JPH04119805A - Carbon fiber-reinforced cement material and manufacture thereof - Google Patents

Carbon fiber-reinforced cement material and manufacture thereof

Info

Publication number
JPH04119805A
JPH04119805A JP23897990A JP23897990A JPH04119805A JP H04119805 A JPH04119805 A JP H04119805A JP 23897990 A JP23897990 A JP 23897990A JP 23897990 A JP23897990 A JP 23897990A JP H04119805 A JPH04119805 A JP H04119805A
Authority
JP
Japan
Prior art keywords
carbon fibers
carbon fiber
concentration
cement
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23897990A
Other languages
Japanese (ja)
Inventor
Koji Sakata
康二 坂田
Toshiyuki Naba
那波 利之
Shigeru Kanamaru
金丸 茂
Keiichiro Kiba
木庭 敬一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP23897990A priority Critical patent/JPH04119805A/en
Publication of JPH04119805A publication Critical patent/JPH04119805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)

Abstract

PURPOSE:To obtain a sufficient reinforcing effect and a conductivity imparting effect by a small quantity of short fibrous carbon fibers by continuously changing the concentration of carbon fibers along the direction toward the other surface from one surface and forming a concentration gradient, in which concentration near one surface is thinned and concentration near the other surface is thickened. CONSTITUTION:A carbon fiber-reinforced cement group material is manufactured by dispersing carbon fibers in a cement group matrix, and has a shape having at least one pair of opposed surfaces, and a concentration gradient, in which concentration is increased continuously from the surface 1 side with the concentration of carbon fibers is measured along the direction toward a surface 2 from a surface 1 in a cut surface cut by a virtual cutting plane line D-D' when the thickness of a member is comparatively thin is formed. When a distance from the surface 1 to the surface 2 is divided into three equal parts and each part is represented by a first layer, a second layer and a third layer, a reinforcing effect and a conductivity improving effect are displayed remarkably when the quantity of carbon fibers in the third layer is twice or more the quantity of carbon fibers in the second layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、短繊維状炭素繊維を分散配合させて強化した
炭素繊維強化セメント系材料及びその製造方法に関する
。さらに詳しくは、少ない量の炭素繊維により十分な補
強効果と導電性付与効果の得られる炭素繊維強化セメン
ト系材料及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carbon fiber-reinforced cement material reinforced by dispersing and blending short fibrous carbon fibers, and a method for producing the same. More specifically, the present invention relates to a carbon fiber-reinforced cement material that can provide sufficient reinforcing effect and conductivity imparting effect with a small amount of carbon fiber, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

モルタル、コンクリート等のセメント系材料服安価で、
しかも耐久性、耐火性に優れた材料であり、さらに圧縮
強度や剛性に関しても優れた物性を有している。しかし
 構造物として使用する場合に頃 引張強度や衝撃強度
が低く、エネルギー吸収能力がノ」1さいなめ、物性的
に“もろい゛という欠点を持っている。また、全く導電
性を有しないため、床材等に使用する場合には静電防止
など特別の処置を必要とすることもあった これらの問
題点を解決するため、炭素繊維を使用して材料の強化及
び導電性付与を行う方法が試みられてし)る。
Cement-based materials such as mortar and concrete are inexpensive,
Moreover, it is a material with excellent durability and fire resistance, and also has excellent physical properties in terms of compressive strength and rigidity. However, when used as a structure, it has low tensile strength and impact strength, has a very low energy absorption ability, and has the disadvantage of being brittle in terms of physical properties.In addition, it has no conductivity at all, so When used for flooring, etc., special measures such as anti-static measures were sometimes required.To solve these problems, a method of using carbon fiber to strengthen the material and make it conductive has been developed. attempted).

すなわち、短繊維状の炭素繊維を使用し プレミックス
して均一に配合するか、不織布(糺 マット)を引張応
力が作用する部位に配置する方法がとられており、また
、長繊維を用いる場合も同様に組法 シート状あるいは
経机 棒状に加工した炭素繊維をセメント・コンクリー
ト系材料の弓張応力の作用する部位に埋め込む方法が採
られている。
In other words, when short fiber carbon fibers are used, they are premixed and blended uniformly, or nonwoven fabrics (dashi mats) are placed in areas where tensile stress is applied. A similar method is used to embed carbon fibers processed into sheets or warped rods in the areas of cement/concrete materials that are subject to tensile stress.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら炭素繊維は一般に高価であり、さらにこれ
を加工した不織布、シート等を使用するの檄 不織布あ
るいはシート間にセメント系マトリックスがはいり難い
ため、強度のバラツキが発生しやすくなり、作業も複雑
となり、コスト高となるので好ましくなく、なるべく短
繊維状の炭素繊維をセメント系マトリックス中に添加し
 分散させるだけで高い効果が得られるようにするのが
好ましい。
However, carbon fiber is generally expensive, and it is difficult to use nonwoven fabrics, sheets, etc. made from carbon fiber.Since it is difficult to insert a cement matrix between nonwoven fabrics or sheets, variations in strength tend to occur and the work becomes complicated. This is not preferable because it increases the cost, but it is preferable to add short carbon fibers into the cement matrix so that a high effect can be obtained simply by dispersing them.

