JPH04120775A - Tunnel junction light emitting element - Google Patents

Tunnel junction light emitting element

Info

Publication number
JPH04120775A
JPH04120775A JP2241766A JP24176690A JPH04120775A JP H04120775 A JPH04120775 A JP H04120775A JP 2241766 A JP2241766 A JP 2241766A JP 24176690 A JP24176690 A JP 24176690A JP H04120775 A JPH04120775 A JP H04120775A
Authority
JP
Japan
Prior art keywords
light emitting
layer
semiconductor
band width
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2241766A
Other languages
Japanese (ja)
Inventor
Tsunehiro Unno
恒弘 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2241766A priority Critical patent/JPH04120775A/en
Publication of JPH04120775A publication Critical patent/JPH04120775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To grow a light emitting layer having a small number of defects and to raise a light irradiating output to a practical level by composing semiconductor layers to be laminated on a substrate of semiconductors having near lattice constants. CONSTITUTION:A p-type GaAs layer is grown on a p-type GaAs substrate 6, and a ZnSe thin film 5 having wide forbidden band width and high resistance is grown thereon. Then, an i-type GaAlAs layer 4 to become a light emitting layer is grown, and a mixed crystal ratio profile is formed of an epitaxial layer. A ZnSe thin film 3 having wider forbidden band width is grown on the layer 4. The semiconductor material of a light emitting element is formed of GaAs, GaAlAs, ZnSe because the lattice constants of the semiconductors have very near values. Thus, the layer 4 to become the light emitting layer can be grown as the epitaxial layer having small number of defects.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はトンネル効果を利用したトンネル接合発光素子
、特に発光ピーク波長を電圧により制御できるトンネル
接合発光素子の発光出力を改善したものに間する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a tunnel junction light emitting device that utilizes the tunnel effect, particularly a tunnel junction light emitting device that can control the emission peak wavelength by voltage, with improved light output. .

[従来の技術] 一般に、固体発光デバイスとして、発光ダイオード(L
ED)、半導体レーザ(LD)、電界発光(EL)素子
などが用いられている。しかしこれらのデバイスは、印
加電圧により発光出力を変えられるが、発光波長は、例
外的に温度変動や電流密度により多少変動するものの、
変えることはできない。
[Prior Art] Generally, a light emitting diode (L) is used as a solid state light emitting device.
ED), semiconductor lasers (LD), electroluminescent (EL) elements, etc. are used. However, although these devices can change the emission output by changing the applied voltage, the emission wavelength varies slightly depending on temperature fluctuations and current density.
It cannot be changed.

印加電圧を変えることにより発光ピーク波長を大きく制
御できる発光素子が開発できれば、センサ分野を初めと
しているいろな分野での応用が期待される。
If a light-emitting element can be developed that can greatly control the emission peak wavelength by changing the applied voltage, it is expected to find applications in a variety of fields including the sensor field.

ところで最近、波長チューナプル発光素子の可能性とし
て、トンネル接合発光素子が注目されている。トンネル
接合発光素子は、第3図に示すように、金属/絶縁体/
金属から構成されるもので、この素子に電圧を印加する
と、電子31が薄い絶縁体をトンネル効果により通過し
、このとき接合面より光32が放出されるものである。
Recently, tunnel junction light emitting devices have been attracting attention as a potential wavelength tunable light emitting device. As shown in Figure 3, a tunnel junction light emitting device is made of metal/insulator/
It is made of metal, and when a voltage is applied to this element, electrons 31 pass through a thin insulator due to the tunnel effect, and at this time, light 32 is emitted from the junction surface.

このトンネル接合発光素子が波長チューナプル発光素子
の可能性として注目されているのは、これから放出され
る光の短波長側のカットオフが印加電圧に依存している
ことが報告されているからである(文献J、Lambe
 and S、McCarthy:Phys、Rev。
This tunnel junction light emitting device is attracting attention as a potential wavelength tunable light emitting device because it has been reported that the short wavelength cutoff of the light emitted from it depends on the applied voltage. (Reference J, Lambe
and S, McCarthy: Phys, Rev.

Lett 37(1976)923) 、しかし、この
素子は発光出力が低く実用化することは難しく、内部量
子効率を高くすることが課題として残されていた。
Lett 37 (1976) 923), however, this device has a low light emitting output and is difficult to put into practical use, and increasing the internal quantum efficiency remains an issue.

