JPH11189448A - Fiber for reinforcing concrete and concrete formed product using the same - Google Patents

Fiber for reinforcing concrete and concrete formed product using the same

Info

Publication number
JPH11189448A
JPH11189448A JP36703597A JP36703597A JPH11189448A JP H11189448 A JPH11189448 A JP H11189448A JP 36703597 A JP36703597 A JP 36703597A JP 36703597 A JP36703597 A JP 36703597A JP H11189448 A JPH11189448 A JP H11189448A
Authority
JP
Japan
Prior art keywords
fiber
concrete
strength
reinforcing
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36703597A
Other languages
Japanese (ja)
Other versions
JP3274402B2 (en
Inventor
Norihiro Nakai
徳宏 中井
Hiroaki Nishio
浩昭 西尾
Kunio Kimura
邦夫 木村
Tsukasa Kamio
典 神尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Chisso Corp filed Critical Agency of Industrial Science and Technology
Priority to JP36703597A priority Critical patent/JP3274402B2/en
Publication of JPH11189448A publication Critical patent/JPH11189448A/en
Application granted granted Critical
Publication of JP3274402B2 publication Critical patent/JP3274402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene

Abstract

PROBLEM TO BE SOLVED: To obtain a fiber for reinforcing concrete, having large impact absorbing energy, improved in affinity and dispersibility with cement matrix and capable of improving flexural strength and compression strength of concrete foamed product, especially impact strength of concrete formed product and obtain a concrete formed product by using the fiber. SOLUTION: This fiber for reinforcing concrete comprises a polypropylene fiber having >=5 g/d single yarn strength and >=40% single yarn elongation and the fiber is obtained by attaching 0.1-10 wt.% at least one kind of surfactant having 8-22C alkyl group and selected from a group comprising a higher fatty acid metal salt, a higher alcohol sulfuric acid ester metal salt, a higher alkyl ether sulfuric acid ester metal salt, an alkylbenzenesulfonic acid metal salt, an alkylbenzenenaphthalenesulfonic acid metal salt, paraffin sulfonic acid metal salt, an alkylamine salt and an alkylammonium salt to polypropylene fiber. This concrete formed product is obtained by forming raw materials for concrete by using the fiber as a reinforcing material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンクリート補強
効果に優れたコンクリート補強用繊維に関する。さらに
詳しくは、施工ボード、瓦等の建築材料を主とするコン
クリート成形体に好適に使用されるコンクリート補強用
繊維およびそのコンクリート補強用繊維を用いて形成し
たコンクリート成形体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber for reinforcing concrete having an excellent concrete reinforcing effect. More specifically, the present invention relates to a concrete reinforcing fiber suitably used for a concrete molded body mainly composed of building materials such as construction boards and tiles, and a concrete molded body formed using the concrete reinforcing fiber.

【0002】[0002]

【従来の技術】セメントの硬化物は、圧縮強度、耐久
性、不燃性等の優れた性質に加えて安価なるが故に大量
に建築、土木分野等に使用されている。しかしながら、
脆性物質であるために耐屈曲性が著しく低く、引張り、
曲げ応力が加わると容易に破損したり、ひびがはいり、
耐衝撃性が弱い等の欠点がある。近年、これらの問題点
を改善するためにセメント補強用繊維として種々の無機
繊維、有機合成繊維の使用が提案されている。しかしな
がら、繊維の特性を効果的に利用できなかったり、繊維
が長所と短所を併せ持つため効果を十分に発揮できず、
コンクリート補強効果が満足できる域に到達していな
い。例えば、オレフィン系繊維は耐アルカリ性、耐熱性
もあり、かつオートクレーブ養生や蒸気養生ができコン
クリート補強には有利である。しかし、オレフィン系繊
維の表面は疎水性であり、親水性のセメントマトリック
スとの接着性が悪く、更に、セメントスラリー中での分
散性も悪い。この問題点を解決する先行技術として、繊
維を界面活性剤等で表面処理することでセメントとの親
和性を向上させる技術が知られている(特開平4−21
556、特開平5−170497、PCT国際公開WO
90/06902等)。これらの先行技術文献に記載さ
れている繊維は、かなり良好なコンクリート補強効果を
示してはいるが、曲げ強度、衝撃強度が共にさらに改善
されたコンクリート成形体が求められている。また、近
年では、分散性や親和性を改善させたり、補強効果を向
上させるために、繊維の断面を異形化したり、繊維表面
に突起や節を付けたり、または表面を他の成分で皮膜し
たり、あるいは繊維強度を向上させたり、さらには他の
成分を練り込んだり、原料を特殊化したりする等の改善
策が提案されているが、未だに満足のできる域には達し
ていない。
2. Description of the Related Art Hardened cement is widely used in the fields of construction and civil engineering because of its low cost in addition to excellent properties such as compressive strength, durability and nonflammability. However,
Because it is a brittle material, it has extremely low flex resistance,
It easily breaks or cracks when bending stress is applied,
There are drawbacks such as low impact resistance. In recent years, in order to solve these problems, use of various inorganic fibers and organic synthetic fibers as fibers for reinforcing cement has been proposed. However, the properties of the fibers cannot be used effectively, or the fibers have both advantages and disadvantages, and the effects cannot be sufficiently exhibited.
The concrete reinforcement effect has not reached a satisfactory level. For example, olefin fibers have alkali resistance and heat resistance, and can be cured in an autoclave or steam, which is advantageous for concrete reinforcement. However, the surface of the olefin fiber is hydrophobic, has poor adhesion to a hydrophilic cement matrix, and has poor dispersibility in a cement slurry. As a prior art for solving this problem, there is known a technique for improving the affinity for cement by treating the surface of a fiber with a surfactant or the like (Japanese Patent Laid-Open No. 4-21).
556, JP-A-5-170497, PCT International Publication WO
90/06902). Although the fibers described in these prior art documents show a fairly good concrete reinforcing effect, there is a demand for a concrete molded body having further improved bending strength and impact strength. In recent years, in order to improve dispersibility and affinity, and to improve the reinforcing effect, the cross section of the fiber is deformed, projections or nodes are formed on the fiber surface, or the surface is coated with other components. There have been proposed improvement measures such as improving fiber strength, kneading other components, and specializing raw materials, but have not yet reached a satisfactory range.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、衝撃
吸収エネルギーが大きく、セメントマトリクスとの親和
性と分散性が向上し、コンクリート成形体の曲げ強度や
圧縮強度特に衝撃強度の向上が見られるコンクリート補
強用繊維を提供しようとするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the impact absorption energy, improve the affinity and dispersibility with a cement matrix, and improve the bending strength and compressive strength, particularly impact strength, of a concrete molded product. It is intended to provide a concrete reinforcing fiber that can be used.