ところが、−度に多量のモルタルやコンクリートを製造
するプラントにおいて、炭素繊維をセメント系材料に混
合する場合、両者の比重の差が大きいことや、繊維径が
小さいほど繊維が絡まりやすいこと等により、炭素繊維
のセメント系材料への分散性に難があり、混合系中でフ
ァイバーポールと呼ばれる毛玉を作り易いので均一に混
合させることが難しく、また通常の炭素繊維はセメント
系マトリックスとの接着性が悪く、両者の境界面で滑り
易く、炭素繊維の添加量の割には十分な補強効果が得ら
れないため、少ない添加量で十分な強度を有する炭素繊
維補強セメント系材料を得るのは困難であっtム オムニミキサーを用いるなど、採算を顧みずに特殊な技
術を使えば炭素繊維を均一に分散させることは不可能で
はなかつ九 しかしながら、梁のように厚い部材では、
内部にある炭素繊維は補強のためにあまり役だっておら
ず、炭素繊維を均一に分散させることはかえって炭素繊
維を無駄に使用することになってしまう。
However, when mixing carbon fiber with cement-based materials in a plant that manufactures large quantities of mortar and concrete, the difference in specific gravity between the two is large, and the smaller the fiber diameter, the more easily the fibers become tangled. Carbon fiber has difficulty dispersing into cement-based materials, and it is difficult to mix uniformly as it tends to form pilling called fiber poles in the mixing system, and ordinary carbon fiber has poor adhesion to cement-based matrices. It is difficult to obtain a carbon fiber-reinforced cement-based material with sufficient strength even with a small amount of carbon fiber added, as it is difficult to obtain a carbon fiber-reinforced cement-based material with sufficient strength even with a small amount of carbon fiber added. However, it is not impossible to uniformly disperse carbon fibers using special techniques such as using an omni mixer without considering profitability.However, in thick members such as beams,
The carbon fibers inside are not very useful for reinforcement, and dispersing the carbon fibers uniformly ends up wasting the carbon fibers.

本発明の課題は、前記問題点を解決し 少なし)量の短
繊維状炭素繊維で十分な補強効果と導電性付与効果が得
ら瓢 しかも、簡単な操作で製造力C可能な炭素繊維強
化セメント系材料及びその製造方法を提供することにあ
る。
The object of the present invention is to solve the above-mentioned problems, to obtain sufficient reinforcing effect and conductivity imparting effect with a small amount of short fibrous carbon fiber, and to enable carbon fiber reinforcement with simple operation and manufacturing capacity. An object of the present invention is to provide a cement material and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明1 炭素繊維がセメント系マトリックス中に分散
されてなる炭素繊維強化セメント系材料であって、少な
くとも一対の相対する面を持つ形状をなし 基本的を−
一対の面の一方の面から他方の面へ向かう方向に沿って
炭素繊維の濃度力で連続的に変化し 一方の面付近の濃
度が薄く、他方の面付近の濃度が濃くなるような濃度勾
配を有することを特徴とする炭素繊維強化セメント系材
料である。特&気 前記セメント系材料を前記方向に沿
って3等分し それぞれ第1.2及び第3層とした場合
く 第3層中の炭素繊維の量カー 第2層中の炭素繊維
の量の2倍以上である前記炭素繊維強化セメント系材料
が好ましい。
Invention 1 A carbon fiber-reinforced cementitious material in which carbon fibers are dispersed in a cementitious matrix, which has a shape having at least one pair of opposing surfaces, and basically has -
The concentration gradient changes continuously due to the concentration force of the carbon fiber along the direction from one side of a pair of surfaces to the other, with the concentration being lower near one surface and higher near the other surface. It is a carbon fiber-reinforced cement material characterized by having. Special & Qi If the cement-based material is divided into three equal parts along the above-mentioned direction and the 1st, 2nd and 3rd layers are formed respectively, the amount of carbon fiber in the third layer is the amount of carbon fiber in the second layer. The carbon fiber-reinforced cement material is preferably twice or more.

また本発明は、炭素繊維をセメント系マトリックス中に
分散させ、さらに型枠中で振動処理を施すことによって
炭素繊維を沈降させた後、硬化させることを特徴とする
炭素繊維強化セメント系材料の製造方法である。
The present invention also provides the production of a carbon fiber-reinforced cementitious material characterized by dispersing carbon fibers in a cementitious matrix, further precipitating the carbon fibers by subjecting them to vibration treatment in a mold, and then hardening the carbon fibers. It's a method.

セメントマトリックスはセメント系の母材(炭素繊維に
対して)を意味し セメント、モルタル、コンクリート
のいずれをも含丸 またこれらに種々の添加剤(Al1
  減水剤等)、繊維等が含まれたものも合本 セメン
トを結合剤と見なせばセメントを主たる結合剤とするも
のである。またセメントマトリックスは硬化前および硬
化後のいずれの状態もさす。
Cement matrix refers to a cement-based base material (as opposed to carbon fiber), and includes cement, mortar, and concrete. It also includes various additives (Al1
If cement is considered as a binder, cement is the main binder. The term cement matrix refers to both before and after hardening.

繊維の引抜けを抑制するためにセメントマトリックスに
用いるセメント粒子は微細であることが特に好ましい。
It is particularly preferred that the cement particles used in the cement matrix be fine in order to suppress fiber pull-out.

具体的には早強セメントあるいは超早強セメントを用い
ることが好ましい。また、骨材を用いる場合、骨材もセ
メント水和物と繊維との接着性を良くするためにシリカ
ヒユームや微粒珪砂等のような微細なものが好ましい。
Specifically, it is preferable to use early strength cement or ultra early strength cement. Further, when using aggregate, fine aggregate such as silica fume or fine silica sand is preferably used to improve the adhesion between the cement hydrate and the fibers.