[発明が解決しようとする課題] 従来のトンネル接合発光素子は発光出力が低く、実際の
製品に応用するのは難しいという欠点がある。高い発光
出力が得られない原因としては、発光層に欠陥が多く、
注入したキャリアが非発光再結合してしまうためである
。従って、欠陥の少ない発光層を成長できるようにする
こと、また、注入キャリア濃度を高くして、欠陥密度が
できるだけ発光効率に影響しないようにすることが要求
される。
[Problems to be Solved by the Invention] Conventional tunnel junction light-emitting devices have a drawback in that their light emission output is low and it is difficult to apply them to actual products. The reason why high luminous output cannot be obtained is that there are many defects in the luminescent layer.
This is because the injected carriers recombine non-radiatively. Therefore, it is required to grow a light-emitting layer with fewer defects, and to increase the injected carrier concentration so that the defect density does not affect the light-emitting efficiency as much as possible.

本発明の目的は、前記し・た従来技術の欠点を解消し、
発光出力を実用レヘルに上げることが可能なトンネル接
合発光素子を提供することにある。
The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art,
An object of the present invention is to provide a tunnel junction light emitting device that can increase the light emission output to a practical level.

[課題を解決するための手段] 本発明は、一の伝導型をもつ半導体基板上に、禁制帯幅
の広い半導体薄膜、発光層となる真性半導体層、禁制帯
幅の広い半導体薄膜、上記一の伝導型と反対の伝導型を
もつ半導体層を順次積層させ、これらを積層した半導体
基板の両面に電極を形成したトンネル接合発光素子に適
用される。
[Means for Solving the Problems] The present invention provides a semiconductor thin film with a wide forbidden band width, an intrinsic semiconductor layer serving as a light emitting layer, a semiconductor thin film with a wide forbidden band width, and a semiconductor thin film with a wide forbidden band width on a semiconductor substrate having one conductivity type. It is applied to a tunnel junction light emitting device in which semiconductor layers having a conductivity type opposite to the conductivity type are sequentially laminated, and electrodes are formed on both sides of a semiconductor substrate in which these layers are laminated.

このようようなトンネル接合素子において、の伝導型半
導体層と反対伝導型半導体層にGaASまたはG a 
A I A sを用い、禁制帯幅の広い2つの半導体薄
膜にZnSeを用い、真性半導体層にGaAlAsを用
いるようにしたものである。
In such a tunnel junction device, a conduction type semiconductor layer and an opposite conduction type semiconductor layer include GaAS or Ga
The device uses AIAs, ZnSe is used for the two semiconductor thin films with wide forbidden band widths, and GaAlAs is used for the intrinsic semiconductor layer.

そして、注入された電子、正孔の注入層となる真性Ga
AlAs層の中央で発光再結合しやすくなるように、真
性GaAIAsFjの混晶プロファイルを、その厚さ方
向の中央付近が最も禁制帯幅が狭くなるようにすること
が好ましい。
Then, intrinsic Ga becomes an injection layer for injected electrons and holes.
In order to facilitate radiative recombination at the center of the AlAs layer, it is preferable to configure the mixed crystal profile of the intrinsic GaAIAsFj so that the forbidden band width is narrowest near the center in the thickness direction.

本発明に適用可能な禁制帯幅の広い化合物半導体として
II−Vl族化合物半導体のうちZnSeを選択したの
は、他の半導体であるGaAsやGaAlAsの格子定
数と近い値をとるからである。
The reason why ZnSe was selected from II-Vl group compound semiconductors as a compound semiconductor with a wide bandgap applicable to the present invention is because it has a lattice constant close to that of other semiconductors such as GaAs and GaAlAs.

[作用コ 一の伝導型をもつ半導体基板上に、禁制帯幅の広い半導
体薄膜、発光層となる真性半導体、禁制帯幅の広い、半
導体薄膜、上記一の伝導型と反対の伝導型をもつ半導体
を順次積層させる場合には、これらを全てエピタキシャ
ル成長により形成できるので製造が容易となる。
[A semiconductor thin film with a wide forbidden band width, an intrinsic semiconductor serving as a light-emitting layer, a semiconductor thin film with a wide forbidden band width, and a semiconductor thin film with a conductive type opposite to the above one conductivity type are formed on a semiconductor substrate having a conductivity type of the above one. When semiconductors are sequentially laminated, they can all be formed by epitaxial growth, which facilitates manufacturing.

