JPH04120443A - Analyzing apparatus of moisture and total organic carbon - Google Patents

Analyzing apparatus of moisture and total organic carbon

Info

Publication number
JPH04120443A
JPH04120443A JP24035390A JP24035390A JPH04120443A JP H04120443 A JPH04120443 A JP H04120443A JP 24035390 A JP24035390 A JP 24035390A JP 24035390 A JP24035390 A JP 24035390A JP H04120443 A JPH04120443 A JP H04120443A
Authority
JP
Japan
Prior art keywords
carbon
moisture
sample
concentration
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24035390A
Other languages
Japanese (ja)
Other versions
JP2855830B2 (en
Inventor
Masami Matsui
松居 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24035390A priority Critical patent/JP2855830B2/en
Publication of JPH04120443A publication Critical patent/JPH04120443A/en
Application granted granted Critical
Publication of JP2855830B2 publication Critical patent/JP2855830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To analyze moisture and organic carbon all at once by converting the moisture in a sample to acetylene, and measuring the acetylene in the same manner as the total carbon or inorganic carbon. CONSTITUTION:A sample is injected from a feed port 3. The moisture included in the sample is converted to acetylene by a calcium carbide pipe 5, and further converted along with the total carbon contained in the sample to carbon dioxide gas and water at a total carbon burning pipe 9. After the moisture is removed at 10, the concentration of the carbon dioxide gas Dt is detected at 12. Accordingly, the concentration Dt indicating the sum of the concentration of the moisture Dh and the concentration of the total carbon Dtc in the sample can be obtained. Subsequently, the sample is injected from a feed port 6, and the total carbon contained in the sample is oxidized at the total carbon burning pipe 9. The moisture is removed at 10, and the concentration of the total carbon Dtc is detected at 12. The concentration of the moisture Dh in the sample can be obtained by calculating the difference of the concentrations Dt and Dtc. Then, the sample is injected from a feed port 13. Only inorganic carbon is selectively oxidized in an inorganic carbon burning pipe 16, and the moisture is removed at 10. The concentration of the inorganic carbon Dic is detected at 12. The concentration of the organic carbon Doc in the sample can be obtained by the difference of the concentrations Dtc and Dic.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気体中に含まれている水分と全有機炭素を分
析するのに適した装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus suitable for analyzing moisture and total organic carbon contained in a gas.

(従来の技術) 水に溶解している有機炭素や無機炭素の分析には、全炭
素と無機炭素をそれぞれ選択的に燃焼させる燃焼管に非
分散型赤外線ガス分析計を接続した装Mを用い、木に含
まれている炭素を炭酸ガスに変換し、これを非分散型赤
外線ガス分析計により検出することか行なわれでいる。
(Prior technology) To analyze organic carbon and inorganic carbon dissolved in water, a device M is used in which a non-dispersive infrared gas analyzer is connected to a combustion tube that selectively burns total carbon and inorganic carbon, respectively. Currently, the carbon contained in wood is converted into carbon dioxide gas, which is then detected using a non-dispersive infrared gas analyzer.

(発明が解決しようとする課題) しかしなから、このような装置は水に含まれている炭素
を分析の対象とするものであるため、例えば植物栽培環
境の空気等に含まれている有機炭素及び水分を分析には
通用することができない。
(Problem to be solved by the invention) However, since such a device analyzes carbon contained in water, it can analyze organic carbon contained in, for example, the air of a plant cultivation environment. and moisture cannot be used for analysis.

本発明はこのような問題に鑑みてなされたものであって
、その目的とするところは空気などの気体に含まれでい
る水分や有機炭素を一斉分析することができる新規な分
析袋Mを提供することにある。
The present invention was made in view of these problems, and its purpose is to provide a novel analysis bag M that can simultaneously analyze moisture and organic carbon contained in gases such as air. It's about doing.

(課題を解決するための手段) このような問題を解消するために本発明においては、試
料注入口を介して炭酸ガス及び水分を除去した助燃ガス
源に接続する炭化カルシウム管と、該炭化カルシウム管
の排出側に試料注入口を介しで接続する全炭素燃焼管と
、該全炭素燃焼管の排出側に接続する炭酸ガス検出手段
と、流入側か試料注入口を介して前記助燃ガス源に、ま
た排出側か前記炭酸ガス検出手段に接続する無機炭素燃
焼管を備えるようにした。
(Means for Solving the Problems) In order to solve such problems, the present invention provides a calcium carbide pipe connected to a combustion auxiliary gas source from which carbon dioxide gas and moisture have been removed through a sample injection port, an all-carbon combustion tube connected to the discharge side of the tube via a sample injection port; a carbon dioxide detection means connected to the discharge side of the all-carbon combustion tube; and an inflow side connected to the auxiliary gas source via the sample injection port. Further, an inorganic carbon combustion tube connected to the carbon dioxide gas detection means on the discharge side is provided.