炭素繊維の長さは、必要に応じて0.5mm未満のミル
ドファイバーを用いることもできるが、通常0.5〜2
0鴫 特に1.0〜6.0mmとするのが補強材として
の効果が大きく、好ましい。炭素繊維の配合量は炭素繊
維を含むセメントマトリックスの全容積に対する炭素繊
維の容積比率として1〜20vo1%で補強効果が得ら
れるハ 実用上1〜10vo1%程度とすることが好ま
しい。10vo1%を超えると分散が悪くなり、補強効
果は頭打ちとなる傾向が認められる。
The length of carbon fibers is usually 0.5 to 2 mm, although milled fibers of less than 0.5 mm can be used if necessary.
Particularly, it is preferable to set the thickness to 1.0 to 6.0 mm because it is highly effective as a reinforcing material. The amount of carbon fibers to be blended is preferably about 1 to 10 vol. %, so that a reinforcing effect can be obtained at a volume ratio of 1 to 20 vol. % to the total volume of the cement matrix containing carbon fibers. If it exceeds 10vol%, the dispersion becomes poor and the reinforcing effect tends to reach a plateau.

本発明においては、セメントペースト中における分散性
及びセメントとの親和性が良好な炭素繊維を使用する。
In the present invention, carbon fibers having good dispersibility in cement paste and good affinity with cement are used.

このような炭素繊維として特に好ましいの鷹 特公平1
−132832号公報に開示された方法によって製造さ
れるものであり、芳香族スルホン酸類又はそれらの塩を
重合、縮合させて得られる芳香族スルホン酸系高分子化
合物を主成分と1 水系溶媒に溶解させた紡糸液を乾式
紡糸し炭化あるいはさらに黒鉛化して得られる炭素繊維
である。これは0.1〜2.Ow七%の硫黄分を含有し
繊維1g当たり1〜250μg当量の−C)l、  −
Co()l。
Particularly preferred as such carbon fiber is Hawk Tokko 1
It is manufactured by the method disclosed in Publication No. 132832, and the aromatic sulfonic acid-based polymer compound obtained by polymerizing and condensing aromatic sulfonic acids or their salts is dissolved in an aqueous solvent as the main component. Carbon fibers are obtained by dry spinning the resulting spinning solution and carbonizing or further graphitizing it. This is 0.1-2. -C) containing 7% sulfur content and equivalent to 1 to 250 μg per gram of fiber, -
Co()l.

−8o3Hなどの表面酸性基を有しており、この点が本
発明に好適な理由と考えられる。この方法によって製造
された炭素繊維は、繊維径が10〜100μmと太く、
セメントペースト中での分散性が極めて良好で、しかも
セメント系マトリックスとの親和性が良好という、セメ
ント系材料の補強材として極めて優れた性能を有してい
る。この炭素繊維が通常の炭素繊維に比較して繊維径を
太くできる理由は、ピッチ系あるいはPAN系の炭素繊
維では直径が20μm以上になると酸化による不融化あ
るいは耐炎化が難しくなり、繊維内部まで充分に酸化し
ようとすると表面が過酸化の状態となり、炭化時に酸素
をCOあるいはCO2の形で放出するため炭素繊維の欠
陥が増大し その結果繊維の強度が著しく低下するのに
対し この炭素繊維の場合には、原料が不融化を必要と
しない、本質的に溶融しない樹脂であるためである。
It has a surface acidic group such as -8o3H, and this point is considered to be the reason why it is suitable for the present invention. The carbon fibers produced by this method have a thick fiber diameter of 10 to 100 μm,
It has extremely good dispersibility in cement paste and good affinity with the cementitious matrix, making it an excellent reinforcing material for cementitious materials. The reason why this carbon fiber can be made thicker in fiber diameter than normal carbon fiber is that pitch-based or PAN-based carbon fibers become difficult to make infusible or flame resistant through oxidation when the diameter exceeds 20 μm. When attempting to oxidize to This is because the raw material is essentially an unmeltable resin that does not require infusibility.

上記好ましく用いられる炭素繊維の強度は次のようであ
り、これはピッチ系炭素繊維のおよそ2倍となっている
The strength of the above preferably used carbon fiber is as follows, and this is approximately twice that of pitch-based carbon fiber.

直 径(μm) 引張強度(Kg/mm2)30   
  40〜100 40     30〜60 セメント系材料の補強用炭素繊維としては、セメント系
マトリックス中への繊維の分散性や繊維有効係数を高め
るため番ミ アスペクト比を小さくすることが有効で、
繊維径15〜40μ亀 繊維長2〜6mmのものが望ま
れている。前記好ましく用いられる炭素繊維(戯 繊維
径が最大100μmと、通常のピッチ系あるいはPAN
系の炭素繊維に比較して太く、アスペクト比をかさくす
ることができるので、セメント系材料と混和する際の繊
維のからみが少なく、分散性が良好となり、また混合時
の繊維の損傷が少なくなる。また、スルホン基等の酸性
官能基を多く含むため、本来アルカリ性であるセメント
系マトリックスとの接着性が良く、大きな補強効果を得
ることができる。
Diameter (μm) Tensile strength (Kg/mm2) 30
40-100 40 30-60 As carbon fibers for reinforcing cement-based materials, it is effective to reduce the aspect ratio in order to increase the dispersibility of the fibers in the cement-based matrix and the effective fiber coefficient.
A fiber diameter of 15 to 40 μm and a fiber length of 2 to 6 mm is desired. Preferably used carbon fibers (with a maximum fiber diameter of 100 μm and ordinary pitch or PAN fibers)
Compared to other carbon fibers, it is thicker and has a thicker aspect ratio, so there is less entanglement of the fibers when mixed with cement-based materials, resulting in better dispersibility and less damage to the fibers during mixing. Become. Furthermore, since it contains a large amount of acidic functional groups such as sulfone groups, it has good adhesion to the cement matrix, which is alkaline in nature, and can provide a large reinforcing effect.

