JPH041197A - Production of organic lithium - Google Patents

Production of organic lithium

Info

Publication number
JPH041197A
JPH041197A JP10037590A JP10037590A JPH041197A JP H041197 A JPH041197 A JP H041197A JP 10037590 A JP10037590 A JP 10037590A JP 10037590 A JP10037590 A JP 10037590A JP H041197 A JPH041197 A JP H041197A
Authority
JP
Japan
Prior art keywords
lithium
organic
lix
rli
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10037590A
Other languages
Japanese (ja)
Inventor
Tetsuya Iwao
岩尾 徹也
Shuichi Osaka
大坂 修一
Takao Sakaki
榊 孝雄
Tadao Nishida
忠雄 西田
Masahiko Asao
朝生 正比古
Seijiro Koga
誠二郎 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aluminum Alkyls Ltd
Original Assignee
Nippon Aluminum Alkyls Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aluminum Alkyls Ltd filed Critical Nippon Aluminum Alkyls Ltd
Priority to JP10037590A priority Critical patent/JPH041197A/en
Publication of JPH041197A publication Critical patent/JPH041197A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively obtain an organic lithium in a highly improved yield while effectively utilizing a by-product, by employing a lithium halide by-produced on the reaction, an alkali metal and an organic halide compound. CONSTITUTION:When (A) an alkali metal (e.g. Na, K), (B) a lithium halide (LiX) and (C) an organic halide compound (RX) (X is Cl, Br, I; R is aliphatic, alicyclic or aromatic hydrocarbon) are reacted with each other to prepare the objective organic lithium (RLi), the LiX by-produced on the synthesis of the organic lithium (RLi) is employed as the component C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ポリマー重合触媒、有機合成試薬などとして
、有用な、有機リチウム(RLi)の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing organolithium (RLi), which is useful as a polymer polymerization catalyst, an organic synthesis reagent, and the like.

従来の技術 RLiを製造する最も一般的な方法は、リチウム(Li
)と有機ハロゲン化物(RX)とから下式(1)の反応
によって製造する方法である(たとえば。
Prior Art The most common method of manufacturing RLi is lithium (Li
) and an organic halide (RX) by the reaction of the following formula (1) (for example).

USP3122592) 。USP3122592).

2Li+RX+ RLi+LiX     +1 @ 
a (1)又有機金属ハンドブック、6ページには、有
機ナトリウム(RNa)と塩化リチウム(LiC1l)
を原料とする下式(2)の方法が記載されている。
2Li+RX+ RLi+LiX +1 @
a (1) Organometallic Handbook, page 6 also describes organic sodium (RNa) and lithium chloride (LiCl).
The method of the following formula (2) using as a raw material is described.

RNa+LiC1−+ RLi+NaC11* * *
 (2)発明が解決しようとする課題 しかしながら、上記(1)式の方法は、高価で危険なリ
チウムメタルを使用せねばならないこと、又、リチウム
の有効使用率は、理論値で最大50%であり、通常40
%程度で非常に低く、又副生じたLiXは通常電解によ
ってLiを回収再利用するか、廃棄されていた。その結
果製造したRLiは非常に高価になるという大きな欠点
を有している。
RNa+LiC1-+ RLi+NaC11* * *
(2) Problems to be solved by the invention However, the method of formula (1) above requires the use of expensive and dangerous lithium metal, and the effective usage rate of lithium is a maximum of 50% in theory. Yes, usually 40
%, and the LiX produced as a by-product was usually collected and reused by electrolysis or discarded. The resulting RLi produced has the major drawback of being very expensive.

又(2)式の方法は、原料であるRNaが、炭化水素類
には全く溶解せず、また非常に分解しやすく取扱いが難
しい、又RNaは一般には下式(3)の反応で合成され
るが、RNaを副生するNaC1から単離する方法が知
られておらず純度の高いRNaが得られないといった欠
点を有する。
In addition, in the method of formula (2), the raw material RNa is not dissolved at all in hydrocarbons and is extremely easy to decompose and difficult to handle.Also, RNa is generally synthesized by the reaction of formula (3) below. However, it has the disadvantage that highly pure RNA cannot be obtained because there is no known method for isolating RNA from the by-produced NaCl.

RCi + 2Na 4RNa+NaCQ    ・・
・(3)本発明者らは、LiC1として、市販の試薬を
用いて(2)の反応を行なったが、n−ブチルリチウム
の生成は全く認められなかった(比較例2)。
RCi + 2Na 4RNa + NaCQ...
- (3) The present inventors performed the reaction (2) using a commercially available reagent as LiC1, but no formation of n-butyllithium was observed (Comparative Example 2).