【0004】本発明者らは、上記目的を達成するため
に、鋭意検討を重ねた結果、ポリプロピレン繊維の強伸
度物性とコンクリート補強に関する知見を生かして、ポ
リプロピレン繊維の強度のみならず伸度も高く維持する
ことがコンクリート成形体の曲げ強度だけでなく衝撃強
度を向上させる効果があること、それに組み合わせて高
級脂肪酸金属塩、高級アルコール硫酸エステル金属塩、
高級アルキルエーテル硫酸エステル金属塩、アルキルベ
ンゼンスルホン酸金属塩、アルキルベンゼンナフタレン
スルホン酸金属塩、パラフィンスルホン酸金属塩、アル
キルアミン塩、アルキルアンモニウム塩の群から選ばれ
た少なくとも1種で炭素数が8〜22のアルキル基を有
する界面活性剤をポリプロピレン繊維表面に付着させた
場合に、衝撃吸収エネルギーが大きくなり、かつセメン
トマトリックスとの親和性と分散性が向上し、コンクリ
ート成形体の曲げ強度や圧縮強度特に衝撃強度を飛躍的
に向上させる効果が見られることから、かかるポリプロ
ピレン繊維が、コンクリート補強用繊維として適してい
ることを知り、かつその繊維を用いて形成したコンクリ
ート成形体は極めて優れた衝撃強度を発現することを見
出し、本発明を完成するに至った。
[0004] The present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, have obtained not only the strength but also the elongation of the polypropylene fiber by making use of the knowledge on the physical properties and the concrete reinforcement of the polypropylene fiber. Maintaining a high level has the effect of improving not only the bending strength but also the impact strength of the concrete molding, and in combination with it, higher fatty acid metal salts, higher alcohol sulfate metal salts,
At least one selected from the group consisting of metal salts of higher alkyl ether sulfates, metal salts of alkyl benzene sulfonic acids, metal salts of alkyl benzene naphthalene sulfonic acids, metal salts of paraffin sulfonic acids, alkyl amine salts, and alkyl ammonium salts; When a surfactant having an alkyl group is attached to the surface of the polypropylene fiber, the impact absorption energy increases, and the affinity and dispersibility with the cement matrix are improved. Since the effect of dramatically improving the impact strength is seen, it is known that such polypropylene fiber is suitable as a fiber for reinforcing concrete, and a concrete molded article formed using the fiber has extremely excellent impact strength. Expression, and completed the present invention. This has led to the.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決するために以下の構成を有する。 (1)単糸強度が5g/d以上、単糸伸度が40%以上を有す
るポリプロピレン繊維からなるコンクリート補強用繊維
であって、該繊維には高級脂肪酸金属塩、高級アルコー
ル硫酸エステル金属塩、高級アルキルエーテル硫酸エス
テル金属塩、アルキルベンゼンスルホン酸金属塩、アル
キルベンゼンナフタレンスルホン酸金属塩、パラフィン
スルホン酸金属塩、アルキルアミン塩、アルキルアンモ
ニウム塩の群から選ばれた少なくとも1種で炭素数が8
〜22のアルキル基を有する界面活性剤がポリプロピレ
ン繊維重量に対し、0.1〜10重量%付着させれていること
を特徴とするコンクリート補強用繊維。 (2)ポリプロピレン繊維が、単糸強度が7g/d以上、単
糸伸度が70%以上を有する前記(1)項に記載のコンクリー
ト補強用繊維。 (3)前記金属塩が、Na,Li,Kから選ばれた少なくと
も1種のアルカリ金属塩である前記(1)または(2)項に記
載のコンクリート補強用繊維。 (4)前記(1)〜(3)項のいずれかに記載のコンクリート
補強用繊維を用いて形成したコンクリート成形体。
The present invention has the following arrangement to solve the above-mentioned problems. (1) Concrete reinforcing fibers made of polypropylene fibers having a single yarn strength of 5 g / d or more and a single yarn elongation of 40% or more, wherein the fibers include higher fatty acid metal salts, higher alcohol sulfate metal salts, At least one selected from the group consisting of metal salts of higher alkyl ether sulfates, metal salts of alkylbenzene sulfonic acids, metal salts of alkyl benzene naphthalene sulfonic acids, metal salts of paraffin sulfonic acids, alkyl amine salts, and alkyl ammonium salts;
A concrete reinforcing fiber, wherein 0.1 to 10% by weight of a surfactant having an alkyl group of from 22 to 22 is attached to the weight of the polypropylene fiber. (2) The concrete reinforcing fiber according to the above (1), wherein the polypropylene fiber has a single yarn strength of 7 g / d or more and a single yarn elongation of 70% or more. (3) The concrete reinforcing fiber according to the above (1) or (2), wherein the metal salt is at least one kind of alkali metal salt selected from Na, Li, and K. (4) A concrete compact formed using the fiber for reinforcing concrete according to any one of the above (1) to (3).

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のコンクリート補強用繊維に用いるポリプロピレ
ン繊維は、単糸強度が5g/d以上であり、尚かつ単糸伸度
が40%以上である。本発明のコンクリート補強用繊維
は、単糸強度5g/d以上であり、尚かつ単糸伸度40%以上
であるポリプロピレン繊維に高級脂肪酸金属塩、高級ア
ルコール硫酸エステル金属塩、高級アルキルエーテル硫
酸エステル金属塩、アルキルベンゼンスルホン酸金属
塩、アルキルベンゼンナフタレンスルホン酸金属塩、パ
ラフィンスルホン酸金属塩、アルキルアミン塩、アルキ
ルアンモニウム塩の群から選ばれた少なくとも1種で炭
素数が8〜22のアルキル基を有する界面活性剤がポリ
プロピレン繊維重量に対し、0.1〜10重量%付着されてい
るコンクリート補強用繊維である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The polypropylene fiber used for the concrete reinforcing fiber of the present invention has a single yarn strength of 5 g / d or more and a single yarn elongation of 40% or more. The concrete reinforcing fiber of the present invention has a single yarn strength of 5 g / d or more, and a polypropylene fiber having a single yarn elongation of 40% or more, a higher fatty acid metal salt, a higher alcohol sulfate metal salt, or a higher alkyl ether sulfate. A metal salt, a metal salt of an alkyl benzene sulfonic acid, a metal salt of an alkyl benzene naphthalene sulfonic acid, a metal salt of a paraffin sulfonic acid, an alkylamine salt, or an alkyl ammonium salt, having an alkyl group having 8 to 22 carbon atoms. A concrete reinforcing fiber to which a surfactant is attached in an amount of 0.1 to 10% by weight based on the weight of the polypropylene fiber.

【0007】また本発明の更に好ましい態様としては、
単糸強度7g/d以上であり、尚かつ単糸伸度70%以上であ
るポリプロピレン繊維に前記の界面活性剤がポリプロピ
レン繊維重量に対し、0.1〜10重量%付着されているコン
クリート補強用繊維である。これら、高級脂肪酸塩、高
級アルコール硫酸エステル塩、高級アルキルエーテル硫
酸エステル塩、アルキルベンゼンスルホン酸塩、アルキ
ルベンゼンナフタレンスルホン酸塩、パラフィンスルホ
ン酸塩の金属塩としては、Na,Li,Kから選ばれた少な
くとも1種のアルカリ金属塩が用いられる。また、その
他の塩としては、第1級アミン塩、第2級アミン塩、第
3級アミン塩で代表され、アルキルアミン塩、第4級ア
ンモニウム塩の如きアルキルアンモニウム塩が用いられ
る。さらには、Ca,Mg,Ba等の2価の金属塩も用いるこ
とができる。
In a further preferred aspect of the present invention,
Single fiber strength of 7 g / d or more, and the above-mentioned surfactant is added to polypropylene fiber having a single yarn elongation of 70% or more, based on the weight of the polypropylene fiber, by 0.1 to 10% by weight of a concrete reinforcing fiber. is there. These metal salts of higher fatty acid salts, higher alcohol sulfates, higher alkyl ether sulfates, alkylbenzene sulfonates, alkylbenzene naphthalene sulfonates, and paraffin sulfonates are at least selected from Na, Li, and K. One alkali metal salt is used. Other salts are represented by primary amine salts, secondary amine salts and tertiary amine salts, and alkylammonium salts such as alkylamine salts and quaternary ammonium salts are used. Further, divalent metal salts such as Ca, Mg and Ba can also be used.

【0008】本発明のコンクリート補強用繊維の基材と
なるポリプロピレン繊維は、原料のポリプロピレンが、
100%プロピレン単位からなるもの、その他重合体中2重
量%以下のエチレン単位もしくはC4以上の例えばブテン
−1、ペンテン−1,4−メチルペンテン−1、ヘキセ
ン−1、オクテン−1等のオレフィン単位を含有するポ
リプロピレンと他のオレフィンの共重合体であってもよ
い。またポリプロピレン樹脂に、プロピレンとエチレ
ン、オレフィンとの結晶ランダム共重合体もしくはブロ
ック共重合体の混合物であってもよい。
[0008] The polypropylene fiber used as the base material of the concrete reinforcing fiber of the present invention is obtained by mixing the raw material polypropylene with:
100% propylene units, 2% by weight or less of ethylene units in the polymer or olefin units having C4 or more such as butene-1, pentene-1,4-methylpentene-1, hexene-1, octene-1, etc. And a copolymer of polypropylene and another olefin. Further, a mixture of a crystal random copolymer or a block copolymer of propylene, ethylene and olefin may be used as the polypropylene resin.