本発明のセメント系材料が第1図に示すような形状であ
る場合、相対する面の組は3組あるがそのうちの一組(
ここでは面1と面2)を考えたとき、分散された炭素繊
維が次のような濃度分布を有する。すなわち部材の厚み
が比較的薄い場合(戯仮想切断線D−D’ で切断され
た切断面(第1図のa、 b、 c、 dで囲まれる面
)において、面1から面2に向かう方向に沿って、炭素
繊維の濃度をとったとき、第2図Aに示すように面1側
から連続的に濃度が増加していく濃度分布を有する。、
また第2図Aのような濃度分布の場合、第1図に仮想線
(−点鎖線)で示したように面1から面2までの距離を
3等分し それぞれ第1層、第2層、第3層としたとき
、第3層中の炭素繊維の量が第2層中の炭素繊維の量の
2倍以上であると補強効果、導電性向上効果が顕著に現
収 好ましい。
When the cementitious material of the present invention has a shape as shown in Fig. 1, there are three pairs of opposing surfaces, one of which (
Here, when considering surfaces 1 and 2), the dispersed carbon fibers have the following concentration distribution. In other words, when the thickness of the member is relatively thin (on the cut plane cut along the hypothetical cutting line DD' (the plane surrounded by a, b, c, and d in Figure 1), the direction from plane 1 to plane 2 When the concentration of carbon fibers is measured along the direction, as shown in FIG. 2A, there is a concentration distribution in which the concentration increases continuously from the surface 1 side.
In addition, in the case of the concentration distribution as shown in Figure 2A, the distance from surface 1 to surface 2 is divided into three equal parts as shown by the virtual line (-dotted chain line) in Figure 1, and the distance from surface 1 to surface 2 is divided into three equal parts. When forming the third layer, it is preferable that the amount of carbon fiber in the third layer is at least twice the amount of carbon fiber in the second layer, since the reinforcing effect and the effect of improving conductivity can be achieved significantly.

また、部材の厚みが比較的厚い場合叫 前記切断面にお
いて第2図Bに示すよう&ミ 面1側から連続的に濃度
が増加していく濃度分布を有するのは部材の厚みが比較
的薄い場合と同様であるカー第2層の端部(第1図のb
cおよびad側)付近に濃度の濃い部分を有する場合も
ある。このような場合も基本的には部材の厚みが比較的
薄い場合と同様な炭素繊維の濃度分布、効果を有するこ
とはいうまでもない。なお、第2図A、  Bにおいて
ハツチ線はその密度が高いほど炭素繊維の濃度が濃いこ
とを概念的に示したものである。
Also, if the thickness of the member is relatively thick, the thickness of the member that has a concentration distribution where the concentration increases continuously from the surface 1 side as shown in Figure 2B at the cut plane is relatively thin. The end of the second layer of the car is similar to the case (b in Figure 1).
In some cases, there may be a part with a high density near the c and ad sides). Needless to say, in such a case, the carbon fiber concentration distribution and effect are basically the same as in the case where the thickness of the member is relatively thin. Note that the hatched lines in FIGS. 2A and 2B conceptually indicate that the higher the density of the hatched lines, the higher the concentration of carbon fibers.

以下簡単のため面1に相当する面を上面とし面2に相当
する面を下面(底面)として説明する。
Hereinafter, for the sake of simplicity, the surface corresponding to surface 1 will be described as an upper surface, and the surface corresponding to surface 2 will be described as a lower surface (bottom surface).

図面においても同様とする。The same applies to drawings.

本発明のセメント系材料の形状は第1図では板状(もし
くは角柱状)であるが、炭素繊維が前記濃度分布を有す
ることを基本とするため、特に形状については限定され
るものではない。
Although the shape of the cement material of the present invention is plate-like (or prismatic) in FIG. 1, the shape is not particularly limited since the carbon fibers basically have the above concentration distribution.

本発明のセメント系材料を製造するにあたり、先ず炭素
繊維を適当な長さに調整したものを必要により骨材や流
動化剤等の添加剤を添加したセメントペースト中に配合
し、分散させる。ここで前記好ましく用いられる炭素繊
維を使用すればセメントペースト中における分散性が極
めて良好な特性を有するので、短繊維状の炭素繊維とセ
メントペースト、モルタルあるいはコンクリートとの混
合には、オムニミキサーやアインリッヒミキサー等の特
殊なミキサーを使用する必要はなく、強制ミキサー 二
軸強制ミキサー モルタルミキサー傾胴ミキサーのよう
な一般に使用されているミキサーで充分混合することに
より炭素繊維が均一に分散したセメントペースト、モル
タル、コンクリートを得ることができる。繊維を混合し
たペースト、モルタルあるいはコンクリートを任意の形
状の塁枠にい蜆 ペースト、モルタルの場合はフロー値
が100〜300mm、好ましくは150〜250mm
程度の流動性、またコンクリートの場合はスランプ値1
8〜21cm程度の流動性を保持した状態で振動処理を
行う。これにより、脱泡効果に加えて、繊維が主として
水平方向に配向するとともに沈降し 上方の濃度が薄く
、下方の濃度が濃い濃度勾配が形成される。このように
簡単な振動処理により炭素繊維がペースト等の中を沈降
上 上方の濃度が薄く、下方の濃度が濃い濃度勾配を形
成するのは前記好ましく用いられる炭素繊維によりはじ
めて可能になるものであり、通常のピッチ系あるいはP
AN系炭素炭素繊維不可能であった 次いでこれを必要によりプレス成型等により成形したの
ちオートクレーブ養生、蒸気養生、水中養生、気中養生
等により硬化させることによって、炭素繊維の濃度勾配
を有する炭素繊維強化セメント系材料を得ることができ
る。オートクレーブ養生や蒸気養生を行わない場合は、
低収縮性のセメントを用いることが望ましい。成形時に
あらかじめ鉄筋や、上記炭素繊維を含む他の繊維からな
る補強材を型枠中に配置することで補強効果を高めるこ
ともできる。
In producing the cementitious material of the present invention, first, carbon fibers adjusted to an appropriate length are blended and dispersed in a cement paste to which additives such as aggregate and a fluidizing agent are added as necessary. If the above-mentioned preferably used carbon fibers are used, they have extremely good dispersibility in cement paste, so when mixing the short carbon fibers with cement paste, mortar, or concrete, an omni mixer or an iron There is no need to use a special mixer such as a Rich mixer, and by thoroughly mixing with commonly used mixers such as forced mixers, twin-shaft forced mixers, mortar mixers, and tilted-body mixers, cement paste with carbon fibers evenly dispersed. Mortar and concrete can be obtained. Paste, mortar or concrete mixed with fibers can be applied to a base frame of any shape.In the case of paste or mortar, the flow value is 100 to 300 mm, preferably 150 to 250 mm.
degree of fluidity, and in the case of concrete, a slump value of 1
Vibration treatment is performed while maintaining fluidity of about 8 to 21 cm. As a result, in addition to the defoaming effect, the fibers are mainly oriented horizontally and settle, forming a concentration gradient where the concentration is lower at the top and higher at the bottom. This simple vibration treatment allows the carbon fibers to sink through the paste, etc., forming a concentration gradient where the concentration is lower at the top and higher at the bottom. , normal pitch system or P
AN-based carbon fiber, which was not possible, was then molded by press molding, etc. if necessary, and then cured by autoclave curing, steam curing, water curing, air curing, etc. to produce carbon fiber with a carbon fiber concentration gradient. A reinforced cementitious material can be obtained. If autoclave curing or steam curing is not performed,
It is preferable to use a low shrinkage cement. The reinforcing effect can also be enhanced by arranging reinforcing material made of reinforcing bars or other fibers including the carbon fibers in the formwork in advance during molding.