本発明は(1)式における副生LiXの有効利用を図り
、更に(2)式の反応においても収率の大巾向上を達成
し、安価に有機リチウムを製造する方法を提供するもの
である。
The present invention aims to effectively utilize the by-product LiX in formula (1), and also achieves a significant improvement in yield in the reaction of formula (2), thereby providing a method for producing organic lithium at low cost. .

課題を解決するための手段 本発明者らは、上記問題を解決するため、鋭意研究を行
い、本発明を完成するに至った。
Means for Solving the Problems In order to solve the above problems, the present inventors conducted extensive research and completed the present invention.

即ち本発明は、 (1)アルカリ金属とハロゲン化リチウム(LiX)と
有機ハロゲン化物(RX)とから有機リチウム(RLi
)を合成する反応において、LiXとして、リチウムと
RXからRLiを合成する際に副生ずるLiXを使用す
ることを特徴とするRLiの製造方法。
That is, the present invention provides: (1) Organic lithium (RLi) from an alkali metal, lithium halide (LiX), and organic halide (RX)
1.) A method for producing RLi, characterized in that LiX, which is produced as a by-product when synthesizing RLi from lithium and RX, is used as LiX in the reaction for synthesizing RLi.

(ただし、XはC9、Br又はX基、Rは脂肪族、脂環
式又は芳香族の炭化水素基を示し、アルカリ金属はNa
又はKである。)、及び(2)アルカリ金属と・有機ハ
ロゲン化物(RX)とから、有機アルカリ金属化合物を
合成し、次いで、この有機アルカリ金属化合物とハロゲ
ン化リチウム(LiX)とを反応させて、有機リチウム
(RLi)を合成する反応において、LiXとして、リ
チウムとRXからRLiを合成する際に副生ずるLiX
を使用することを特徴とするRljの製造方法。
(However, X is C9, Br or X group, R is an aliphatic, alicyclic or aromatic hydrocarbon group, and the alkali metal is Na
Or K. ), and (2) an organic alkali metal compound is synthesized from an alkali metal and an organic halide (RX), and then this organic alkali metal compound and lithium halide (LiX) are reacted to form an organic lithium ( In the reaction to synthesize RLi), LiX, which is a by-product when synthesizing RLi from lithium and RX, is used as LiX.
A method for producing Rlj, characterized by using.

(ただし、XはC1l、Br又はX基、Rは脂肪族、脂
環式又は芳香族の炭化水素基を示し、アルカリ金属はN
a又はKである。)、である。
(However, X is C1l, Br or X group, R is aliphatic, alicyclic or aromatic hydrocarbon group, and alkali metal is N
a or K. ), is.

以下本発明について更に詳しく説明する。The present invention will be explained in more detail below.

尚以下の説明では、アルカリ金属としてNaで代表して
説明することがあるが、Kについても同様である。
In the following explanation, Na may be used as a representative alkali metal, but the same applies to K.

本発明は、先ず以下の反応式(0で表わされる。First, the present invention is directed to the following reaction formula (represented by 0).

2Na+LiX +RX−+ RLi+2NaX   
−* * (4)本発明に用いられるアルカリ金属は、
品質には特に制限は無いが、反応速度を速くするために
、粒子径は細かい方がよく、少なくとも10001L以
下であることが望ましい、微粒子化の方法としては例え
ば、流動パラフィン等の不活性溶剤中でHaを前もって
粒径1ルー数百川に微粒子化しておくことが挙げられる
2Na+LiX +RX-+ RLi+2NaX
-* * (4) The alkali metal used in the present invention is
There is no particular restriction on the quality, but in order to speed up the reaction rate, the smaller the particle size, the better, preferably at least 10001 L. As a method for making particles into fine particles, for example, in an inert solvent such as liquid paraffin. One way to do this is to make Ha into fine particles in advance to a particle size of 1 ruol or several hundred.

RXのX基はci基、Br基、又はX基である。The X group of RX is a ci group, a Br group, or an X group.

一般には、安価なC1基が用いられる。Generally, an inexpensive C1 group is used.