また、一の伝導型半導体と反対伝導型半導体にGaAs
またはGaAlAsを用い、禁制帯幅の広い半導体にZ
nSeを用い、真性半導体にGaAlAsを用いると、
これらの格子定数は非常に接近しているので、欠陥の少
ない発光層が形成される。
In addition, GaAs is used as one conductivity type semiconductor and the opposite conductivity type semiconductor.
Alternatively, using GaAlAs, Z
When nSe is used and GaAlAs is used as the intrinsic semiconductor,
Since these lattice constants are very close, a light-emitting layer with few defects is formed.

また、発光層となるGaAlAs層はその中央付近が最
も禁制帯幅が小さくなるような混晶比プロファイルを有
していると、注入される電子と正孔の量が内部電界の形
成により増加して注入キャリア濃度が高くなる。また、
注入された電子と正孔は発光層中央に集められる。そし
て、発光層の中央に集められた電子と正孔は、その中央
が禁制帯幅が最も小さく、空間的に非常に近くなるため
効率よく発光再結合することになる。
In addition, if the GaAlAs layer that becomes the light emitting layer has a mixed crystal ratio profile such that the forbidden band width is smallest near the center, the amount of injected electrons and holes will increase due to the formation of an internal electric field. This increases the injected carrier concentration. Also,
The injected electrons and holes are collected at the center of the light emitting layer. The electrons and holes collected at the center of the light-emitting layer have the smallest forbidden band width at the center and are spatially very close to each other, so that they are efficiently recombined radiatively.

[実施例コ 以下、本発明の実施例を図面を用いて説明する。[Example code] Embodiments of the present invention will be described below with reference to the drawings.

本実施例のトンネル接合発光素子は、トンネル接合をダ
ブル接合にして電子のみならず、正孔によるトンネル効
果を利用するとともに、絶縁体に代えて禁制帯幅の広い
半導体を用いるようにしている。
The tunnel junction light emitting device of this embodiment uses a double tunnel junction to utilize the tunnel effect of holes as well as electrons, and uses a semiconductor with a wide forbidden band width instead of an insulator.

その基本構造は、p型半導体基板上に、禁制帯幅の広い
半導体薄膜、i型半導体、禁制帯幅の広い半導体薄膜及
びn型半導体を順次積層させ、これらを積層した基板の
表裏に各々電極を形成するものである。
Its basic structure is to sequentially stack a semiconductor thin film with a wide bandgap, an i-type semiconductor, a semiconductor thin film with a wide bandgap, and an n-type semiconductor on a p-type semiconductor substrate. It forms the

上記p型半導体およびn型半導体としてGaASまたは
G a A I A sを用い、禁制帯幅の広い半導体
としてZnSeを用い、さらにi型半導体としてGaA
lAs層を用いている。
GaAS or GaAIAs is used as the p-type semiconductor and n-type semiconductor, ZnSe is used as the semiconductor with a wide forbidden band width, and GaAs is used as the i-type semiconductor.
An lAs layer is used.

次に第2図を用いて本実施例のトンネル接合発光素子構
造を具体的に説明する。p型GaAs基板6上にp型G
aAs層を2μm成長させ、その上に禁制帯幅の広い高
抵抗のZnSe薄膜5を50人成長させる。次に発光層
となるi型GaAIA S F! 4を200人成長さ
せるが、混晶比プロファイルは、厚さ方向の中央てA 
I A s混晶比が0、両端面でAlAs混晶比が0.
1になるようなエピタキシャル層とする。このl型Ga
AIAsFj4の上に禁制帯幅の広いZnSe薄膜3を
100人成長させ、この上にAlAs混晶比が0.2の
n型G a A I A s Pi 2を5μm成長さ
せた。このようにして形成したエピタキシャルウェハの
表裏に各々n側電極hp側電極7を形成した。
Next, the tunnel junction light emitting device structure of this example will be specifically explained using FIG. p-type G on p-type GaAs substrate 6
An aAs layer is grown to a thickness of 2 μm, and a ZnSe thin film 5 having a wide forbidden band width and high resistance is grown thereon by 50 people. Next, the i-type GaAIA SF! which becomes the light emitting layer. 4 was grown, but the mixed crystal ratio profile was A at the center of the thickness direction.
The IAs mixed crystal ratio is 0, and the AlAs mixed crystal ratio is 0 on both end faces.
It is assumed that the epitaxial layer is 1. This l-type Ga
A ZnSe thin film 3 with a wide forbidden band width was grown by 100 people on AIAsFj4, and 5 μm of n-type Ga AIA s Pi 2 with an AlAs mixed crystal ratio of 0.2 was grown thereon. An n-side electrode and a hp-side electrode 7 were formed on each of the front and back sides of the epitaxial wafer thus formed.