振動処理はテーブルバイブレータ−型枠振動機、棒状バ
イブレータ−等が使用さ枳 その振動数、HIU  振
動時間等は所望する形状に従い適切な値を設定すればよ
い。振動の方向は上下方向が好ましい。
For the vibration treatment, a table vibrator (form vibrator, rod vibrator, etc.) is used.The vibration frequency, HIU vibration time, etc. may be set to appropriate values according to the desired shape. The direction of vibration is preferably vertical.

フロー値やスランプ値を調整する場合は、CMC等の増
粘剤や流動化剤により調整できる。特A本発明の炭素繊
維強化セメント系材料の場合、ナフタレンスルホン酸縮
合物系の流動化剤あるいは減水剤が強度を向上させる上
でも効果的である。
When adjusting the flow value and slump value, they can be adjusted using a thickener or fluidizing agent such as CMC. Special A: In the case of the carbon fiber-reinforced cement material of the present invention, a naphthalene sulfonic acid condensate-based fluidizing agent or water reducing agent is also effective in improving the strength.

また空気量はAE剤や消泡剤で制御すればよい。Further, the amount of air may be controlled using an AE agent or an antifoaming agent.

このようにして製造されるセメント系材料においては、
配合された炭素繊維の沈降が認めら汰個々の繊維は良好
な分散状態を保ちながら、上面付近は薄く、下面付近は
濃いという濃度勾配を示している。例え1f1  長さ
3mmに調製した短繊維状炭素繊維を3 vo1%配合
し フロー値250mmに調整した未硬化モルタルを4
0 X 40 X 160mmの壓粋に詰め、バイブレ
ータ−(上下振幅1.5im、  3557サイクル/
分)で60秒間振動を与えたものを厚み方向に3等分し
上部から第1.2及び第3層として測定した炭素繊維濃
度はそれぞれ平均で1.4.1.9及び5.7vo1%
であった 次に、これをオートクレーブ処理して硬化さ
せたものがら、25 X 25 X 160mmの試料
を切り出し、第3図に示すE、F及びGの3方向から荷
重をかけて測定した曲げ強度はそれぞれ260. 17
0. 90Kg/ca+2で特にE方向の強度が著しく
強化されているのがわかる。また、長軸方向で測定した
体積抵抗率は0.65X 102Ωcmとなり、同量の
炭素繊維を均一に分散させた材料の約1/2になってい
る。
In the cement-based materials manufactured in this way,
Although no sedimentation of the blended carbon fibers was observed, the individual fibers maintained a good dispersion state and exhibited a concentration gradient in which the fibers were thinner near the top and thicker near the bottom. For example, 1f1: 3 vo1% of short fibrous carbon fibers adjusted to a length of 3 mm, and 4 uncured mortar adjusted to a flow value of 250 mm.
0 x 40 x 160mm, vibrator (vertical amplitude 1.5im, 3557 cycles/
The carbon fiber concentration of the 1.2nd and 3rd layers measured from the top by dividing the material into 3 equal parts in the thickness direction after applying vibration for 60 seconds (minutes) was 1.4%, 1.9% and 5.7% on average, respectively.
Next, a sample of 25 x 25 x 160 mm was cut out from the autoclaved and cured sample, and the bending strength was measured by applying loads from the three directions E, F, and G shown in Figure 3. are 260. each. 17
0. It can be seen that the strength particularly in the E direction is significantly enhanced at 90Kg/ca+2. Further, the volume resistivity measured in the major axis direction was 0.65×10 2 Ωcm, which is about 1/2 that of a material in which the same amount of carbon fibers were uniformly dispersed.