(作用) 気体に含まれている水分は炭化カルシウムによりアセチ
レンに変換された後、試料に含まれでいる全炭素ととも
に、燃焼管により炭酸ガスに変換されて炭酸ガス検吊手
段により濃度を検出される。また気体に含まれている全
部の炭素は、全炭素燃焼管により炭酸ガスに変換されて
炭酸ガス検出手段により濃度を測定される。これらの差
分を求めることにより気体に含まれている水分の濃度を
知ることができる。また無機炭素は無機炭素燃焼管によ
り炭酸ガスに変換されて炭酸ガス検出手段によりその濃
度が検出される。全炭素の濃度と無!IIN素の濃度と
の差分を求めることにより有機炭素を知ることができる
(Function) After the moisture contained in the gas is converted to acetylene by calcium carbide, it is converted to carbon dioxide gas by a combustion tube along with all the carbon contained in the sample, and the concentration is detected by a carbon dioxide gas detection means. Ru. Further, all the carbon contained in the gas is converted into carbon dioxide gas by the total carbon combustion tube, and the concentration is measured by the carbon dioxide gas detection means. By determining these differences, the concentration of water contained in the gas can be determined. Further, the inorganic carbon is converted into carbon dioxide gas by the inorganic carbon combustion tube, and its concentration is detected by the carbon dioxide gas detection means. Concentration and absence of total carbon! Organic carbon can be determined by calculating the difference from the concentration of IIN element.

(実施例) そこで以下に本発明の詳細を図示した実施例に基づいて
説明する。
(Example) The details of the present invention will be described below based on illustrated examples.

第1図(は本発明の一実施例を示すものであって、図中
符号1は水分と炭酸ガスか除去された助燃用空気源2に
接続する切換弁で、一方の排出口には水分測定用試料注
入口3を介して炭化カルシウム4を収容した炭化カルシ
ウム管5が接続されでいる。炭酸カルシウム管5の排出
口には全有機炭素測定用試料注入口6を介して酸化触媒
7を収容するとともに、ヒータ8により680℃程度の
高温状態に維持された全炭素燃焼管9が接続されている
。全炭素燃焼管9の排出口には水分除去ユニット10、
フィルタユニット11を介して非分散型赤外線式ガス検
出器12が接続されでいる。
Figure 1 (shows one embodiment of the present invention), in which reference numeral 1 is a switching valve connected to an auxiliary combustion air source 2 from which moisture and carbon dioxide have been removed; A calcium carbide tube 5 containing calcium carbide 4 is connected through a measurement sample inlet 3. An oxidation catalyst 7 is connected to an outlet of the calcium carbonate tube 5 through a total organic carbon measurement sample inlet 6. At the same time, an all-carbon combustion tube 9 maintained at a high temperature of about 680° C. by a heater 8 is connected to the exhaust port of the all-carbon combustion tube 9.
A non-dispersive infrared gas detector 12 is connected via a filter unit 11 .

切換弁1の他方の排出口には無機炭素試料注入口13を
介して酸化触媒14を収容するとともに、ヒータ15に
より無機炭素だけを酸化できる程度の比較的低温150
℃程度に維持された無機炭素燃焼管16か接続され、そ
の排出口が水分除去ユニット10に接続されている。
The other outlet of the switching valve 1 houses an oxidation catalyst 14 through an inorganic carbon sample inlet 13, and is heated to a relatively low temperature 150 at a temperature low enough to oxidize only inorganic carbon using a heater 15.
An inorganic carbon combustion tube 16 maintained at about 0.degree. C. is connected, and its outlet is connected to the moisture removal unit 10.