RXのR基は、脂肪族、脂環式又は芳香族の炭化水素基
であり、エチル基、n−ブチル基、5ec−ブチル基、
L−ブチル基、ヘキシル基、シクロヘキシル基、メチル
シクロヘキシル基、オクチル基、フェニル基、ベンジル
基等が挙げられる0反応速度が速いことや溶剤への溶解
性が良いことから炭素2から8までの炭化水素基が好ま
しい。
The R group of RX is an aliphatic, alicyclic or aromatic hydrocarbon group, such as an ethyl group, n-butyl group, 5ec-butyl group,
Examples include L-butyl group, hexyl group, cyclohexyl group, methylcyclohexyl group, octyl group, phenyl group, benzyl group, etc. 0 Carbonization of carbons from 2 to 8 carbons due to its fast reaction rate and good solubility in solvents. Hydrogen groups are preferred.

RXの例としては、エチルブロマイド、n−ブチルクロ
ライド、n−ブチルブロマイド、n−ブチルアイオダイ
ド、5ec−ブチルクロライド、t−ブチルクロライド
、n−ヘキシルクロライド、フェニルブロマイド、ベン
ジルクロライド等が挙げられる。
Examples of RX include ethyl bromide, n-butyl chloride, n-butyl bromide, n-butyl iodide, 5ec-butyl chloride, t-butyl chloride, n-hexyl chloride, phenyl bromide, benzyl chloride, and the like.

次に、本発明のLiXについて説明する。なおXはCi
、Br、又は工を示し、一般には安価なCLlが用いら
れる。
Next, LiX of the present invention will be explained. Note that X is Ci
, Br, or engineering, and generally inexpensive CLl is used.

本発明は、LiXとして、最も一般的なRLiの合成反
応である(1)式において、副生ずるLiXを使用する
ことが最大の特徴である。(1)式の反応条件は特に制
限するものではなく、公知の方法が使用できる。
The most distinctive feature of the present invention is the use of LiX, which is produced as a by-product in formula (1), which is the most common RLi synthesis reaction. The reaction conditions of formula (1) are not particularly limited, and known methods can be used.

この副生LiXは、(1)式の製品であるRLiを除去
した後、溶剤スラリーとして用いても良いし、いったん
濾過してウェットケーキとして用いてもよい、少量の未
反応Liが混合していても差支えない。
This by-product LiX may be mixed with a small amount of unreacted Li, which may be used as a solvent slurry after removing RLi, which is a product of formula (1), or may be filtered and used as a wet cake. There is no problem.

副生LiXが高い反応性を示す理由は明らかでないが、
非常に細かい微粒子であること、非水系から生成したた
め結晶性が低く、表面積が大きく、表面の活性点が多い
こと等が考えられる。
The reason why by-product LiX shows high reactivity is not clear, but
Possible reasons include that they are very fine particles, that they have low crystallinity because they are produced from a non-aqueous system, that they have a large surface area, and that there are many active points on the surface.

次に(4)式で示される本発明の反応条件について説明
する。
Next, the reaction conditions of the present invention represented by formula (4) will be explained.

本発明は有機溶剤を使用し、スラリー反応として行われ
る。
The present invention uses an organic solvent and is carried out as a slurry reaction.

(4)式の反応に好ましく使用される溶剤は、脂肪族炭
化水素、脂環式炭化水素、芳香族炭化水素である。
Solvents preferably used in the reaction of formula (4) are aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons.

ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキ
サン、ベンゼン、トルエン等の例が挙ケられる。さらに
上記溶媒中での反応が遅い場合等では、エーテル類例え
ば、ジエチルエーテル、ジブチルエーテル、テトラヒド
ロフラン等が用いられる。
Examples include pentane, hexane, heptane, octane, cyclohexane, benzene, and toluene. Further, in cases where the reaction in the above solvent is slow, ethers such as diethyl ether, dibutyl ether, tetrahydrofuran, etc. are used.

次に原料の使用反応モル比は、Ha : LiC1: 
RX=2:l:1であれば良い、しかし多少の増減は反
応に影響しない。
Next, the reaction molar ratio of raw materials used is Ha:LiC1:
It is sufficient if RX=2:l:1, but a slight increase or decrease will not affect the reaction.

L i C1lをNaに対して過剰に使用することは、
反応後の製品RLi中の残存不純物であるRNaを減少
させる効果があるので好ましい。
Excessive use of L i C1l relative to Na means that
This is preferable because it has the effect of reducing RNa, which is a residual impurity in the product RLi after the reaction.

反応温度は、生成したRLiが分解しない範囲であれば
良いが、低い方が好ましい0通常O〜70℃の範囲であ
る。
The reaction temperature may be within a range in which the generated RLi does not decompose, but the lower the temperature, the more preferably the reaction temperature is in the range of 0 to 70°C.