本発明の方法においては、セメントペースト中における
分散性及びセメントとの親和性が良好な炭素繊維を使用
し、硬化前の状態で振動処理を施すことにより繊維の配
向とセメントと炭素繊維の比重差からは全く予測できな
かった繊維の沈降が起こり、上面の炭素繊維濃度が薄く
、下部における濃度が濃いという炭素繊維の濃度勾配を
有する炭素繊維強化セメント系材料を得ることができる
In the method of the present invention, carbon fibers with good dispersibility in cement paste and affinity with cement are used, and vibration treatment is applied before hardening to improve the orientation of the fibers and the difference in specific gravity between cement and carbon fibers. A totally unpredictable sedimentation of the fibers occurs, and a carbon fiber-reinforced cementitious material having a carbon fiber concentration gradient where the concentration of carbon fibers is thinner at the top and higher at the bottom can be obtained.

そして本発明の炭素繊維強化セメント系材料13下面付
近の炭素繊維濃度が特に高くなっているので強度に方向
性が生ロ 上方から下方へ向かう力に対し特に高い強度
を発揮する。これは同じ量の炭素繊維を均一に分散させ
た場合に比べて非常に高い強度である。また、電気抵抗
は炭素繊維の濃度の高い部分によって左右されるので、
同じ量の炭素繊維を均一に分散させたものに比較医 体
積抵抗率は著しく低くなっており、導電性付与効果が大
きい。
Since the carbon fiber concentration near the lower surface of the carbon fiber reinforced cement material 13 of the present invention is particularly high, the strength is directional and exhibits particularly high strength against forces directed from above to below. This is a much higher strength than when the same amount of carbon fibers are uniformly dispersed. In addition, since electrical resistance is affected by areas with high concentration of carbon fiber,
Compared to the same amount of carbon fibers dispersed uniformly, the volume resistivity is significantly lower and the effect of imparting electrical conductivity is greater.

本発明の炭素繊維強化セメント系材料は、床材、梁材等
力の作用する方向が一定な個所に使用する材料として、
また、静電気防止効果、電磁遮蔽効果が求められる個所
に使用する材料として特に好適である。
The carbon fiber reinforced cement material of the present invention can be used as a material for flooring, beams, etc. where the direction of force is constant.
Furthermore, it is particularly suitable as a material for use in locations where antistatic effects and electromagnetic shielding effects are required.

本発明の炭素繊維強化セメント系材料においては、炭素
繊維に濃度分布があり、いわば炭素繊維が必要な箇所に
必要な量だけ存在するので炭素繊維を無駄なく有効に利
用できる。
In the carbon fiber-reinforced cement-based material of the present invention, carbon fibers have a concentration distribution, so that the required amount of carbon fibers is present at the required locations, so that the carbon fibers can be used effectively without waste.

〔実施例〕〔Example〕

以下実施例により本発明をさらに具体的に説明する。な
お、実施例中の%は特に断らない限り重量%を表す。
The present invention will be explained in more detail with reference to Examples below. Note that % in the examples represents weight % unless otherwise specified.

実施例1および比較例1〜3 精製ナフタレン1280gに98%の硫酸1050 g
を加え、150℃で3時間スルホン化したのち、未反応
ナフタレンと反応生成水を留去した 次いで200gの
水を加えて希釈したのち、35%のホルマリン875g
を加え、105℃で6時間反応させ、ナフタレン−β−
スルホン酸のメチレン結合型の縮合物を得たこの縮合物
をアンモニア水で中和後不溶解分をろ別した 縮合物の
アンモニウム塩の平均分子量は103・bであり、最大
分子量は1016であった このナフタレン−β−スル
ホン酸のメチレン結合型の縮合物のアンモニウム塩水溶
液へ 該水溶液中の固形分(110℃/6時間乾燥後の
残分)に対し1%相当量のポリビニルアルコールを水に
溶解させたものを添加し混合後水分を43%に調整して
紡糸液とした この紡糸液の40℃における粘度は30
0ポアズであツ’to  この紡糸液をL / D =
 0.3mm/ 0.1mmの1000ホールロ金を用
いて40℃で、300m/minの紡糸速度で乾式紡糸
した 得られた原糸を4.6mmに切断し ベルト上に積載し
 入口温度250℃、出口温度1000℃に調整した炉
中に導入し 窒素気流中20分間で焼成しへ 得られた
炭素繊維(CF−A)14  直径26μ亀 繊維長さ
約3.0mmで、伸度2.6%、引張強度89.9Kg
/mrI!1  弾性率3.6トン/ mm2で、元素
組成(χ)はC:92.0、H: 0.7、N: 1.
2、S:0.6.0・5.5であり、中和滴定法で測定
した酸性官能基は25.5μg当量/gであつtム 早強ポルトランドセメントに細骨材として8号硅砂を、
さらにセメントに対し2%量のナフタレン−β−スルホ
ン酸ホルマリン縮合物系減水剤を加え、W/C=0.4
52、S/C=0.5の条件で配合したものに、3.0
vo1%の炭素繊維(CF−A)を配合し モルタルミ
キサーで5分間混合した得られた炭素繊維配合モルタル
を40X 40X 160mmの成形型枠に流し造本 
振幅1.5− 振動数3557サイクル/秒で30秒間
振動を与え九 その後、−旦20℃、相対湿度60%の
雰囲気下で硬化させ、さらにオートクレーブ中、150
℃で10時間養生したものを供試体とし、次の条件で曲
げ強度及び体積抵抗率を測定した結果を第1表に示す。
Example 1 and Comparative Examples 1 to 3 1280 g of purified naphthalene and 1050 g of 98% sulfuric acid
After sulfonation at 150°C for 3 hours, unreacted naphthalene and water produced by the reaction were distilled off. Next, 200 g of water was added to dilute, and 875 g of 35% formalin was added.
was added and reacted at 105°C for 6 hours to form naphthalene-β-
A methylene-bonded condensate of sulfonic acid was obtained. This condensate was neutralized with aqueous ammonia and the insoluble matter was filtered out. The average molecular weight of the ammonium salt of the condensate was 103·b, and the maximum molecular weight was 1016. To the ammonium salt aqueous solution of the methylene-bonded condensate of naphthalene-β-sulfonic acid, add polyvinyl alcohol in an amount equivalent to 1% of the solid content in the aqueous solution (residue after drying at 110°C for 6 hours) to water. The dissolved material was added and mixed, and the water content was adjusted to 43% to obtain a spinning solution.The viscosity of this spinning solution at 40℃ is 30
At 0 poise, use this spinning solution as L/D=
The obtained yarn was dry-spun at 40°C using 1000-hole gold of 0.3 mm/0.1 mm at a spinning speed of 300 m/min, and was cut into 4.6 mm pieces and loaded on a belt.The inlet temperature was 250°C. The carbon fiber (CF-A) 14 obtained was introduced into a furnace adjusted to an outlet temperature of 1000°C and fired for 20 minutes in a nitrogen stream, with a diameter of 26 μm, a fiber length of approximately 3.0 mm, and an elongation of 2.6%. , tensile strength 89.9Kg
/mrI! 1 The elastic modulus is 3.6 tons/mm2, and the elemental composition (χ) is C: 92.0, H: 0.7, N: 1.
2. S: 0.6.0・5.5, and the acidic functional group measured by neutralization titration method was 25.5 μg equivalent/g. ,
Furthermore, a 2% amount of naphthalene-β-sulfonic acid formalin condensate based water reducing agent was added to the cement, and W/C=0.4.
52, mixed under the condition of S/C = 0.5, 3.0
VO1% carbon fiber (CF-A) was blended and mixed in a mortar mixer for 5 minutes. The resulting carbon fiber blended mortar was poured into a 40 x 40 x 160 mm molding frame and book-bound.
Amplitude 1.5 - Vibration was applied for 30 seconds at a frequency of 3557 cycles/sec. After that, it was cured in an atmosphere of 20°C and 60% relative humidity, and further heated in an autoclave for 150 sec.
Table 1 shows the results of measuring the bending strength and volume resistivity of the specimens cured at ℃ for 10 hours under the following conditions.