この実施例において、切換弁1を第1の流路に設定して
水分測定用試料注入口3から試料を注入すると、試料は
、助燃用空気源2がらの乾燥空気とともに炭酸カルシウ
ム管5に流入して、2H20+C2Ca  −+ C2
H2なる反応によりアセチレンに変換される。アセチレ
ンは全炭素測定用試料注入口6を経由して全炭素燃焼管
9に流入して C2H2+O□ → C○2+H20 なる反応により炭酸ガスと水に分解され、また試料に含
まれている全炭素は、 C,H,N、◆002= pc○2◆Q/2 H20”
rN○なる反応により共に炭酸ガスと水分に変換される
In this embodiment, when the switching valve 1 is set to the first flow path and the sample is injected from the moisture measurement sample inlet 3, the sample flows into the calcium carbonate pipe 5 together with the dry air from the auxiliary combustion air source 2. Then, 2H20+C2Ca −+ C2
It is converted to acetylene by a reaction called H2. Acetylene flows into the total carbon combustion tube 9 via the total carbon measurement sample inlet 6 and is decomposed into carbon dioxide and water through the reaction C2H2+O□ → C○2+H20, and the total carbon contained in the sample is , C, H, N, ◆002= pc○2◆Q/2 H20”
Both are converted into carbon dioxide gas and water by the reaction rN○.

これら炭酸ガスと水分は水分除去ユニット1゜により水
分を取除かれてフィルタユニット11を経由して非分散
型赤外線ガス検出器12により炭酸ガスの濃度が測定さ
れる。いうまでもなく、この段階での測定値Dtは、試
料中の水分の濃度Dhと全炭素の濃度Ttcとの和を示
すことになる。
The moisture is removed from these carbon dioxide gas and moisture by a moisture removal unit 1°, and the concentration of carbon dioxide gas is measured by a non-dispersive infrared gas detector 12 via a filter unit 11. Needless to say, the measured value Dt at this stage indicates the sum of the moisture concentration Dh and the total carbon concentration Ttc in the sample.

次に同一の試料を全炭素測定用試料注入口6がら注入す
ると、炭化カルシウム胃管5を経由して流れ込んできた
助燃用空気により全炭素燃焼管9に運ばれ、試料に含ま
れでいる有機炭素、及び無機炭素の全てか”酸化されて
炭酸ガスと水分に分解される。これら炭酸ガスと水分は
水分除去ユニット10により水分を除去された後、非分
散型赤外線ガス検出器12により全炭素の濃度D tc
が測定される。
Next, when the same sample is injected through the sample inlet 6 for total carbon measurement, the auxiliary combustion air that has flowed in through the calcium carbide gastric tube 5 is carried to the total carbon combustion tube 9, and the organic matter contained in the sample is All carbon and inorganic carbon are oxidized and decomposed into carbon dioxide gas and moisture. After moisture is removed from these carbon dioxide gas and moisture by a moisture removal unit 10, all carbon is decomposed by a non-dispersive infrared gas detector 12. concentration D tc
is measured.

これにより前回の測定により求めた濃度Dtと今回の測
定により求めた濃度Dtcの差分Dt−Dteを演算す
ることにより試料中に含まれでいる水分の濃度を知るこ
とができる。
As a result, the concentration of water contained in the sample can be determined by calculating the difference Dt-Dte between the concentration Dt determined by the previous measurement and the concentration Dtc determined by the current measurement.

ついで、切換弁1を他方の流路に切替えで無機炭素測定
用試料注入口13に、前回と同一の試料を注入すると、
助燃用空気により無機炭素燃焼管16に運ばれて試料に
含まれでいる無機炭素だけが選択的に酸化されて炭酸ガ
スと水分に分解され、水分除去ユニット10により水分
を除去されたのち、非分散型赤外線ガス検出器12によ
り無機炭素の濃度T +、が測定される− したかって、全炭素全炭素の濃度D tcと無機炭素の
濃度DICとの差分Dtc−D、。を演算することによ
り有機炭素の濃度り。c’8求めることかできる。
Next, when the switching valve 1 is switched to the other flow path and the same sample as the previous one is injected into the sample injection port 13 for inorganic carbon measurement,
Only the inorganic carbon contained in the sample is carried by the auxiliary combustion air to the inorganic carbon combustion tube 16 and is selectively oxidized and decomposed into carbon dioxide and moisture. After the moisture is removed by the moisture removal unit 10, non-organic carbon is removed. The inorganic carbon concentration T+, is measured by the distributed infrared gas detector 12--thus, the difference Dtc-D between the total carbon concentration Dtc and the inorganic carbon concentration DIC. By calculating the concentration of organic carbon. It is possible to find c'8.