反応は、好ましくは無水の雰囲気下で行なわれ、使用さ
れるシールガスは1反応に不活性であれば、特に限定す
るものではなくLi(J中に残存するかもしれないLi
メタルの存在を考えて、アルゴン、ヘリウム等の不活性
ガスが好ましい。
The reaction is preferably carried out under an anhydrous atmosphere, and the sealing gas used is not particularly limited as long as it is inert to the reaction;
Considering the presence of metal, an inert gas such as argon or helium is preferable.

反応装置に特に制限はなく、通常の撹拌器付オートクレ
ーブ等撹拌効果のある装置であれば良い。
There are no particular restrictions on the reaction device, and any device that has a stirring effect, such as an ordinary autoclave with a stirrer, may be used.

原料の添加順序についてはRX、 Na、及びLiXの
3成分の添加順序によって収率等に与える影響が異る。
Regarding the addition order of the raw materials, the effect on yield etc. differs depending on the order of addition of the three components RX, Na, and LiX.

本発明ではRXとNaをあらかじめ反応させて後にLi
Xを添加しても差支えない、すなわちRXとNaからR
NaとNaXの混合物を合成に適当な溶剤、例えばトル
エン中で合成し、ついで溶剤を除去して得られた固体の
RLiを稀釈するのに適当な溶剤、例えばn−へキサン
中に懸濁し、LiXを加えて反応させ反応終了後副生物
と反応残液を濾別してRLiの希釈液を得てもよい。
In the present invention, RX and Na are reacted in advance, and then Li
There is no problem even if X is added, that is, from RX and Na to R
A mixture of Na and NaX is synthesized in a suitable solvent for synthesis, for example toluene, and then the solvent is removed and the resulting solid RLi is suspended in a suitable solvent for dilution, for example n-hexane, After the reaction is completed by adding LiX, the by-product and the reaction residue may be filtered to obtain a diluted solution of RLi.

しかし、より一般的には、(3)式で合成したRNaと
NaClの混合スラリーに、NaCQを分離することな
く、直接LiXを混合することが、RNaの分解を少な
くする点で好ましい。
However, more generally, it is preferable to directly mix LiX into the mixed slurry of RNa and NaCl synthesized by formula (3) without separating NaCQ from the viewpoint of reducing the decomposition of RNa.

さらにより好ましい方法は、NaメタルとLiXの混合
スラリーにRXを滴下混合する方法である。
An even more preferable method is to dropwise mix RX into a mixed slurry of Na metal and LiX.

この方法によれば、前記のあらかじめRNaを合成する
方法(参考:実施例445%)に比較して、1.5〜2
.0倍の大幅な収率向上(参考:実施例1 83.7%
)が期待でき、さらに製品の着色も驚くほど減少し殆ど
無色になる。
According to this method, compared to the method of pre-synthesizing RNAa (reference: Example 445%),
.. Significant yield improvement of 0 times (Reference: Example 1 83.7%
) can be expected, and furthermore, the coloring of the product is surprisingly reduced and becomes almost colorless.

この理由は明らかではないが、RNaの存在時間が短か
くてすむので、RNaの分解が少なくてすむことなどが
考えられる。
Although the reason for this is not clear, it is thought that since the existence time of RNAa is short, there is less decomposition of RNA.

反応は、添加したRXがほぼ完全に無くなるまでたとえ
ば1〜2時間続けられる。終点は例えば未反応のBuC
1!をガスクロ分析する組成分析や発熱等の減少で推定
できる。
The reaction is continued for example for 1 to 2 hours until the added RX is almost completely exhausted. The end point is, for example, unreacted BuC
1! It can be estimated by composition analysis using gas chromatography and reduction of heat generation.

反応後は副生じたNaCQと未反応成分等を濾別する。After the reaction, by-produced NaCQ and unreacted components are separated by filtration.

濾過装置はセライトを用いた濾過装置等、目的を達すれ
ば特に限定するものではない。
The filtration device is not particularly limited as long as the purpose is achieved, such as a filtration device using Celite.

濾過されたRLiを含有する溶液は、そのまま又は法度
を調整し、あるいは、溶媒を完全に除去してそれぞれの
目的に用いられる。
The filtered RLi-containing solution is used as it is, after adjusting its strength, or after completely removing the solvent, for each purpose.