【0009】本発明に関わるポリプロピレン樹脂には、
本発明の効果を妨げない範囲内でさらに、酸化防止剤、
光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安
定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑
剤などの添加剤を適宜必要に応じて添加してもよい。
The polypropylene resin according to the present invention includes:
Further, within the range not hindering the effects of the present invention, an antioxidant,
Light stabilizers, ultraviolet absorbers, neutralizers, nucleating agents, epoxy stabilizers, lubricants, antibacterial agents, flame retardants, antistatic agents, pigments, plasticizers, etc. Good.

【0010】次に本発明のコンクリート補強用繊維の基
材となる単糸強度5g/d以上、単糸伸度40%以上のポリプ
ロピレン繊維の製造法について説明する。まず紡糸温度
は、250〜350℃の範囲で紡糸することが好ましく、より
好ましくは、310〜340℃の範囲で溶融紡糸することが繊
維の配向を抑えた未延伸糸とすることができ好ましい。
紡糸温度が250℃未満であると、押出機で溶融したポリ
プロピレン溶融物を紡糸口金から押出した繊維状のポリ
プロピレン溶融物は急激に冷却され、固化点での繊維の
変形が大きく、配向がより進んだ未延伸糸となるため好
ましくはない。また紡糸温度が350℃を超えると急激に
ポリプロピレン樹脂の分解が進み、繊維の発砲などから
曳糸性の良い未延伸糸を得ることが困難であるばかりで
なく、繊維の分子鎖が著しく切断されてしまい、低分子
量化し、延伸しても高強度なポリプロピレン繊維となら
ない。
Next, a method for producing a polypropylene fiber having a single yarn strength of 5 g / d or more and a single yarn elongation of 40% or more as a base material of the concrete reinforcing fiber of the present invention will be described. First, spinning is preferably performed at a spinning temperature in the range of 250 to 350 ° C, and more preferably in the range of 310 to 340 ° C, because it is possible to obtain an undrawn yarn with reduced fiber orientation.
When the spinning temperature is less than 250 ° C., the fibrous polypropylene melt extruded from the spinneret from the polypropylene melt melted by the extruder is rapidly cooled, and the fiber deformation at the solidification point is large, and the orientation is further advanced. However, it is not preferable because it is an undrawn yarn. In addition, when the spinning temperature exceeds 350 ° C, the decomposition of the polypropylene resin rapidly progresses, and it is difficult not only to obtain an undrawn yarn having good spinnability due to fiber firing, but also the molecular chains of the fiber are severely cut. Even if it is reduced in molecular weight and stretched, it does not become a high-strength polypropylene fiber.

【0011】また、押し出した繊維状のポリプロピレン
溶融物を冷却する場合、従来の方法、例えば空気、水、
グリセリン等の媒体中で融点以下の温度まで冷却し、引
き取ることができるが、未延伸糸の配向を極力抑えるに
は、液体で急冷却するのではなく、空気で冷却すること
が好ましい。空気の温度、風量は任意に設定できるが、
より配向を抑えた未延伸糸とするため、徐冷却、即ち風
量は弱く、温度はあまり低温すぎないことが好ましい。
このように徐冷することにより、ラメラが繊維軸方向に
対して直角に配列したような結晶の高次構造を充分に形
成させることができ好ましい。
When the extruded fibrous polypropylene melt is cooled, conventional methods such as air, water,
It can be cooled in a medium such as glycerin or the like to a temperature lower than the melting point, and can be drawn. However, in order to suppress the orientation of the undrawn yarn as much as possible, it is preferable to cool with air instead of quenching with liquid. Air temperature and air volume can be set arbitrarily,
In order to obtain an undrawn yarn with further suppressed orientation, it is preferable that the temperature is gradually cooled, that is, the air volume is weak and the temperature is not too low.
Such slow cooling is preferable because a higher-order crystal structure in which the lamellas are arranged at right angles to the fiber axis direction can be sufficiently formed.

【0012】未延伸糸の巻取り速度は、繊維状のポリプ
ロピレン溶融物の固化点での変形が小さく、配向が進ま
ない未延伸糸とするために引き取り速度が200〜1000m/m
inであることが好ましい。より好ましくは、200m/min未
満にならない程度で、なるべく低速で引き取ることが好
ましい。また、引き取り速度が1000m/min以上であると
繊維状のポリプロピレン溶融物の固化点での変形が大き
く、配向が進んだ未延伸糸となり、延伸性が悪く、高倍
率で延伸できない。また、200m/min未満では、高温度紡
糸により、溶融粘度が低くなったポリプロピレン溶融物
の自然落下速度よりも遅く均一な未延伸糸とすることが
できない。
[0012] The winding speed of the undrawn yarn is 200 to 1000 m / m so that the deformation at the solidification point of the fibrous polypropylene melt is small and the orientation does not progress.
It is preferably in. More preferably, it is preferable to take off at as low a speed as possible, so as not to be less than 200 m / min. On the other hand, if the take-up speed is 1000 m / min or more, the fibrous polypropylene melt is greatly deformed at the solidification point, becomes an oriented unstretched yarn, has poor stretchability, and cannot be stretched at a high magnification. On the other hand, if it is less than 200 m / min, high-temperature spinning cannot produce a uniform undrawn yarn which is slower than the natural falling speed of the polypropylene melt having a lowered melt viscosity.

【0013】コンクリート補強用繊維の基材となるポリ
プロピレン繊維の断面形状は、円形または異形の形状と
することができる。異形断面の場合には、例えば偏平
形、三角〜八角形等の角型、T字形、多葉形、中空断面
形等任意の形状とすることができ、特に限定されるもの
ではない。
The cross-sectional shape of the polypropylene fiber serving as the base material of the concrete reinforcing fiber can be circular or irregular. In the case of an irregular cross-section, any shape such as a flat shape, a square shape such as a triangular to octagonal shape, a T-shape, a multi-lobe shape, a hollow cross-sectional shape, etc., is not particularly limited.

【0014】次に延伸について説明する。前述の方法で
得たポリプロピレン未延伸糸を延伸して強度、伸度の高
いポリプロピレン繊維を得る。ポリプロピレン未延伸糸
の延伸法は、熱ロール延伸、温水延伸、加熱プレートな
ど公知の方法が採用される。延伸操作は、1段延伸、2
段延伸、多段延伸のいずれによっても行うことができる
が、1段延伸よりも2段延伸以上の延伸操作を行うこと
が好ましい。延伸温度は、50〜90℃の比較的低温度で延
伸する。90℃以上の温度で延伸した場合、急激に未延伸
糸の配向結晶化が進行し、50℃未満では延伸性が低下し
高強度化するに必要な延伸倍率とすることができない。
Next, stretching will be described. The polypropylene undrawn yarn obtained by the above-described method is drawn to obtain a polypropylene fiber having high strength and elongation. A known method such as hot roll drawing, hot water drawing, and a heating plate is employed as a method for drawing the undrawn polypropylene yarn. The stretching operation is one-step stretching, 2
The stretching can be performed by any of step stretching and multi-stage stretching, but it is preferable to perform stretching operation of two or more steps rather than one-step stretching. Stretching is performed at a relatively low temperature of 50 to 90 ° C. When drawn at a temperature of 90 ° C. or more, the oriented crystallization of the undrawn yarn proceeds rapidly, and at a temperature lower than 50 ° C., the drawability is reduced and the draw ratio required for high strength cannot be obtained.

【0015】この時の延伸倍率は、4.2〜6.0倍の範囲が
好ましい。より好ましくは、5.0〜5.8倍の範囲である。
4.2倍未満では単糸強度が低く、6.0倍を超えては単糸伸
度が低下する。次に、2段延伸を行う場合は、1段延伸
で全延伸倍率の40%以上好ましくは50%以上の延伸倍率で
延伸し、ついで2段目で単糸切れ、ケバ立ちが起きない
範囲まで延伸し、トータル延伸倍率が前記の範囲内とす
ることが好ましい。1段延伸で全延伸倍率の40%未満の
延伸倍率で延伸した場合、前記の全延伸倍率の40%以上
で1段延伸した場合に比べて全延伸倍率が同じであって
も、高強度ポリプロピレン繊維を得ることはできない。
これは、1段延伸で配向結晶化は著しく進行するため、
2段以上の延伸では無理な延伸がかかり結果として高強
度化しない。ここで延伸倍率とは、供給ロール速度と引
き取りロール速度の比で表したものである。
The stretching ratio at this time is preferably in the range of 4.2 to 6.0 times. More preferably, it is in the range of 5.0 to 5.8 times.
If it is less than 4.2 times, the single yarn strength is low, and if it exceeds 6.0 times, the single yarn elongation decreases. Next, when performing two-stage drawing, the film is drawn at a draw ratio of 40% or more, preferably 50% or more of the total draw ratio in one-step drawing, and then to a range where single yarn breakage and fluffing do not occur in the second step. It is preferable that the film is stretched and the total stretching ratio is within the above range. Even if the total stretching ratio is the same as the case where the single-stage stretching is performed at a stretching ratio of less than 40% of the total stretching ratio and the single-stage stretching is performed at 40% or more of the total stretching ratio, the high-strength polypropylene is used. Fiber cannot be obtained.
This is because orientation crystallization remarkably progresses in one-step stretching,
In two or more stages of stretching, unreasonable stretching takes place, and as a result, the strength does not increase. Here, the stretching ratio is represented by a ratio between a supply roll speed and a take-up roll speed.

