なお、 (10)は可変周波数電力変換部、 (18)
は瞬時力率検知器、 (19)は瞬時力率検知回路、 
(20)は基準周波数指令−基準力率指令変換回路、 
(21)は比較器、 (22)は瞬時力率制御回路、 
(23)は力率/電圧変換回路、 (24)はベースア
ンプ回路、 (25)は制御手段、 (26)はすベリ
周波数演算回路、 (27)は周波数制御回路、 (2
8)は周波数−電圧変換回路である。 図中。 同一符号は。 同−又は相当部分を示す。
FIG. 1 is an overall configuration diagram of an air conditioner that is Embodiment 1 of the present invention, FIG. 2 is a block diagram showing the control device of FIG. 1, and FIG. 3 is a block diagram showing the main parts of FIG. 2. FIG. 4 is a characteristic diagram showing the efficiency of an induction motor. Figure 5 is a characteristic diagram showing three-phase phase difference signals, Figure 6 is a characteristic diagram when the instantaneous power factor of the motor is controlled to maximum efficiency, and Figure 7 is a characteristic diagram showing the three-phase phase difference signal.
The figure is a power factor change characteristic diagram of an electric motor, FIG. 8 is a block diagram showing a control device which is a second embodiment of the invention, FIG. 9 is a block diagram showing the main part of FIG. 8, and FIG. 10 is an embodiment. 2, a characteristic diagram showing the load torque of the control device, Figures 1 and 1 are the overall configuration diagram of the conventional control device, Figure 12 is the configuration diagram of the control system of the electric motor, and Figure 13 shows the load torque of Figure 12. It is a characteristic diagram. Note that (10) is a variable frequency power conversion unit, (18)
is an instantaneous power factor detector, (19) is an instantaneous power factor detection circuit,
(20) is a reference frequency command-reference power factor command conversion circuit;
(21) is a comparator, (22) is an instantaneous power factor control circuit,
(23) is a power factor/voltage conversion circuit, (24) is a base amplifier circuit, (25) is a control means, (26) is a subli frequency calculation circuit, (27) is a frequency control circuit, (2
8) is a frequency-voltage conversion circuit. In the figure. Same sign. Indicates the same or equivalent part.

Claims (2)

【特許請求の範囲】[Claims] (1)空気調和機における密閉形圧縮機を可変周波数の
交流電力により駆動制御する可変周波数電力変換部を備
えた制御装置において、上記可変周波数電力変換部の出
力端にに設けた瞬時力率検知器と、可変周波数電力変換
部を制御する制御手段を備え、上記瞬時力率検知器から
の出力を受ける瞬時力率検知回路と、基準周波数指令−
基準周波数指令変換回路と、比較器の出力により瞬時力
率を制御する瞬時力率制御回路と、力率/電圧変換回路
と、この力率/電圧変換回路からの出力を増幅して上記
可変周波数電力変換部へ出力するベースアンプ回路より
制御手段を構成したことを特徴とする空気調和機の制御
装置。
(1) In a control device equipped with a variable frequency power converter that drives and controls a hermetic compressor in an air conditioner using variable frequency AC power, instantaneous power factor detection is provided at the output end of the variable frequency power converter. an instantaneous power factor detection circuit comprising a control means for controlling the variable frequency power converter and receiving an output from the instantaneous power factor detector;
A reference frequency command conversion circuit, an instantaneous power factor control circuit that controls the instantaneous power factor using the output of the comparator, a power factor/voltage conversion circuit, and an output from the power factor/voltage conversion circuit that is amplified to adjust the variable frequency. A control device for an air conditioner, characterized in that a control means is constituted by a base amplifier circuit that outputs to a power conversion section.
(2)密閉形圧縮機を可変周波数の交流電力により、駆
動制御する可変周波数電力変換部を備えた密閉形圧縮機
の制御装置において、瞬時力率検知器と、可変周波数電
力変換部を制御する制御手段を備え、瞬時力率検知器か
らの出力を受ける瞬時力率検知回路と、すべり周波数演
算回路と、周波数制御回路と、周波数−電圧変換回路と
、この周波数−電圧変換回路の出力を増幅して上記可変
周波数電力変換部に供給するベースアンプ回路より制御
手段を構成することを特徴とする空気調和機の制御装置
(2) In a control device for a hermetic compressor equipped with a variable frequency power converter that drives and controls the hermetic compressor using variable frequency AC power, the instantaneous power factor detector and the variable frequency power converter are controlled. An instantaneous power factor detection circuit that includes a control means and receives an output from an instantaneous power factor detector, a slip frequency calculation circuit, a frequency control circuit, a frequency-voltage conversion circuit, and amplifies the output of this frequency-voltage conversion circuit. A control device for an air conditioner, characterized in that a control means is constituted by a base amplifier circuit which supplies the variable frequency power converter to the variable frequency power converter.
JP2239410A 1990-09-10 1990-09-10 Controller for air-conditioner Pending JPH04121098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2239410A JPH04121098A (en) 1990-09-10 1990-09-10 Controller for air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2239410A JPH04121098A (en) 1990-09-10 1990-09-10 Controller for air-conditioner

Publications (1)

Publication Number Publication Date
JPH04121098A true JPH04121098A (en) 1992-04-22

Family

ID=17044362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239410A Pending JPH04121098A (en) 1990-09-10 1990-09-10 Controller for air-conditioner

Country Status (1)

Country Link
JP (1) JPH04121098A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107793A (en) * 1980-01-29 1981-08-26 Toshiba Corp Controlling method of inverter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107793A (en) * 1980-01-29 1981-08-26 Toshiba Corp Controlling method of inverter

Similar Documents

Publication Publication Date Title
EP3093584B1 (en) Outdoor fan motor driving device and air conditioner including the same
US10344998B2 (en) Air conditioner
US8120299B2 (en) Motor controller of air conditioner
US20110234144A1 (en) Motor control device and electrical equipment with motor controlled thereby
US20090164047A1 (en) Method for controlling motor of air conditioner
JPH04121098A (en) Controller for air-conditioner
EP4020792A1 (en) Motor driving apparatus and air conditioner including the same
JP7361933B2 (en) Electric motor drive equipment and refrigeration cycle application equipment
KR20190051331A (en) Power converting apparatus and air conditioner including the same
US11953222B2 (en) Fan motor of air conditioner and operating method thereof
KR102010388B1 (en) Power converting apparatus and air conditioner including the same
KR101936261B1 (en) Controlling apparatus for motor and method thereof
US20210340975A1 (en) Method for increasing the efficiency of hermetic compressors used in refrigeration and air conditioning
WO2020070879A1 (en) Compressor and refrigeration air conditioning apparatus using same
JPH0356089A (en) Controller for compressor of enclosed type
JP2001183017A (en) Device and method for controlling refrigerating cycle
WO2023073994A1 (en) Electric motor drive device and refrigeration cycle application device
KR102017150B1 (en) Compressor driving apparatus and air conditioner including the same
KR101990445B1 (en) Power converting apparatus and air conditioner including the same
TWI662782B (en) Motor driving device, refrigeration cycle device including the same, and motor driving method
KR102010387B1 (en) Power converting apparatus and air conditioner including the same
KR20090041599A (en) Fan motor controller of air conditioner and method for controlling the fan motor
JPS5883142A (en) Air conditioner with inverter
JPH07146015A (en) Air conditioning device
JP2024065262A (en) MOTOR CONTROL DEVICE, AIR CONDITIONER, AND MOTOR CONTROL METHOD