実施例 次に本発明を実施例によりさらに具体的に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 微粒子の金属ナトリウム(粒径20〜100ミクロン)
 7.0g(0,304モル)と副生塩化リチウム8.
4g(0,151モル)及びヘキサン150−をアルゴ
ン置換した300+dの四つロフラスコに仕込む、撹拌
機と、還流冷却器及び、塩化−n−ブチル14g(0,
151モル)とへキサン35Jの入った滴下ロートをセ
ットする。
Example 1 Fine particle metallic sodium (particle size 20-100 microns)
7.0g (0,304 mol) and by-product lithium chloride8.
4 g (0,151 mol) of hexane and 150 ml of hexane were charged into a 300+D four-bottle flask purged with argon, equipped with a stirrer, a reflux condenser, and 14 g (0,
Set a dropping funnel containing 151 mol) and 35 J of hexane.

充分に撹拌しながら、アルゴン気流下で室温から、塩化
−n−ブチルを徐々に滴下して行き反応させる6滴下時
間は45分で終了した。この時内温は85℃まで上昇し
、以降放冷状態で2時間撹拌熟成を行った。
While thoroughly stirring, n-butyl chloride was gradually added dropwise from room temperature under an argon stream, and the reaction period of 6 drops was completed in 45 minutes. At this time, the internal temperature rose to 85°C, and the mixture was left to cool for 2 hours with stirring.

この合成液を窒素ボックス中において、ガラスフィルタ
ーで吸引濾過し、殆ど無色透明なn−ブチルリチウムの
ヘキサン溶液を得た。この液中に含まれるn−ブチルリ
チウムは8.1g(o、t2eモル)で収率83,7%
となった。
This synthetic solution was placed in a nitrogen box and suction-filtered through a glass filter to obtain an almost colorless and transparent hexane solution of n-butyllithium. The n-butyllithium contained in this liquid was 8.1 g (o, t2e moles), yield 83.7%.
It became.

ここで使用した副生塩化リチウムの製法は従来の有機リ
チウム製造における副生物である塩化リチウムを不活性
ガス雰囲気中において、炭化水素溶媒で洗浄乾燥させた
ものである。
The method for producing the by-product lithium chloride used here involves washing and drying lithium chloride, a by-product in conventional organic lithium production, with a hydrocarbon solvent in an inert gas atmosphere.

即ち製法例を説明すれば、還流冷却器と滴下ロートを装
置した500dの四つロフラスコを用意する。雰囲気を
アルゴンに変える。
That is, to describe an example of the manufacturing method, a 500 d four-hole flask equipped with a reflux condenser and a dropping funnel is prepared. Change the atmosphere to argon.

微粒子化したリチウム14g(2モル)とへ午サン30
0wJ1を四つロフラスコに装入する。ついで滴下ロー
トから塩化−n−ブチル92.Bg(tモル)を2時間
にわたって滴下装入する。四つロフラスコ内の温度は、
初めは室温であるが、滴下と共に上昇しヘキサンの沸点
(b、p、88℃)になり、ヘキサンはゆるやかに還流
する0滴下終了後室温に冷却する。
14 g (2 mol) of micronized lithium and 30 g of hexasan
Charge four 0wJ1 into a flask. Next, 92% of n-butyl chloride was added from the dropping funnel. Bg (t mol) is introduced dropwise over the course of 2 hours. The temperature inside the four-loaf flask is
At first, the temperature is room temperature, but as the dropwise addition proceeds, it rises to the boiling point of hexane (b, p, 88° C.), and the hexane slowly refluxes. After the completion of the dropwise addition, the temperature is cooled to room temperature.

ガラスフィルターでn−ブチルリチウム溶液を濾別しく
n−ブチルリチウムの収率は43%であった。)、ガラ
スフィルター上に残った副生塩化リチウムをヘキサンで
充分洗浄し、乾燥させて、その一部を反応に供した。
The n-butyllithium solution was filtered off using a glass filter, and the yield of n-butyllithium was 43%. ), the by-product lithium chloride remaining on the glass filter was thoroughly washed with hexane, dried, and a portion thereof was subjected to the reaction.

実施例2 金属ナトリウム分散量(粒径20〜100ミクロン) 
7.0g(0,304モル)と副生塩化リチウム8.4
g(0,151モル)及び石油エーテル150シをアル
ゴン置換した300+dの四つロフラスコに仕込み、臭
化−n−ブチル2G、7g (0,151モル)を5(
1+al(7)石油エーテルに溶解したものを、実施例
1と同様の操作で反応させた。n−ブチルリチウム13
.8g(0,108モル)、収率70.3%を得た。
Example 2 Metallic sodium dispersion amount (particle size 20-100 microns)
7.0g (0,304 mol) and by-product lithium chloride 8.4
g (0,151 mol) and 150 ml of petroleum ether were placed in a 300+d four-bottle flask purged with argon, and 7 g (0,151 mol) of n-butyl bromide was added to 5 (
1+al(7) dissolved in petroleum ether was reacted in the same manner as in Example 1. n-butyllithium 13
.. 8 g (0,108 mol) was obtained, yield 70.3%.