ここで、上記発光素子の半導体材料にGaAs、GaA
lAs5ZnSeを用いているが、これはこれらの半導
体同士の格子定数が互に非常に近い値をとるからである
。このため発光層となるGaAlAsF!4は、格子欠
陥の少ないエピタキシャル層として成長させることが可
能となる。
Here, the semiconductor material of the light emitting element is GaAs, GaA
lAs5ZnSe is used because the lattice constants of these semiconductors are very close to each other. Therefore, GaAlAsF! becomes a light emitting layer! 4 can be grown as an epitaxial layer with few lattice defects.

また、第1図に示すように、電子9がn型GaAlAs
層2から禁制帯幅の広いZnSe3を通過してl型Ga
AlAs層4中にトンネル効果により注入され、正孔1
0がp側電極7から禁制帯幅の広いZnSe5を通過し
てi型GaAlAsN4中にトンネル効果により注入さ
れて光8が放出される。この場合において、GaAlA
sFj4はその中央付近が最も禁制帯幅が小さくなるよ
うな混晶比プロファイルを有しているため、両側に設け
られた各ZnSe薄膜3,5を通して注入された電子9
と正孔10は、内部電界により発光層(l型GaAIA
sF’4)中央に集められる。
Moreover, as shown in FIG. 1, the electrons 9 are n-type GaAlAs
From layer 2, the l-type Ga passes through ZnSe3 with a wide forbidden band width.
Holes are injected into the AlAs layer 4 by the tunnel effect, and holes 1
0 passes through ZnSe5 having a wide forbidden band width from the p-side electrode 7 and is injected into the i-type GaAlAsN4 by a tunnel effect, and light 8 is emitted. In this case, GaAlA
Since sFj4 has a mixed crystal ratio profile such that the forbidden band width is smallest near its center, the electrons 9 injected through each ZnSe thin film 3 and 5 provided on both sides
The holes 10 and
sF'4) concentrated in the center.

発光層の中央に集められた電子9と正孔10は、その中
央が禁制帯幅が最も小さく、空間的に非常に近くなるた
め効率よく発光再結合すると考えろれる。
It is thought that the electrons 9 and holes 10 collected at the center of the light-emitting layer are efficiently recombined radiatively because the forbidden band width is the smallest at the center and they are very close to each other spatially.

実際にこの素子を製作して、n側電極lに負電圧、p側
電極7に正電圧を印加してみたところ、電圧を高くする
とピーク波長は短波長側(高エネルギ側)にシフトし、
電圧Vを低くすると低エネルギ側にシフトすることが確
認され、発光波長を800nmから880nmの間て制
御てきた。
When we actually manufactured this element and applied a negative voltage to the n-side electrode l and a positive voltage to the p-side electrode 7, we found that as the voltage was increased, the peak wavelength shifted to the shorter wavelength side (higher energy side).
It has been confirmed that lowering the voltage V causes a shift to lower energy, and the emission wavelength has been controlled between 800 nm and 880 nm.

また発光出力としては、0.1mWの値が得られ、素子
として十分実用に耐えることができる値を達成すること
ができた。
Furthermore, a light emission output of 0.1 mW was obtained, which was a value that could be used in practical use as a device.

以上述べたように本実施例によれば、従来型のトンネル
接合発光素子を構成する金属を半導体に、絶縁体を禁制
帯幅の広い半導体にそれぞれ代えたので、エピタキシャ
ル層の連続成長による発光素子を形成することができる
。しかも、これら半導体に格子定数の近いものを選んだ
ので、格子欠陥の少ないエピタキシャル層を形成するこ
とができる。
As described above, according to this example, the metal constituting the conventional tunnel junction light emitting device is replaced with a semiconductor, and the insulator is replaced with a semiconductor with a wide forbidden band width. can be formed. Furthermore, since we selected semiconductors with lattice constants similar to these semiconductors, it is possible to form an epitaxial layer with fewer lattice defects.