【0016】また、延伸したポリプロピレン繊維の延伸
物を融点付近の温度で定長熱処理、弛緩熱処理等でアニ
ール処理を行うことにより熱収縮が改善されたポリプロ
ピレン繊維を得ることができる。
Further, by subjecting the drawn product of the drawn polypropylene fiber to an annealing treatment at a temperature near the melting point by a constant length heat treatment, a relaxation heat treatment or the like, a polypropylene fiber having improved heat shrinkage can be obtained.

【0017】この様な紡糸、延伸行程を経ることで単糸
強度5g/d以上、単糸伸度40%以上の物性を有するポリプ
ロピレン繊維が得られる。特に、310℃以上の高温で紡
糸し、低温延伸、または2段延伸を行うとコンクリート
補強に最適な単糸強度6g/d以上の高強度、単糸伸度50%
以上の高伸度ポリプロピレン繊維が得られるのである。
Through such spinning and drawing steps, a polypropylene fiber having physical properties of a single yarn strength of 5 g / d or more and a single yarn elongation of 40% or more can be obtained. In particular, spinning at a high temperature of 310 ° C or higher, low-temperature drawing or two-stage drawing is the most suitable for concrete reinforcement.
The above high elongation polypropylene fiber is obtained.

【0018】ポリプロピレン繊維への界面活性剤の付着
は紡糸工程、延伸工程、のいずれの段階で付着させても
良い。また、付着方法は、ローラ法、浸漬法、噴霧法、
パットドライ法などを用いることができる。好ましく
は、紡糸工程、延伸工程で付着させるのが均一付着がで
きてよい。
The surfactant may be attached to the polypropylene fiber in any of the spinning step and the drawing step. The adhesion method is a roller method, a dipping method, a spray method,
A pad dry method or the like can be used. Preferably, the attachment in the spinning step and the drawing step may provide uniform attachment.

【0019】本発明のコンクリート補強用繊維は炭素数
が8〜22の高級脂肪酸金属塩、高級アルコール硫酸エ
ステル金属塩、高級アルキルエーテル硫酸エステル金属
塩、アルキルベンゼンスルホン酸金属塩、アルキルベン
ゼンナフタレンスルホン酸金属塩、パラフィンスルホン
酸金属塩、アルキルアミン塩、アルキルアンモニウム塩
の群から選ばれた少なくとも1種の界面活性剤が適正量
付着されているか付着量がそのポリプロピレン繊維重量
に対して0.1〜10重量%である。0.1重量%未満では補強効
果が十分得られず、10重量%を超えると効果が飽和状態
となり曲げ強度、衝撃強度、衝撃吸収エネルギーが平衡
に達してしまう。また、表面処理剤の粘度が大きくなる
ため生産性が悪くなり、不経済でもあるため実用する必
要性がない。
The concrete reinforcing fiber of the present invention is a metal salt of a higher fatty acid having 8 to 22 carbon atoms, a metal salt of a higher alcohol sulfate, a metal salt of a higher alkyl ether sulfate, a metal salt of an alkylbenzenesulfonic acid, a metal salt of an alkylbenzenenaphthalenesulfonic acid. A suitable amount of at least one surfactant selected from the group consisting of a metal salt of paraffinsulfonic acid, an alkylamine salt and an alkylammonium salt, or the amount of the attached surfactant is 0.1 to 10% by weight based on the weight of the polypropylene fiber. is there. If it is less than 0.1% by weight, the reinforcing effect cannot be sufficiently obtained, and if it exceeds 10% by weight, the effect becomes saturated and the bending strength, impact strength and impact absorption energy reach equilibrium. Further, since the viscosity of the surface treatment agent is increased, productivity is deteriorated, and it is uneconomical, so that there is no need for practical use.

【0020】本発明のコンクリート補強用繊維は、単糸
強度5g/d以上で尚かつ単糸伸度40%以上であるポリプロ
ピレン繊維に前記の界面活性剤が付着されているので、
コンクリート補強効果、特に衝撃強度への補強効果が向
上する。
The concrete reinforcing fiber of the present invention has a single yarn strength of 5 g / d or more and a single yarn elongation of 40% or more.
The effect of reinforcing concrete, especially the effect of reinforcing impact strength, is improved.

【0021】コンクリートの衝撃強度は、衝撃吸収エネ
ルギーが大きいものほど高くなる。衝撃吸収エネルギー
とは、コンクリート成形体が応力を受けてから、破断後
応力がゼロになるまでのエネルギーのことである。
The impact strength of concrete increases as the impact absorption energy increases. The impact absorption energy is energy from the time when the concrete molded body receives stress until the stress after rupture becomes zero.

【0022】ポリプロピレン繊維の単糸伸度が40%以
上、単糸強度が5g/d以上あれば、伸度と強度の二次関数
より、従来の値以上の衝撃吸収エネルギーを示すため、
衝撃強度が高くなる。さらに、ポリプロピレン繊維の単
糸伸度が70%以上、単糸強度が7g/d以上あれば、衝撃吸
収エネルギーが飛躍的に向上すため衝撃強度の向上が見
られる。
When the single yarn elongation of the polypropylene fiber is 40% or more and the single yarn strength is 5 g / d or more, the impact absorption energy is more than the conventional value from the quadratic function of the elongation and the strength.
Impact strength increases. Further, if the single yarn elongation of the polypropylene fiber is 70% or more and the single yarn strength is 7 g / d or more, the impact absorption energy is dramatically improved, and the impact strength is improved.

【0023】つまり、ポリプロピレン繊維の表面に、前
記の界面活性剤を付着させることにより、コンクリート
との親和性と分散性が向上する。前記界面活性剤は、親
水基と疎水基の両方の極性を併せ持つ化合物である。前
記界面活性剤をポリプロピレン繊維表面に付着させるこ
とにより、ポリプロピレン繊維と前記界面活性剤の間で
は疎水基同士が親和性を持ち結合力が得られ、前記界面
活性剤とセメントとの間では親水基同士が向き合いセメ
ント中のカルシウムイオンと前記界面活性剤の塩が置換
され、前記界面活性剤のカルシウム塩となって不溶性で
粘着性のある物質となり、コンクリート補強用繊維の表
面にセメント粒子が付着する。即ち、前記界面活性剤を
ポリプロピレン繊維とセメントとの間に介在させること
によってセメントとコンクリート補強用繊維の接着性が
強固になり親和性を向上させ、セメント中にコンクリー
ト補強用繊維が均一に分散しやすくなり分散性も向上す
る。
That is, by attaching the above-mentioned surfactant to the surface of the polypropylene fiber, the affinity for concrete and the dispersibility are improved. The surfactant is a compound having both polarities of a hydrophilic group and a hydrophobic group. By adhering the surfactant to the surface of the polypropylene fiber, hydrophobic groups have an affinity between the polypropylene fiber and the surfactant and have a binding force, and a hydrophilic group is formed between the surfactant and the cement. The calcium ions in the cement are opposed to each other and the salt of the surfactant is replaced, and the calcium salt of the surfactant becomes an insoluble and sticky substance, and the cement particles adhere to the surface of the concrete reinforcing fiber. . That is, by interposing the surfactant between the polypropylene fiber and the cement, the adhesion between the cement and the concrete reinforcing fiber is strengthened and the affinity is improved, and the concrete reinforcing fiber is uniformly dispersed in the cement. And the dispersibility is improved.