実施例3 金属ナトリウム分散量(粒径20〜100ミクロン) 
7.0g(0,304モル)と副生臭化リチウム13.
1g(0,151モル)及びシクロヘキサン200wj
Lをアルゴン置換した四つロフラスコ(3ooa)に仕
込み、塩化−n−ブチル14g (0,151モル)を
滴下ロートより滴下し、実施例1と同様の操作で反応さ
せ、n−ブチルリチウム8.0g(0,125モル)、
収率82.8%を得た。
Example 3 Metallic sodium dispersion amount (particle size 20-100 microns)
7.0 g (0,304 mol) and by-product lithium bromide 13.
1g (0,151 mol) and 200wj of cyclohexane
A four-hole flask (3ooa) in which L was replaced with argon was charged, 14 g (0,151 mol) of n-butyl chloride was added dropwise from the dropping funnel, and the reaction was carried out in the same manner as in Example 1 to yield 8.0 g of n-butyl lithium. 0g (0,125 mol),
A yield of 82.8% was obtained.

比較例1 金属ナトリウム分散量(粒径20〜100ミクロン) 
7.0g(0,304モル)と、試薬品塩化リチウム6
.6(0,151モル)及びヘキサン150+atをア
ルゴン置換した四つロフラスコ(300m11)に仕込
む。
Comparative Example 1 Dispersion amount of metallic sodium (particle size 20-100 microns)
7.0 g (0,304 mol) and the reagent lithium chloride 6
.. 6 (0,151 mol) and 150+at of hexane were charged into a four-hole flask (300 ml) purged with argon.

塩化−n−ブチル14g (0,151モル)と、ヘキ
サン35.1を滴下ロートに仕込み、以下実施例1と同
様の操作で反応させた。この時ヘキサン溶液中にn−ブ
チルリチウムが全く検出されなかった(収率0%)。
14 g (0,151 mol) of -n-butyl chloride and 35.1 mol of hexane were charged into a dropping funnel, and the reaction was carried out in the same manner as in Example 1. At this time, no n-butyllithium was detected in the hexane solution (yield 0%).

比較例2 有機金属ハンドブック記載の方法を行った。Comparative example 2 The method described in the Organometallic Handbook was performed.

有機ナトリウムと塩化リチウムの反応で金属ナトリウム
分散量7.0g(0,304モル)とへキサン150シ
をアルゴン置換した四つロフラスコ(300d )に仕
込み、滴下ロートに塩化−n−ブチル14g(0,15
1モル)を入れ、撹拌しながら徐々に滴下し、ヘキサン
還流下反応させ、ブチルナトリウム8.7g(o、lo
sモル)を含む、塩化ナトリウムとの混合スラリーを得
た。
Through the reaction of organic sodium and lithium chloride, 7.0 g (0,304 moles) of metallic sodium dispersion and 150 moles of hexane were charged into a four-hole flask (300 d) purged with argon, and 14 g (0,304 mol) of n-butyl chloride was added to the dropping funnel. ,15
1 mol) was gradually added dropwise with stirring, reacted under refluxing hexane, and 8.7 g (o, lo) of butyl sodium was added.
A mixed slurry with sodium chloride was obtained containing smol).

このフラスコ中に試薬品の塩化リチウム4.8g(0,
109モル)を加え、ヘキサン還流下68℃で2時間撹
拌反応させた後、ガラスフィルターで濾過しへキサン溶
液中のブチルリチウムの濃度を測定しだが、ブチルリチ
ウムは生成されなかった(収率0%)。
In this flask, 4.8 g of lithium chloride (0,
After stirring and reacting at 68°C under hexane reflux for 2 hours, the concentration of butyllithium in the hexane solution was measured by filtration with a glass filter, but no butyllithium was produced (yield 0). %).