また、トンネル接合をダブル接合にして電子のみならず
、正孔によるトンネル効果も利用するようにしたので、
ピーク波長を電圧で制御することかできると共に、長波
長側のすその小さい単色光が得られ、しかも高い発光効
率が得られる。
In addition, we made the tunnel junction a double junction to utilize not only the tunnel effect of electrons but also the tunnel effect of holes.
The peak wavelength can be controlled by voltage, monochromatic light with a small tail on the long wavelength side can be obtained, and high luminous efficiency can be obtained.

さらに、発光層の混晶比プロファイルを中央で最も小さ
い値となるようにして内部量子効率を上げることにより
、注入キャリア濃度を高くして欠陥密度ができるだけ発
光効率に影響しないようにするとかできる。
Furthermore, by increasing the internal quantum efficiency by setting the mixed crystal ratio profile of the light-emitting layer to the smallest value at the center, it is possible to increase the injected carrier concentration and prevent the defect density from affecting the light-emitting efficiency as much as possible.

従って、センサ分野などいろいろな分野での応用に資す
ることができる。
Therefore, it can contribute to applications in various fields such as the sensor field.

なお、上記実施例ではp型基板上にエピタキシャル成長
させたが、n型基板を用い、その上にp型基板の場合と
逆の伝導型のエピタキシャル層を成長させても良い。
In the above embodiment, epitaxial growth was performed on a p-type substrate, but an n-type substrate may be used and an epitaxial layer of the opposite conductivity type to that of the p-type substrate may be grown thereon.

[発明の効果] 本発明によれば次のような効果を発揮する。[Effect of the invention] According to the present invention, the following effects are achieved.

(1)請求項1に記載のトンネル接合発光素子によれば
、基板上に積層する半導体層を互に格子定数の近い半導
体で構成するようにしたので、欠陥の少ない発光層を成
長させることができ、発光出力を実用レベルに上げるこ
とができる。
(1) According to the tunnel junction light emitting device according to claim 1, since the semiconductor layers stacked on the substrate are made of semiconductors having similar lattice constants, it is possible to grow a light emitting layer with few defects. It is possible to increase the luminous output to a practical level.

(2)請求項2に記載のトンネル接合発光素子によれば
、発光層の混晶プロファイルを中央付近で最も禁制帯幅
が狭くなるようにしたので、注入濃度を高くして欠陥密
度の影響をできるだけ受けないようにすることができ、
発光出力をさらに上げることができる。
(2) According to the tunnel junction light emitting device according to claim 2, since the mixed crystal profile of the light emitting layer is such that the forbidden band width is narrowest near the center, the implantation concentration is increased to reduce the influence of defect density. You can avoid receiving it as much as possible,
The light output can be further increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のトンネル接合発光素子の実施例による
バンド構造図、第2図は本実施例によるトンネル接合発
光素子構造の断面図、第3図は従来例によるトンネル接
合発光素子構造の断面図である。 1・・・n側電極、2・・・n型GaAlAs層、3・
・・ZnSeF!、4−GaAlAs層、5− Z n
 S e層、6・・・p型G a A S層、7・・・
p側電極、8・・・放出光、9・・・電子、10・・・
正孔。
FIG. 1 is a band structure diagram of a tunnel junction light emitting device according to an embodiment of the present invention, FIG. 2 is a sectional view of a tunnel junction light emitting device structure according to this embodiment, and FIG. 3 is a cross section of a conventional tunnel junction light emitting device structure. It is a diagram. 1... n-side electrode, 2... n-type GaAlAs layer, 3...
...ZnSeF! , 4-GaAlAs layer, 5-Z n
S e layer, 6... p-type Ga AS layer, 7...
p-side electrode, 8... emitted light, 9... electron, 10...
Hole.