また、比較例1として、市販のピッチ系炭素繊維(CF
−B)を用いて同様に操作して得られた供試体の低 ま
た振動処理をしなかった場合の例として、3.0%の炭
素繊維(CF−A)を配合したものを比較例2に、炭素
繊維無添加のものを比較例3として示した 曲げ試験 試験機 島津社製オートグラフAG−10TD載荷方法
 3点曲げ、 Head: R3rm、  Ba5e: R3mmクロ
スヘツドスピード  0.5 mm/minスパン  
100 mm 体積抵抗率測定試験: 試験機  アトパンテスト社直流電圧発生器TR614
!、デジタル電流計TR6851測定方法 4端子法 (以下余白) また、実施例1  (CF−A)の試料の上下方向の炭
素繊維濃度の分布は、第2表の通りであり島第1表及び
第2表に示した結果から、炭素繊維濃度分布を見ると、
簡単な振動処理により、本発明の炭素繊維強化セメント
系材料が特有の炭素繊維濃度分布を有するのに対し 同
量の市販品炭素繊維を添加したものでは繊維の沈降は認
められない。物性的にも本発明品は特定方向からの荷重
に対し優れた補強効果を示し さらに導電性付与効果も
大きいことがわかる。
In addition, as Comparative Example 1, commercially available pitch-based carbon fiber (CF
-B) Comparative Example 2 Comparative Example 2 Comparative Example 2 Comparative Example 2 Comparative Example 2 Bending test machine with no carbon fiber added as Comparative Example 3 Autograph AG-10TD manufactured by Shimadzu Corporation Loading method 3-point bending Head: R3rm, Ba5e: R3mm Cross head speed 0.5 mm/min span
100 mm Volume resistivity measurement test: Testing machine Atoppantest DC voltage generator TR614
! , digital ammeter TR6851 measurement method 4-terminal method (the following is a blank space) In addition, the distribution of carbon fiber concentration in the vertical direction of the sample of Example 1 (CF-A) is as shown in Table 2; Looking at the carbon fiber concentration distribution from the results shown in Table 2,
When subjected to a simple vibration treatment, the carbon fiber-reinforced cementitious material of the present invention has a unique carbon fiber concentration distribution, whereas no fiber sedimentation is observed in the material to which the same amount of commercially available carbon fiber is added. Physically, it can be seen that the product of the present invention exhibits an excellent reinforcing effect against loads from a specific direction, and also has a large effect of imparting electrical conductivity.

第2表 〔発明の効果〕 本発明によれば炭素繊維含有量が少なくても十分な補強
効果と導電性付与効果の得られる炭素繊維強化セメント
材料が得られる。またこのようなセメント系材料を容易
に製造することのできる製造方法が提供される。
Table 2 [Effects of the Invention] According to the present invention, a carbon fiber-reinforced cement material can be obtained that provides sufficient reinforcing effect and conductivity imparting effect even with a small carbon fiber content. Also provided is a manufacturing method that can easily manufacture such cement-based materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の炭素繊維強化セメント系材料を示す
模式は 第2図は本発明のセメント系材料中の炭素繊維
の濃度分布を示す模式A 第3図は曲げ強度測定供試体
の荷重負荷方向を示すための模式図である。 に面12:面2 3 仮想切断面    11:第1層 ル°第2層     13:第3層 特許出願人  三井鉱山株式会社 代 理 人  弁理士 苦杯 忠
Fig. 1 is a schematic diagram showing the carbon fiber reinforced cement material of the present invention. Fig. 2 is a schematic diagram showing the concentration distribution of carbon fiber in the cement material of the present invention. FIG. 3 is a schematic diagram showing the load direction. Surface 12: Surface 2 3 Virtual cutting plane 11: 1st layer 2nd layer 13: 3rd layer Patent applicant Mitsui Mining Co., Ltd. Representative Patent attorney Tadashi Kuwai