【0024】ポリプロピレン繊維の伸度と強度の改善ま
たは前記界面活性剤を付着することによっても補強効果
が見られるが、本発明のように両者を組み合わせること
により、相乗効果が見られる。特に単糸強度5g/d以上を
有し単糸伸度が40%以上であるポリプロポレン繊維は、
基本的な強度物性に優れているが、前期界面活性剤を付
着させることによる相乗効果により、ポリプロピレン繊
維と界面活性剤の親和力のバランスがよく繊維表面への
吸着力がさらに高まり、コンクリート成形体の物性(特
に衝撃強度)を飛躍的に向上させる作用が見られる。こ
のことは、本発明の先行技術にあたる特開平5−170
497(特にその実施例8および10)に記載された繊
維が破断強力5g/d以上、破断伸度40%以上の物性
を持っているにもかかわらずそれを用いたコンクリート
成形体の曲げ強度が180〜190kgf/cm2、衝
撃強度が3.4〜3.7kgf・cm/cm2であるの
に対して、本発明のポリプロピレン繊維を用いたコンク
リート成形体は後述の実施例に示す通り曲げ強度が21
0kgf/cm2以上、衝撃強度が13kgf・cm/
cm2以上と飛躍的に向上していることを見れば明らか
である。
The reinforcing effect can also be obtained by improving the elongation and strength of the polypropylene fiber or by adhering the surfactant, but a synergistic effect can be obtained by combining the two as in the present invention. In particular, polypropylene fibers having a single yarn strength of 5 g / d or more and a single yarn elongation of 40% or more,
Although it has excellent basic strength physical properties, the synergistic effect of attaching the surfactant in the previous period provides a good balance between the affinity of the polypropylene fiber and the surfactant, and further increases the adsorption power to the fiber surface. The effect of dramatically improving physical properties (particularly impact strength) is seen. This is because the prior art of the present invention is disclosed in Japanese Patent Laid-Open No. 5-170.
497 (especially Examples 8 and 10) have physical properties such as a breaking strength of 5 g / d or more and a breaking elongation of 40% or more. In contrast to 180 to 190 kgf / cm 2 and impact strength of 3.4 to 3.7 kgf · cm / cm 2 , the concrete molded body using the polypropylene fiber of the present invention has a flexural strength as shown in Examples described later. Is 21
0 kgf / cm 2 or more, impact strength is 13 kgf · cm /
It is clear from the fact that it is dramatically improved to not less than cm 2 .

【0025】[0025]

【実施例】以下、実施例により本発明を説明するが、本
発明はこれらの実施例に限定されるものではない。 曲げ強度の測定は、JIS-A1408に準じて行った。衝
撃強度の測定は、コンクリート成形体を幅10mm、厚み5m
m、長さ50mmにカットしJIS-B-7722シャルピー衝撃試験
に準じて行った。衝撃吸収エネルギーの測定は、曲げ
強度試験のS-Sカーブのチャートを解析してその面積よ
り算出した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The bending strength was measured according to JIS-A1408. To measure the impact strength, a concrete molded body was 10 mm wide and 5 m thick
m, cut to 50 mm in length and performed according to JIS-B-7722 Charpy impact test. The measurement of the impact absorption energy was performed by analyzing the SS curve chart of the bending strength test and calculating from the area thereof.

【0026】実施例1 メルトフローレイト(以下MFR)25のポリプロピレン
を、温度250℃、引取速度400m/minで溶融紡糸後、90℃
で4.6倍の延伸を行い、繊維径が約直径17μm(約2d/f)
で繊維強度5.1g/d、繊維伸度42.1%とし、延伸後タッチ
ロールにより表面処理剤としてオレイン酸カリウム塩を
繊維重量に対し0.1重量%付着させて乾燥後、6mmにカッ
トしてコンクリート補強用繊維とした。
Example 1 A melt flow rate (hereinafter referred to as MFR) 25 polypropylene was melt spun at a temperature of 250 ° C. and a take-up speed of 400 m / min, and then spun at 90 ° C.
And stretched 4.6 times, and the fiber diameter is about 17μm (about 2d / f)
With a fiber strength of 5.1 g / d and a fiber elongation of 42.1%, after stretching, apply 0.1% by weight of potassium oleate as a surface treatment agent to the fiber weight as a surface treatment agent with a touch roll, dry and cut it to 6 mm for concrete reinforcement Fiber.

【0027】次に、普通ポルトランドセメント1000g、
珪砂7号1000g、上記コンクリート補強用繊維40g、メチ
ルセルロース20g、水360gを混合し、混練機を用い混練
後、押出成形を行い、厚み5mm、幅50mmの平板状のコン
クリート成形体とした。この成形体を、28日間水中養
生させ、その後60℃で24時間、95℃で8時間乾燥
後、コンクリート成形体とした。
Next, 1000 g of ordinary Portland cement,
1000 g of silica sand 7, 40 g of the concrete reinforcing fiber, 20 g of methylcellulose, and 360 g of water were mixed, kneaded using a kneader, and extruded to obtain a flat concrete molded body having a thickness of 5 mm and a width of 50 mm. This molded article was cured in water for 28 days, and then dried at 60 ° C. for 24 hours and at 95 ° C. for 8 hours to obtain a concrete molded article.

【0028】実施例2 実施例1の表面処理剤の付着量を9.8重量%とした以外
は、実施例1と同様としてコンクリート成形体を得た。
Example 2 A concrete molded body was obtained in the same manner as in Example 1 except that the amount of the surface treatment agent applied was changed to 9.8% by weight.

【0029】実施例3 実施例1の表面処理剤をラウリルエーテル硫酸エステル
ナトリウム塩とし、付着量0.3重量%とした以外は、実施
例1と同様としてコンクリート成形体を得た。
Example 3 A concrete molded product was obtained in the same manner as in Example 1 except that the surface treating agent of Example 1 was sodium lauryl ether sulfate and the amount of adhesion was 0.3% by weight.

【0030】実施例4 実施例3の表面処理剤の付着量を6.6重量%とした以外
は、実施例3と同様としてコンクリート成形体を得た。
Example 4 A concrete compact was obtained in the same manner as in Example 3 except that the amount of the surface treating agent of Example 3 was changed to 6.6% by weight.

【0031】実施例5 実施例1の表面処理剤をドデシルベンゼンスルホン酸ナ
トリウム塩とし、付着量0.6重量%とした以外は、実施例
1と同様としてコンクリート成形体を得た。
Example 5 A concrete compact was obtained in the same manner as in Example 1 except that the surface treating agent of Example 1 was changed to sodium dodecylbenzenesulfonate and the amount of adhesion was 0.6% by weight.

【0032】実施例6 実施例5の表面処理剤の付着量を3.2重量%とした以外
は、実施例5と同様としてコンクリート成形体を得た。
Example 6 A concrete molded body was obtained in the same manner as in Example 5, except that the amount of the surface treating agent of Example 5 was changed to 3.2% by weight.

【0033】実施例7 実施例1の表面処理剤の付着量を1.2重量%とした以外
は、実施例1と同様としてコンクリート成形体を得た。
Example 7 A concrete molded body was obtained in the same manner as in Example 1 except that the amount of the surface treating agent of Example 1 was changed to 1.2% by weight.

【0034】実施例8 実施例1の表面処理剤をオクチル酸カリウム塩とし、付
着量1.3重量%とした以外は、実施例1と同様としてコン
クリート成形体を得た。
Example 8 A concrete compact was obtained in the same manner as in Example 1 except that the surface treating agent of Example 1 was changed to potassium octylate and the amount of adhesion was 1.3% by weight.

【0035】実施例9 実施例1の表面処理剤をステアリン酸カリウム塩とし、
付着量0.9重量%とした以外は、実施例1と同様としてコ
ンクリート成形体を得た。
Example 9 The surface treating agent of Example 1 was changed to potassium stearate,
A concrete molded body was obtained in the same manner as in Example 1 except that the amount of adhesion was 0.9% by weight.