Claims (1)

【特許請求の範囲】 1、一の伝導型をもつ半導体基板上に、禁制帯幅の広い
半導体薄膜、発光層となる真性半導体層、禁制帯幅の広
い半導体薄膜、上記一の伝導型と反対の伝導型をもつ半
導体層を順次積層させ、これらを積層した半導体基板の
両面に電極を形成したトンネル接合発光素子において、 一の伝導型半導体層と反対伝導型半導体層にGaAsま
たはGaAlAsを、禁制帯幅の広い半導体薄膜にZn
Seを、真性半導体層にGaAlAsをそれぞれ用いた
ことを特徴とするトンネル接合発光素子。 2、GaAlAsを用いた上記真性半導体層が、その厚
さ方向の中央付近で最も禁制帯幅が狭くなるような混晶
比プロファイルをもつようにしたことを特徴とする請求
項1に記載のトンネル接合発光素子。
[Claims] 1. A semiconductor thin film with a wide forbidden band width, an intrinsic semiconductor layer serving as a light emitting layer, a semiconductor thin film with a wide forbidden band width, and a semiconductor thin film with a wide forbidden band width, on a semiconductor substrate having a conductivity type (1), which is opposite to the conductivity type (1) above. In a tunnel junction light emitting device in which semiconductor layers having conductivity types of 1 and 2 are sequentially stacked and electrodes are formed on both sides of a semiconductor substrate in which these layers are stacked, it is prohibited to use GaAs or GaAlAs in one conductivity type semiconductor layer and the opposite conductivity type semiconductor layer. Zn in wide band semiconductor thin film
A tunnel junction light emitting device characterized in that Se is used for the intrinsic semiconductor layer and GaAlAs is used for the intrinsic semiconductor layer. 2. The tunnel according to claim 1, wherein the intrinsic semiconductor layer using GaAlAs has a mixed crystal ratio profile such that the forbidden band width is narrowest near the center in the thickness direction. Junction light emitting device.
JP2241766A 1990-09-12 1990-09-12 Tunnel junction light emitting element Pending JPH04120775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2241766A JPH04120775A (en) 1990-09-12 1990-09-12 Tunnel junction light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2241766A JPH04120775A (en) 1990-09-12 1990-09-12 Tunnel junction light emitting element

Publications (1)

Publication Number Publication Date
JPH04120775A true JPH04120775A (en) 1992-04-21

Family

ID=17079212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2241766A Pending JPH04120775A (en) 1990-09-12 1990-09-12 Tunnel junction light emitting element

Country Status (1)

Country Link
JP (1) JPH04120775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338944A (en) * 1993-09-22 1994-08-16 Cree Research, Inc. Blue light-emitting diode with degenerate junction structure
JPWO2004095591A1 (en) * 2003-04-23 2006-09-21 Hoya株式会社 Light emitting diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338944A (en) * 1993-09-22 1994-08-16 Cree Research, Inc. Blue light-emitting diode with degenerate junction structure
JPWO2004095591A1 (en) * 2003-04-23 2006-09-21 Hoya株式会社 Light emitting diode
JP4504309B2 (en) * 2003-04-23 2010-07-14 Hoya株式会社 Light emitting diode

Similar Documents

Publication Publication Date Title
US5610413A (en) Group II-VI compound semiconductor light emitting devices and an ohmic contact therefor
JPH0621511A (en) Semiconductor light emitting element
JPH06112528A (en) Semiconductor light emitting device
JPH05275744A (en) Hetero-superlattice p-n junction
JP2586349B2 (en) Semiconductor light emitting device
JPH04120775A (en) Tunnel junction light emitting element
JP3449751B2 (en) Semiconductor light emitting device
US5640409A (en) Semiconductor laser
JP3562518B2 (en) Semiconductor light emitting device
Su et al. The red shift of ZnSSe metal-semiconductor-metal light emitting diodes with high injection currents
JPH077849B2 (en) Semiconductor light emitting element
JP3207618B2 (en) Semiconductor device
JP3635727B2 (en) Semiconductor light emitting diode
JP3057547B2 (en) Green light emitting diode
KR100389738B1 (en) SHORT WAVELENGTH ZnO LED AND METHOD FOR PRODUCING OF THE SAME
JP3081714B2 (en) Semiconductor light emitting device
JPH0864908A (en) Semiconductor device
JP3405552B2 (en) Optical semiconductor device
Saranya et al. Parameter Analysis Review on Multiple Quantum Well based InGaN/GaN Light Emitting Diode
JP3196418B2 (en) Semiconductor device
JPH09107155A (en) Semiconductor light emitting element
JPH06350200A (en) Semiconductor light emitting device and its manufacturing method
JP2004297060A (en) Light emitting diode element and method for manufacturing the same
JPH07297448A (en) Light emitting device
JP2010040926A (en) Semiconductor element