[笑施例コ 合成空気に炭酸ガス800PPMと水分200PPM添
加したものを標準試料として同上装置を校正したのち、
トマトの熟成室の空気に含まれる水分と有機炭素を測定
したところ、通常の水分測定装置による測定結果と高い
精度で一致した。また植物の熟成室に存在する全有機炭
素は、植物の熟成過程で発土するエチレンであるから、
ガスクロマトグラフによりエチレンの濃度を測定し、こ
の測定結果と同上装置による有[炭素濃度の測定結果を
比較したところ極めて高い精度で一致した。
[Example: After calibrating the same device using synthetic air with 800 PPM of carbon dioxide and 200 PPM of water added as a standard sample,
When the moisture and organic carbon contained in the air in the tomato ripening room were measured, the results agreed with a high degree of accuracy with the results measured using a regular moisture measuring device. In addition, the total organic carbon present in the ripening chamber of plants is ethylene, which is excavated during the ripening process of plants.
The concentration of ethylene was measured using a gas chromatograph, and when the results of this measurement were compared with the results of measuring the carbon concentration using the same device, they agreed with extremely high accuracy.

なあ、試料に含まれでいる水素をも分析したい場合には
、第2図に示したように切換弁1と水分測定用試料注入
口3の門に、切換弁1側から水素測定用試料注入口20
、水分除去ユニット21、及び水素だけを選択的に酸化
させる酸化炉22を設けると、水素測定用試料注入口2
0に注入された試料は、助燃空気により水分除去ユニッ
ト21により水分を除去された後、酸化炉22により水
素だけか選択的に酸化させて水に変換される。この水分
は炭化カルシウム管5によりアセチレンに変換され、以
後前述した工程により炭酸ガスとして検出されることに
なる。
By the way, if you also want to analyze the hydrogen contained in the sample, inject the sample for hydrogen measurement from the switching valve 1 side into the gate of the switching valve 1 and the sample injection port 3 for moisture measurement, as shown in Figure 2. Entrance 20
, a water removal unit 21, and an oxidation furnace 22 that selectively oxidizes only hydrogen, the hydrogen measurement sample injection port 2
After moisture is removed from the sample injected into the sample by a moisture removal unit 21 using auxiliary combustion air, only hydrogen is selectively oxidized by an oxidation furnace 22 and converted into water. This moisture is converted into acetylene by the calcium carbide tube 5, and thereafter detected as carbon dioxide gas through the steps described above.

なあ、この実施例においでは非分散型赤外線ガス検出器
により炭酸ガスを検出するようにしでいるが、熱伝導度
型ガス検出器等の他の形式の炭酸ガス検出器を用いても
同様の作用を奏することは明らかである。
In this example, carbon dioxide gas is detected using a non-dispersive infrared gas detector, but the same effect can be obtained using other types of carbon dioxide gas detectors such as thermal conductivity type gas detectors. It is clear that it plays.

(発明の効果) 以上説明したように本発明においては、試料注入口を介
して炭酸ガス及び水分を除去した助燃ガス源に接続する
炭化カルシウム管と、炭化カルシウム管の排出側に試料
注入口を介して接続する全炭素燃焼管と、全炭素燃焼管
の排出側に接続する炭酸ガス検出手段と、流入側が試料
注入口を介して助燃ガス源に、また排出側が炭酸ガス検
出手段に接続する無機炭素燃焼管を備えるようにしたの
で、気体中に含まれでいる水分をアセチレンに変換した
後、炭素燃焼管により炭酸ガスに変換しで、全炭素や無
機炭素と同様の手法により測定することかでき、試料に
含まれている水分、及び全有機炭素を高い感度で一斉に
分析することかできる。
(Effects of the Invention) As explained above, in the present invention, a calcium carbide pipe is connected to a combustion auxiliary gas source from which carbon dioxide and moisture have been removed through a sample injection port, and a sample injection port is provided on the discharge side of the calcium carbide pipe. an all-carbon combustion tube connected through the tube, a carbon dioxide detection means connected to the discharge side of the all-carbon combustion tube, and an inorganic Since it is equipped with a carbon combustion tube, it is possible to convert the moisture contained in the gas into acetylene, then convert it into carbon dioxide gas using the carbon combustion tube, and then measure it using the same method as total carbon and inorganic carbon. It is possible to simultaneously analyze moisture and total organic carbon contained in a sample with high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置の構成図、及び第
2図は本発明の他の実施例を示す構成図である。 1・・・・切換弁       2・・・・助燃ガス源
3・・・・水分測定用試料注入口 5・・・・炭化カルシウム管 6・・・・全炭素測定用試料注入口 9・・・・全炭素燃焼管
FIG. 1 is a block diagram of an apparatus showing one embodiment of the present invention, and FIG. 2 is a block diagram showing another embodiment of the present invention. 1...Switching valve 2...Combustion auxiliary gas source 3...Sample inlet for moisture measurement 5...Calcium carbide tube 6...Sample inlet for total carbon measurement 9...・All carbon combustion tube