【0036】実施例10 実施例1の表面処理剤をベヘニン酸カリウム塩とし、付
着量2.5重量%とした以外は、実施例1と同様としてコン
クリート成形体を得た。
Example 10 A concrete molding was obtained in the same manner as in Example 1 except that the surface treating agent of Example 1 was changed to potassium behenate and the amount of adhesion was 2.5% by weight.

【0037】実施例11 実施例1の表面処理剤をオレイン酸アミン塩とし、付着
量1.7重量%とした以外は、実施例1と同様としてコンク
リート成形体を得た。
Example 11 A concrete molding was obtained in the same manner as in Example 1 except that the surface treating agent of Example 1 was changed to an amine oleate salt and the amount of adhesion was 1.7% by weight.

【0038】実施例12 実施例1の表面処理剤をリノール酸ナトリウム塩とし、
付着量4.4重量%とした以外は、実施例1と同様としてコ
ンクリート成形体を得た。
Example 12 The surface treating agent of Example 1 was changed to sodium linoleate,
A concrete molded body was obtained in the same manner as in Example 1, except that the amount of adhesion was 4.4% by weight.

【0039】比較例1 実施例1の表面処理剤の付着量を0.05重量%とした以外
は、実施例1と同様としてコンクリート成形体を得た。
Comparative Example 1 A concrete molded body was obtained in the same manner as in Example 1 except that the amount of the surface treatment agent of Example 1 was changed to 0.05% by weight.

【0040】比較例2 実施例1の表面処理剤を未付着とした以外は、実施例1
と同様としてコンクリート成形体を得た。
Comparative Example 2 Example 1 was repeated except that the surface treating agent of Example 1 was not adhered.
In the same manner as in the above, a concrete molded body was obtained.

【0041】比較例3 実施例3の表面処理剤の付着量を0.03重量%とした以外
は、実施例3と同様としてコンクリート成形体を得た。
Comparative Example 3 A concrete molded body was obtained in the same manner as in Example 3 except that the amount of the surface treating agent of Example 3 was changed to 0.03% by weight.

【0042】比較例4 実施例5の表面処理剤の付着量を0.07重量%とした以外
は、実施例5と同様としてコンクリート成形体を得た。
Comparative Example 4 A concrete molded body was obtained in the same manner as in Example 5 except that the amount of the surface treating agent applied was changed to 0.07% by weight.

【0043】上記「実施例1〜12」および「比較例1
〜4」のコンクリート成形体の物性を評価した結果を、
表1に示す。
The above "Examples 1 to 12" and "Comparative Example 1"
The results of evaluating the physical properties of the concrete molded product of “.
It is shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】表1から明らかな通り、実施例1〜12
は、コンクリート補強効果に優れていることが判る。
As is clear from Table 1, Examples 1 to 12
Indicates that the concrete has an excellent effect of reinforcing the concrete.

【0046】比較例2については、表面処理剤がないた
めに特に衝撃強度が劣っている。繊維の効果を十分に引
き出せず、比較例1,3,4については表面処理剤の付
着量が0.1重量%未満であるため繊維の補強効果があまり
発現していない。
In Comparative Example 2, the impact strength was particularly poor because there was no surface treatment agent. The effects of the fibers were not sufficiently brought out, and in Comparative Examples 1, 3, and 4, the adhesion amount of the surface treatment agent was less than 0.1% by weight, and the effect of reinforcing the fibers was not sufficiently exhibited.

【0047】実施例13 MFR40のポリプロピレンを、温度330℃、引取速度300m
/minで溶融紡糸後、60℃で1段目3.1倍、2段目1.8倍の
延伸倍率で2段延伸を行い繊維径が直径約17μm(約2d/
f)で繊維強度7.3g/d、繊維伸度72.4%とし、延伸後タッ
チロールにより表面処理剤としてオレイン酸カリウム塩
を1.1重量%付着させ乾燥後、6mmにカットしてコンクリ
ート補強用繊維とした。
Example 13 MFR40 polypropylene was prepared at a temperature of 330 ° C. and a take-up speed of 300 m.
After spinning at 60 ° C, the fiber is drawn in two steps at 60 ° C with a draw ratio of 3.1 times for the first step and 1.8 times for the second step. The fiber diameter is about 17μm (about 2d /
In f), the fiber strength was 7.3 g / d and the fiber elongation was 72.4%. After stretching, 1.1 wt% of potassium oleate was applied as a surface treatment agent with a touch roll and dried, and then cut into 6 mm to obtain concrete reinforcing fibers. .

【0048】次に、普通ポルトランドセメント1000g、
珪砂7号1000g、上記コンクリート補強用繊維40g、メチ
ルセルロース20g、水360gを混合し、混練機を用い混練
後、押出成形を行い、厚み5mm、幅50mmの平板状のコン
クリート成形体とした。この成形体を、28日間水中養
生させ、その後60℃で24時間、95℃で8時間乾燥
後、コンクリート成形体とした。
Next, 1000 g of ordinary Portland cement,
1000 g of silica sand 7, 40 g of the concrete reinforcing fiber, 20 g of methylcellulose, and 360 g of water were mixed, kneaded using a kneader, and extruded to obtain a flat concrete molded body having a thickness of 5 mm and a width of 50 mm. This molded article was cured in water for 28 days, and then dried at 60 ° C. for 24 hours and at 95 ° C. for 8 hours to obtain a concrete molded article.

【0049】実施例14 実施例13の表面処理剤をステアリン酸カリウム塩と
し、付着量2.3重量%とした以外は実施例13と同様とし
てコンクリート成形体を得た。
Example 14 A concrete molded body was obtained in the same manner as in Example 13 except that the surface treating agent of Example 13 was changed to potassium stearate and the amount of adhesion was 2.3% by weight.

【0050】比較例5 MFR25のポリプロピレンを、温度230℃、引取速度500m
/minで溶融紡糸後、120℃で4.3倍の延伸を行い繊維径が
直径約17μm(約2d/f)で繊維強度4.3g/d、繊維伸度25.
4%とし、延伸後タッチロールにより表面処理剤としてオ
レイン酸カリウム塩を1.7重量%付着させ乾燥後、6mmに
カットしてコンクリート補強用繊維とした。
Comparative Example 5 MFR25 polypropylene was taken at a temperature of 230 ° C. and a take-up speed of 500 m.
After spinning at 120 ° C / min, draw 4.3 times at 120 ° C.Fiber diameter is about 17μm (about 2d / f), fiber strength 4.3g / d, fiber elongation 25.
After stretching, 1.7% by weight of potassium oleate as a surface treatment agent was adhered as a surface treatment agent using a touch roll, dried, and then cut into 6 mm to obtain concrete reinforcing fibers.

【0051】次に、普通ポルトランドセメント1000g、
珪砂7号1000g、上記コンクリート補強用繊維40g、メチ
ルセルロース20g、水360gを混合し、混練機を用い混練
後、押出成形を行い、厚み5mm、幅50mmの平板状のコン
クリート成形体とした。この成形体を、28日間水中養
生させ、その後60℃で24時間、95℃で8時間乾燥
後、コンクリート成形体とした。
Next, 1000 g of ordinary Portland cement,
1000 g of silica sand 7, 40 g of the concrete reinforcing fiber, 20 g of methylcellulose, and 360 g of water were mixed, kneaded using a kneader, and extruded to obtain a flat concrete molded body having a thickness of 5 mm and a width of 50 mm. This molded article was cured in water for 28 days, and then dried at 60 ° C. for 24 hours and at 95 ° C. for 8 hours to obtain a concrete molded article.

【0052】比較例6 比較例5の表面処理剤を未付着とした以外は、比較例5
と同様としてコンクリート成形体を得た。
Comparative Example 6 Comparative Example 5 was repeated except that the surface treating agent of Comparative Example 5 was not adhered.
In the same manner as in the above, a concrete molded body was obtained.