実施例4 金属ナトリウム分散量(粒径2o〜100ミクロン) 
23.5g(1,02モル)をヘキサン250gと共に
、アルゴン置換した四つロフラスコ(sooa)に入れ
、アルゴン雰囲気下、塩化ブチル47g(0,51モル
)を滴下し、反応温度を40℃に保ちながら反応させた
後、ガラスフィルターで、ブチルナトリウムと塩化ナト
リウムの混合粉末57.5gを得た。この混合物中に含
まれるブチルナトリウムは42.5wt%で反応率は8
0%であった。
Example 4 Metallic sodium dispersion amount (particle size 2o-100 microns)
23.5 g (1.02 mol) was placed in a four-hole flask (SOOA) purged with argon along with 250 g of hexane, and 47 g (0.51 mol) of butyl chloride was added dropwise under an argon atmosphere, keeping the reaction temperature at 40°C. After the reaction was carried out, 57.5 g of mixed powder of butyl sodium and sodium chloride was obtained using a glass filter. Butyl sodium contained in this mixture was 42.5 wt%, and the reaction rate was 8.
It was 0%.

この混合物leg(含有ブチルナトリウム6.8g、0
.085モル)と、実施例1の副生塩化リチウム3.8
g(o、oesモル)をヘキサン100gと共にフラス
コに入れ、40℃で3時間撹拌反応させた後、ガラスフ
ィルターで濾過し、黄褐色のヘキサン溶液を得た。この
溶液中に含まれたブチルリチウムは2.45g (0,
038モル)で反応率は45%であった。
This mixture leg (contains butyl sodium 6.8 g, 0
.. 085 mol) and 3.8 mol of by-product lithium chloride from Example 1.
g (o, oes mol) was put into a flask together with 100 g of hexane, stirred and reacted at 40° C. for 3 hours, and then filtered through a glass filter to obtain a yellowish brown hexane solution. Butyllithium contained in this solution was 2.45g (0,
038 mol) and the reaction rate was 45%.

発明の効果 本発明の方法によれば、RLiの製造の原料として、高
価なLi金属を使用する必要はなくなり代りに使用され
る金属は安価なHa又はKで良い。
Effects of the Invention According to the method of the present invention, it is no longer necessary to use expensive Li metal as a raw material for producing RLi, and the metal used instead can be inexpensive Ha or K.

さらに本発明にHa又はKと併用して使用するLiXは
、現在一般に用いられているRLi合成反応で必ず大量
に生成する副生物であり、そのまま廃棄されていた。又
再利用するにしても電解等面倒な方法で、Liメタルに
戻して利用しており、決して安価には利用できなかった
Furthermore, LiX, which is used in combination with Ha or K in the present invention, is a by-product that is always produced in large quantities in the currently commonly used RLi synthesis reaction, and has been discarded as is. Even if it were to be reused, it would have to be returned to Li metal using a complicated method such as electrolysis, and could never be used at a low cost.

本発明の方法によれば、LiCtを殆どなんらの処理も
行なわず簡単に、経費をかけずに利用できる。
According to the method of the present invention, LiCt can be used easily and inexpensively with almost no processing.

その結果本発明の方法では、従来の方法と全く格段に安
価にRLiを製造できる。
As a result, the method of the present invention allows RLi to be produced much more inexpensively than conventional methods.

従来廃棄されていたLiXを利用するので、産業廃棄物
を再利用している点でも大いに好ましい。
Since LiX, which was conventionally discarded, is used, it is also highly preferable in that industrial waste is reused.

又従来の2モルのLi金属とRXからRLiを製造する
方法と連結して使用することによって、全体として安価
なRLiを製造するプロセスを形成することもできる。
Furthermore, by using this method in conjunction with the conventional method of manufacturing RLi from 2 moles of Li metal and RX, it is possible to form an overall inexpensive process for manufacturing RLi.

以上のように本発明は産業に寄与するところ大である。As described above, the present invention greatly contributes to industry.

Claims (2)