Claims (1)

【特許請求の範囲】[Claims] 試料注入口を介して炭酸ガス及び水分を除去した助燃ガ
ス源に接続する炭化カルシウム管と、該炭化カルシウム
管の排出側に試料注入口を介して接続する全炭素燃焼管
と、該全炭素燃焼管の排出側に接続する炭酸ガス検出手
段と、流入側が試料注入口を介して前記助燃ガス源に、
また排出側が前記炭酸ガス検出手段に接続する無機炭素
燃焼管を備えてなる水分及び全有機炭素分析装置。
a calcium carbide tube connected to a source of auxiliary combustion gas from which carbon dioxide and moisture have been removed through a sample inlet; an all-carbon combustion tube connected to the discharge side of the calcium carbide tube through a sample inlet; a carbon dioxide gas detection means connected to the discharge side of the pipe, and an inflow side connected to the combustion auxiliary gas source through the sample injection port;
Further, a moisture and total organic carbon analyzer comprising an inorganic carbon combustion tube whose discharge side is connected to the carbon dioxide gas detection means.
JP24035390A 1990-09-11 1990-09-11 Moisture and total organic carbon analyzer Expired - Lifetime JP2855830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24035390A JP2855830B2 (en) 1990-09-11 1990-09-11 Moisture and total organic carbon analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24035390A JP2855830B2 (en) 1990-09-11 1990-09-11 Moisture and total organic carbon analyzer

Publications (2)

Publication Number Publication Date
JPH04120443A true JPH04120443A (en) 1992-04-21
JP2855830B2 JP2855830B2 (en) 1999-02-10

Family

ID=17058230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24035390A Expired - Lifetime JP2855830B2 (en) 1990-09-11 1990-09-11 Moisture and total organic carbon analyzer

Country Status (1)

Country Link
JP (1) JP2855830B2 (en)

Also Published As

Publication number Publication date
JP2855830B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US5661036A (en) Process for the detection of sulfur
Bott et al. The use of multisensor systems in monitoring hazardous atmospheres
US6780378B2 (en) Method for measuring concentrations of gases and vapors using controlled flames
US5246668A (en) Air sampling and analysis system
US4077774A (en) Interferent-free fluorescence detection of sulfur dioxide
JP2761070B2 (en) Smog monitor and monitoring method
JP2006275801A (en) Component analyzer of exhaust gas
US3464797A (en) Instrument for determining ozone
CN113376158A (en) System and method for online measurement of ozone generation rate and ozone generation sensitivity
JP4527110B2 (en) Analyzer having variable volume type ballast chamber and analysis method
JPH04120443A (en) Analyzing apparatus of moisture and total organic carbon
CN213455605U (en) Continuous monitoring system for smoke emission
CN107219245B (en) Organic carbon pyrolysis analysis device for hydrocarbon source rock
Fahey et al. A calibrated source of N2O5
CN105092510B (en) A kind of Natural Gas Power Plant flue gas on-line continuous monitoring method and system
JPH04331352A (en) Particulate analysis device
Fried et al. Laser photoacoustic detection of nitrogen dioxide in the gas-phase titration of nitric oxide with ozone
US4081247A (en) Method and apparatus for the chemiluminescent detection of HCl
JP4188096B2 (en) measuring device
JP3064030B2 (en) Analysis method for diesel engine exhaust gas
JP3086508B2 (en) Analyzer for unburned hydrocarbons in flue gas
JPS60143767A (en) Total carbon measurement
JPH0552837A (en) Carbon measuring device
JPH0546500B2 (en)
CN217112072U (en) System for continuously monitoring greenhouse gas emission in waste treatment process on line