【0053】比較例7 MFR32のポリプロピレンを、温度300℃、引取速度400m
/minで溶融紡糸後、120℃で5.1倍の延伸を行い繊維径が
直径約17μm(約2d/f)で繊維強度6.9g/d、繊維伸度21.
2%とし、延伸後タッチロールにより表面処理剤としてオ
レイン酸カリウム塩を1.6重量%付着させ乾燥後、6mmに
カットしてコンクリート補強用繊維とした。
Comparative Example 7 MFR32 polypropylene was prepared at a temperature of 300 ° C. and a take-up speed of 400 m.
After melt-spinning at 120 ° C / min, the fiber is stretched 5.1 times at 120 ° C, the fiber diameter is about 17μm (about 2d / f), fiber strength is 6.9g / d, fiber elongation is 21.
After stretching, 1.6% by weight of potassium oleate was applied as a surface treatment agent using a touch roll after drying, dried, and cut into 6 mm to obtain concrete reinforcing fibers.

【0054】次に、普通ポルトランドセメント1000g、
珪砂7号1000g、上記コンクリート補強用繊維40g、メチ
ルセルロース20g、水360gを混合し、混練機を用い混練
後、押出成形を行い、厚み5mm、幅50mmの平板状のコン
クリート成形体とした。この成形体を、28日間水中養
生させ、その後60℃で24時間、95℃で8時間乾燥
後、コンクリート成形体とした。
Next, 1000 g of ordinary Portland cement,
1000 g of silica sand 7, 40 g of the concrete reinforcing fiber, 20 g of methylcellulose, and 360 g of water were mixed, kneaded using a kneader, and extruded to obtain a flat concrete molded body having a thickness of 5 mm and a width of 50 mm. This molded article was cured in water for 28 days, and then dried at 60 ° C. for 24 hours and at 95 ° C. for 8 hours to obtain a concrete molded article.

【0055】比較例8 比較例8の表面処理剤を未付着とした以外は、比較例8
と同様としてコンクリート成形体を得た。
Comparative Example 8 Comparative Example 8 was carried out except that the surface treating agent of Comparative Example 8 was not adhered.
In the same manner as in the above, a concrete molded body was obtained.

【0056】比較例9 MFR28のポリプロピレンを、温度250℃、引取速度350m
/minで溶融紡糸後、60℃で3.8倍の延伸を行い繊維径が
直径約17μm(約2d/f)で繊維強度3.4g/d、繊維伸度72.
4%とし、延伸後タッチロールにより表面処理剤としてオ
レイン酸カリウム塩を1.3重量%付着させ乾燥後、6mmに
カットしてコンクリート補強用繊維とした。
Comparative Example 9 MFR28 polypropylene was heated at a temperature of 250 ° C. and a take-up speed of 350 m.
After spinning at 60 ° C / min, draw 3.8 times at 60 ° C, fiber diameter is about 17μm (about 2d / f), fiber strength is 3.4g / d, fiber elongation is 72.
After stretching, 1.3% by weight of a potassium oleate as a surface treatment agent was adhered thereto by a touch roll after stretching, dried, and cut into 6 mm to obtain a fiber for concrete reinforcement.

【0057】次に、普通ポルトランドセメント1000g、
珪砂7号1000g、上記コンクリート補強用繊維40g、メチ
ルセルロース20g、水360gを混合し、混練機を用い混練
後、押出成形を行い、厚み5mm、幅50mmの平板状のコン
クリート成形体とした。この成形体を、28日間水中養
生させ、その後60℃で24時間、95℃で8時間乾燥
後、コンクリート成形体とした。
Next, 1000 g of ordinary Portland cement,
1000 g of silica sand 7, 40 g of the concrete reinforcing fiber, 20 g of methylcellulose, and 360 g of water were mixed, kneaded using a kneader, and extruded to obtain a flat concrete molded body having a thickness of 5 mm and a width of 50 mm. This molded article was cured in water for 28 days, and then dried at 60 ° C. for 24 hours and at 95 ° C. for 8 hours to obtain a concrete molded article.

【0058】比較例10 比較例9の表面処理剤を未付着とした以外は、比較例9
と同様としてコンクリート成形体を得た。
Comparative Example 10 Comparative Example 9 was repeated except that the surface treating agent of Comparative Example 9 was not adhered.
In the same manner as in the above, a concrete molded body was obtained.

【0059】比較例11 実施例13の表面処理剤を未付着とした以外は、実施例
13と同様としてコンクリート成形体を得た。
Comparative Example 11 A concrete molded body was obtained in the same manner as in Example 13 except that the surface treating agent of Example 13 was not adhered.

【0060】上記「実施例13,14」および「比較例
5〜11」のコンクリート成形体の物性を評価した結果
を、表2に示す。
Table 2 shows the results of evaluating the physical properties of the concrete compacts of "Examples 13 and 14" and "Comparative Examples 5 to 11".

【0061】[0061]

【表2】 [Table 2]

【0062】表2から明らかな通り、実施例13,14
のコンクリート補強繊維は、コンクリート補強効果に優
れていることが判る。実施例1〜12の補強効果よりさ
らに実施例13,14の補強効果が飛躍的な向上を示し
ている。これは、実施例1〜12でも満足できる値であ
るが、さらに繊維の強度を7g/d、伸度を70%にすること
により衝撃吸収エネルギーが著しく大きくなるためコン
クリート成形体の補強効果が飛躍的に上昇する。
As is clear from Table 2, Examples 13 and 14
It can be seen that the concrete reinforcing fiber of Example 1 has an excellent concrete reinforcing effect. The reinforcing effects of Examples 13 and 14 show a dramatic improvement over the reinforcing effects of Examples 1 to 12. Although this is a satisfactory value in Examples 1 to 12, the impact absorption energy is significantly increased by further increasing the fiber strength to 7 g / d and the elongation to 70%, so that the reinforcing effect of the concrete molding is remarkably increased. Rise.

【0063】比較例5〜11については、繊維の物性が
満足できるレベルではないので、あまり補強効果が見ら
れない。さらに、比較例6,8,10については表面処
理剤がない事もあり、繊維の効果を十分に引き出せず、
比較例5,7,9よりも補強効果が得られない。かつ実
施例13と比較例11を比べてみても、繊維物性は満足
できるレベルであっても、表面処理剤が無いために補強
効果を十分に発揮できない。すなわち、繊維物性が繊維
強度5g/d、繊維伸度40%以上より好ましくは、繊維強度7
g/d、繊維伸度70%以上であり、かつ前記の表面処理剤で
表面処理を行うことに本発明の効果が得られる。
In Comparative Examples 5 to 11, since the physical properties of the fibers were not at a satisfactory level, the reinforcing effect was not so much observed. Further, in Comparative Examples 6, 8, and 10, there was no surface treatment agent, and the effect of the fiber could not be sufficiently obtained.
The reinforcement effect is not obtained as compared with Comparative Examples 5, 7, and 9. In addition, when comparing Example 13 with Comparative Example 11, even if the fiber properties are at a satisfactory level, the reinforcing effect cannot be sufficiently exhibited because there is no surface treatment agent. That is, the fiber physical properties are fiber strength 5 g / d, fiber elongation 40% or more, more preferably fiber strength 7
g / d, the fiber elongation is 70% or more, and the effect of the present invention can be obtained by performing a surface treatment with the surface treatment agent.

【0064】[0064]