【特許請求の範囲】[Claims] (1)アルカリ金属とハロゲン化リチウム(LiX)と
有機ハロゲン化物(RX)とから有機リチウム(RLi
)を合成する反応において、LiXとして、リチウムと
有機ハロゲン化物(RX)から有機リチウム(RLi)
を合成する際に副生するLiXを使用することを特徴と
する有機リチウムの製造方法。 (ただし、XはCl、Br又はI基、Rは脂肪族、脂環
式又は芳香族の炭化水素基を示し、アルカリ金属はNa
又はKである。)
(1) From an alkali metal, lithium halide (LiX), and organic halide (RX) to organic lithium (RLi)
), organic lithium (RLi) is synthesized from lithium and organic halide (RX) as LiX.
A method for producing organic lithium, the method comprising using LiX which is produced as a by-product during the synthesis of organic lithium. (However, X is Cl, Br or I group, R is an aliphatic, alicyclic or aromatic hydrocarbon group, and the alkali metal is Na
Or K. )
(2)アルカリ金属と有機ハロゲン化物(RX)とから
、有機アルカリ金属化合物を合成し、次いで、この有機
アルカリ金属化合物とハロゲン化リチウム(LiX)と
を反応させて、有機リチウム(RLi)を合成する反応
において、LiXとして、リチウムと有機ハロゲン化物
(RX)から有機リチウム(RLi)を合成する際に副
生するLiXを使用することを特徴とする有機リチウム
の製造方法。 (ただし、XはCl、Br又はI基、Rは脂肪族、脂環
式又は芳香族の炭化水素基を示し、アルカリ金属はNa
又はKである。)
(2) Synthesize an organic alkali metal compound from an alkali metal and an organic halide (RX), and then react the organic alkali metal compound with lithium halide (LiX) to synthesize organic lithium (RLi). A method for producing organic lithium, which is characterized in that LiX, which is a by-product when synthesizing organic lithium (RLi) from lithium and an organic halide (RX), is used as LiX in the reaction. (However, X is Cl, Br or I group, R is an aliphatic, alicyclic or aromatic hydrocarbon group, and the alkali metal is Na
Or K. )
JP10037590A 1990-04-18 1990-04-18 Production of organic lithium Pending JPH041197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10037590A JPH041197A (en) 1990-04-18 1990-04-18 Production of organic lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10037590A JPH041197A (en) 1990-04-18 1990-04-18 Production of organic lithium

Publications (1)

Publication Number Publication Date
JPH041197A true JPH041197A (en) 1992-01-06

Family

ID=14272284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10037590A Pending JPH041197A (en) 1990-04-18 1990-04-18 Production of organic lithium

Country Status (1)

Country Link
JP (1) JPH041197A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298772A (en) * 1993-03-23 1994-10-25 Fmc Corp Catalyzed hydrocarbyllithium process
JP4860776B1 (en) * 2011-04-25 2012-01-25 文夫 弾塚 Resin cap remover and resin ring remover

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298772A (en) * 1993-03-23 1994-10-25 Fmc Corp Catalyzed hydrocarbyllithium process
JP4860776B1 (en) * 2011-04-25 2012-01-25 文夫 弾塚 Resin cap remover and resin ring remover

Similar Documents

Publication Publication Date Title
KR100346257B1 (en) Organometallic derivatives of group iiia and process for their preparation
WO2000031091A1 (en) Method for producing monoaryloxy-ansa-metallocenes
US3646231A (en) Diorganomagnesium reagents and methods of preparing same
DE19711650C1 (en) Hydroxy-silyl-functional carbo-silane dendrimer preparation in good yield with easy separation from by-product
EP1401848A1 (en) Non-metallocenes, method for the production thereof and use thereof in the polymerization of olefins
US5626798A (en) Aryllithium products and processes
EP0162908A4 (en) Preparation of alkaline earth metal organometallic compounds.
US5340507A (en) Catalyzed hydrocarbyllithium process
EP0525881B1 (en) Catalyzed hydrocarbyllithium process
JPH041197A (en) Production of organic lithium
US4678614A (en) Hydrocarbon-soluble organometallic complexes of magnesium and alkali metals and method of producing same
US4944894A (en) Ether free organometallic amide compositions
JP2863321B2 (en) Method for producing dialkyl zinc
US8846879B2 (en) Process for producing mixed metal rare earth metal halide solutions in organic solvents
WO1992009609A1 (en) High purity alkyllithium compounds and process of preparation
Cooper et al. Silyl reagents (Me3Si-X) efficiently transfer X to Ir (H) 2F (PtBuP2Ph) 2
DE10057009A1 (en) Non-metallocenes, processes for their preparation and their use in the polymerization of olefins
JP2809666B2 (en) Manufacturing method of sodium borohydride
EP2739631A1 (en) Homoleptic rare earth triaryl complexes
Hermann et al. Lithiated Stannasilanes–Building Blocks for Monocyclic Si–Sn Rings
JP4593622B2 (en) Method for producing trihydrocarbylborane
JP4416322B2 (en) Production of alkali metal alcoholates
KR790001267B1 (en) Process for the preperation of poly-n-hydrocarbylimino-alanes
JPH03275502A (en) Production of sodium borohydride
WO1993014061A1 (en) Process for the preparation of sodium amides