Claims (1)

【特許請求の範囲】 1、炭素繊維がセメント系マトリックス中に分散されて
なる炭素繊維強化セメント系材料であって、少なくとも
一対の相対する面を持つ形状をなし、一対の面の一方の
面から他方の面へ向かう方向に沿って炭素繊維の濃度が
連続的に変化し、一方の面付近の濃度が薄く、他方の面
付近の濃度が濃くなるような濃度勾配を有することを特
徴とする炭素繊維強化セメント系材料。 2、前記セメント系材料を前記方向に沿って3等分し、
それぞれ第1、2及び第3層とした場合に、第3層中の
炭素繊維の量が、第2層中の炭素繊維の量の2倍以上で
ある請求項1に記載の炭素繊維強化セメント系材料。 3、炭素繊維をセメント系マトリックス中に分散させ、
型枠中で振動処理を施すことによって炭素繊維を沈降さ
せたのち硬化させることを特徴とする炭素繊維強化セメ
ント系材料の製造方法。
[Scope of Claims] 1. A carbon fiber-reinforced cementitious material in which carbon fibers are dispersed in a cementitious matrix, which has a shape with at least a pair of opposing surfaces, and is Carbon characterized by having a concentration gradient in which the concentration of carbon fibers changes continuously along the direction toward the other surface, with the concentration being lower near one surface and higher near the other surface. Fiber reinforced cement material. 2. Divide the cement-based material into three equal parts along the direction,
The carbon fiber reinforced cement according to claim 1, wherein the amount of carbon fiber in the third layer is at least twice the amount of carbon fiber in the second layer when the first, second and third layers are respectively formed. system material. 3. Dispersing carbon fibers in a cement matrix,
A method for producing a carbon fiber-reinforced cement material, which comprises precipitating carbon fibers by subjecting them to vibration treatment in a mold and then hardening them.
JP23897990A 1990-09-11 1990-09-11 Carbon fiber-reinforced cement material and manufacture thereof Pending JPH04119805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23897990A JPH04119805A (en) 1990-09-11 1990-09-11 Carbon fiber-reinforced cement material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23897990A JPH04119805A (en) 1990-09-11 1990-09-11 Carbon fiber-reinforced cement material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04119805A true JPH04119805A (en) 1992-04-21

Family

ID=17038134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23897990A Pending JPH04119805A (en) 1990-09-11 1990-09-11 Carbon fiber-reinforced cement material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04119805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330874A (en) * 1992-05-29 1993-12-14 Mitsui Mining Co Ltd Production of thick carbon fiber reinforced cement series material
JP2000309011A (en) * 1999-04-27 2000-11-07 Tokyu Constr Co Ltd Short fiber reinforced-structural member and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330874A (en) * 1992-05-29 1993-12-14 Mitsui Mining Co Ltd Production of thick carbon fiber reinforced cement series material
JP2000309011A (en) * 1999-04-27 2000-11-07 Tokyu Constr Co Ltd Short fiber reinforced-structural member and manufacture thereof

Similar Documents

Publication Publication Date Title
Banthia et al. Restrained shrinkage cracking in fibre-reinforced cementitious composites
KR101204872B1 (en) Ultra-high-performance self-compacting concrete, preparation method thereof and use of same
Yew et al. Strength properties of hybrid nylon-steel and polypropylene-steel fibre-reinforced high strength concrete at low volume fraction
EP0383348A1 (en) Carbon fiber-reinforced hydraulic composite material
Zheng et al. Carbon fiber reinforced cement composites improved by using chemical agents
JPH04119805A (en) Carbon fiber-reinforced cement material and manufacture thereof
CN113666677A (en) Ultrahigh-toughness concrete and curing method thereof
EP2883852A1 (en) A method for manufacturing concrete filled with carbon fibers
Awan et al. Carbon nano fibre reinforcements in concrete
Haghi et al. Applications of expanded polystyrene (EPS) beads and polyamide-66 in civil engineering, Part One: Lightweight polymeric concrete
JP2810173B2 (en) Method for producing carbon fiber reinforced cementitious composite material
KR102292424B1 (en) Hybrid fiber-reinforced mortar composition containing steel fiber and carbon fiber, and cement composite with improved flexural performance
Awan et al. Use of carbon nano-fibers in cementitious mortar
CA2132439C (en) Interground fiber cement
JPH11189448A (en) Fiber for reinforcing concrete and concrete formed product using the same
JPH06263494A (en) Carbon short fiber dispersed composition and production of cfrc using the same
CN115893954B (en) Polyoxymethylene fiber concrete with high residual bending strength and preparation method thereof
Zhang et al. Study on Bending Strength of Cementitious Composites Based on Fiber Alignment
JPH0740538Y2 (en) Fiber bundle for cement-based compact reinforcement
JPS62226850A (en) Not yet solidified composition
Ramadan Abd El Monem et al. BEHAVIOUR OF MORTAR PRISMS STRENGTHENED BY NANO GRAPHENE FIBERS
CN1208506C (en) Modified cracking and seepage resisting polyproplylene fiber for concrete and mortar
Kalthoff et al. Investigation into the Integration of Impregnated Glass and Carbon Textiles in a Laboratory Mortar Extruder (LabMorTex). Materials (Basel) 2021; 14: 7406
DE102005053490A1 (en) Composite materials containing hydraulic binders
JPH0634344Y2 (en) Carbon fiber reinforced cement composite material