【発明の効果】本発明のコンクリート補強用繊維は、優
れたコンクリート補強効果を有する。繊維の強度と伸度
が高く、かつ特殊表面処理剤との結合性も強いため、コ
ンクリート成形体の中で補強効果を十分に発揮でき、コ
ンクリート成形体の強力の向上を図ることができた。特
に伸度が高いことによりコンクリート成形体の曲げ強度
特に衝撃強度を向上させるセメント補強用繊維を得るこ
とができた。
The fiber for reinforcing concrete of the present invention has an excellent concrete reinforcing effect. Since the strength and elongation of the fiber are high and the binding property with the special surface treating agent is strong, the reinforcing effect can be sufficiently exhibited in the concrete molded body, and the strength of the concrete molded body can be improved. In particular, it was possible to obtain a fiber for reinforcing cement which improved the bending strength, particularly the impact strength, of the concrete molded article due to its high elongation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI D06M 13/256 D06M 13/256 13/322 13/322 13/325 13/325 (72)発明者 中井 徳宏 滋賀県守山市立入町251番地 (72)発明者 西尾 浩昭 滋賀県野洲郡野洲町小篠原889番地の1 グラン・コート野洲505 (72)発明者 木村 邦夫 佐賀県鳥栖市萱方町218番地の34 (72)発明者 神尾 典 佐賀県三養基群基山町大字小倉1011番地の 23──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI D06M 13/256 D06M 13/256 13/322 13/322 13/325 13/325 (72) Inventor Tokuhiro Nakai Entering Moriyama City, Shiga Prefecture 251-cho, Town (72) Inventor Hiroaki Nishio 889, Koshinohara, Yasu-cho, Yasu-gun, Shiga Prefecture 1 Grand Court Yasu 505 (72) Inventor Kunio Kimura 34, 218 218 Kayakatacho, Tosu-shi, Saga Prefecture (72) Inventor Nori Kamio 23, 1011 Kokura, Oyama, Kiyama-cho, Miyoki Group, Saga Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】単糸強度が5g/d以上、単糸伸度が40%以上
を有するポリプロピレン繊維からなるコンクリート補強
用繊維であって、該繊維には高級脂肪酸金属塩、高級ア
ルコール硫酸エステル金属塩、高級アルキルエーテル硫
酸エステル金属塩、アルキルベンゼンスルホン酸金属
塩、アルキルベンゼンナフタレンスルホン酸金属塩、パ
ラフィンスルホン酸金属塩、アルキルアミン塩、アルキ
ルアンモニウム塩の群から選ばれた少なくとも1種で炭
素数が8〜22のアルキル基を有する界面活性剤がポリ
プロピレン繊維重量に対し、0.1〜10重量%付着させれて
いることを特徴とするコンクリート補強用繊維。
1. A concrete reinforcing fiber comprising a polypropylene fiber having a single yarn strength of 5 g / d or more and a single yarn elongation of 40% or more, wherein the fiber includes a higher fatty acid metal salt and a higher alcohol sulfate ester metal. Salts, metal salts of higher alkyl ether sulfates, metal salts of alkyl benzene sulfonic acids, metal salts of alkyl benzene naphthalene sulfonic acids, metal salts of paraffin sulfonic acids, alkyl amine salts, alkyl ammonium salts, and having 8 carbon atoms. A concrete reinforcing fiber, wherein 0.1 to 10% by weight of a surfactant having an alkyl group of from 22 to 22 is attached to the weight of the polypropylene fiber.
【請求項2】ポリプロピレン繊維が、単糸強度が7g/d以
上、単糸伸度が70%以上を有する請求項1に記載のコン
クリート補強用繊維。
2. The concrete reinforcing fiber according to claim 1, wherein the polypropylene fiber has a single yarn strength of 7 g / d or more and a single yarn elongation of 70% or more.
【請求項3】前記金属塩が、Na,Li,Kから選ばれた少
なくとも1種のアルカリ金属塩である請求項1または2
に記載のコンクリート補強用繊維。
3. The method according to claim 1, wherein the metal salt is at least one alkali metal salt selected from Na, Li, and K.
The fiber for reinforcing concrete according to item 1.
【請求項4】請求項1〜3のいずれかに記載のコンクリ
ート補強用繊維を用いて形成したコンクリート成形体。
4. A concrete molded article formed using the fiber for reinforcing concrete according to claim 1.
JP36703597A 1997-12-25 1997-12-25 Fiber for reinforcing concrete impact strength and concrete molding using the same Expired - Lifetime JP3274402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36703597A JP3274402B2 (en) 1997-12-25 1997-12-25 Fiber for reinforcing concrete impact strength and concrete molding using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36703597A JP3274402B2 (en) 1997-12-25 1997-12-25 Fiber for reinforcing concrete impact strength and concrete molding using the same

Publications (2)

Publication Number Publication Date
JPH11189448A true JPH11189448A (en) 1999-07-13
JP3274402B2 JP3274402B2 (en) 2002-04-15

Family

ID=18488305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36703597A Expired - Lifetime JP3274402B2 (en) 1997-12-25 1997-12-25 Fiber for reinforcing concrete impact strength and concrete molding using the same

Country Status (1)

Country Link
JP (1) JP3274402B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092693A3 (en) * 1999-10-13 2001-05-02 Halliburton Energy Services, Inc. Crack and shatter resistant well cement
CN1116241C (en) * 2000-04-26 2003-07-30 中国纺织大学化纤科技开发部 Modified polypropene staple for concrete and mortar
EP1201618A3 (en) * 2000-10-24 2003-11-19 Halliburton Energy Services, Inc. High strength foamed well cement
JP2004175574A (en) * 2002-09-30 2004-06-24 Hagihara Industries Inc Polypropylene fiber for reinforcing cement
JP2008519180A (en) * 2004-11-05 2008-06-05 インナグリティー リミテッド ライアビリティ カンパニー Method for forming melt spun multifilament polyolefin yarn and yarn formed by this method
EP3004020A4 (en) * 2013-06-05 2016-11-30 Halliburton Energy Services Inc Methods and cement compositions utilizing treated polyolefin fibers
WO2023237936A1 (en) * 2022-06-10 2023-12-14 Braskem S.A. Polypropylene fiber for fiber cement-reinforced composites

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092693A3 (en) * 1999-10-13 2001-05-02 Halliburton Energy Services, Inc. Crack and shatter resistant well cement
CN1116241C (en) * 2000-04-26 2003-07-30 中国纺织大学化纤科技开发部 Modified polypropene staple for concrete and mortar
EP1201618A3 (en) * 2000-10-24 2003-11-19 Halliburton Energy Services, Inc. High strength foamed well cement
JP2004175574A (en) * 2002-09-30 2004-06-24 Hagihara Industries Inc Polypropylene fiber for reinforcing cement
JP2008519180A (en) * 2004-11-05 2008-06-05 インナグリティー リミテッド ライアビリティ カンパニー Method for forming melt spun multifilament polyolefin yarn and yarn formed by this method
EP3004020A4 (en) * 2013-06-05 2016-11-30 Halliburton Energy Services Inc Methods and cement compositions utilizing treated polyolefin fibers
WO2023237936A1 (en) * 2022-06-10 2023-12-14 Braskem S.A. Polypropylene fiber for fiber cement-reinforced composites

Also Published As

Publication number Publication date
JP3274402B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
DK169699B1 (en) Reinforcing fibres, and process for producing them
TWI583651B (en) Cement reinforcing fiber and cement hardened body using the same
US4772328A (en) Hydraulic cementitious compositions reinforced with fibers containing polyacrylonitrile
US11634361B2 (en) Polymer fibers for reinforcement of cement-based composites
JP3274402B2 (en) Fiber for reinforcing concrete impact strength and concrete molding using the same
Broda Application of polypropylene fibrillated fibres for reinforcement of concrete and cement mortars
JP6777436B2 (en) Fiber for self-healing cracks in hardened cement, its manufacturing method and the hardened cement containing it, and repairing cracks in hardened cement
JPH0140785B2 (en)
JP3960100B2 (en) High strength polyolefin fiber and concrete molded body using the same
JP2017531744A (en) Drawn polyolefin fiber
JP4636693B2 (en) Synthetic fiber and cementitious structure containing the same
US7045209B1 (en) Synthetic fibers and cementitious systems including same
JP3755267B2 (en) Concrete reinforcing fiber and concrete molded body using the same
BR102012010783A2 (en) Polyolefin Granulation Process, Polyolefin Resin, Polyolefin Fiber, Polyolefin Fiber Use, and Cement Composites
JP2000064116A (en) Fiber for reinforcing concrete
JPH11240740A (en) Concrete reinforcing fiber
EP0950645B1 (en) Reinforcing material for kneaded and formed hydraulic material, and kneaded and formed article
WO2019126847A1 (en) Fibre for reinforcing fibre cement, fibre production method and fibre cement article
JP6778025B2 (en) Hydraulic material
KR102616017B1 (en) Polyolefin monofilament yarn having improved abrasion resistance, method of manufacturing the same, and molded article manufactured thereby
JP4364343B2 (en) Kneaded molded hydraulic material reinforcing material and kneaded molded body
JP3166180B2 (en) Fiber-reinforced hydraulic molded article and method for producing the same
JPH04175252A (en) Acrylic synthetic fiber and its production
JP6727486B2 (en) Nylon fiber for reinforcing hydraulic material, method for producing nylon fiber for reinforcing hydraulic material, and hydraulic material using the same
JPH11152616A (en) Fiber for reinforcing concrete and concrete molding using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term