JPH0411921A - Method for removing deteriorated material from refining liquid adsorbent - Google Patents

Method for removing deteriorated material from refining liquid adsorbent

Info

Publication number
JPH0411921A
JPH0411921A JP2115393A JP11539390A JPH0411921A JP H0411921 A JPH0411921 A JP H0411921A JP 2115393 A JP2115393 A JP 2115393A JP 11539390 A JP11539390 A JP 11539390A JP H0411921 A JPH0411921 A JP H0411921A
Authority
JP
Japan
Prior art keywords
adsorbent
mechanical filter
adsorption
filter
backwash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2115393A
Other languages
Japanese (ja)
Inventor
Takaichi Ishikawa
石川 登一
Yuichi Eto
祐一 江藤
Sukikimi Aizawa
相沢 透公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Engineering Co Ltd
Original Assignee
Idemitsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Engineering Co Ltd filed Critical Idemitsu Engineering Co Ltd
Priority to JP2115393A priority Critical patent/JPH0411921A/en
Publication of JPH0411921A publication Critical patent/JPH0411921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of a liq. adsorbent by providing a bypass line to the circulating line for the adsorbent, filtering the adsorbent with a mechanical filter and an activated-carbon filter and backwashing the bypass line when a definite adsorption state is reached. CONSTITUTION:A refining liq. adsorbent is continuously circulated between an adsorption system and a regeneration system, and the impurities in the raw material adsorbed in the adsorption system are separated to remove the deteriorated material in the adsorbent. Concretely, a part of the adsorbent is bypassed into a bypass line provided to the adsorbent circulating line and successively filtered by the mechanical filter and activated-carbon filter to remove the deteriorated material. When a definite adsorption state is reached in the mechanical filter, the bypass line is isolated from the circulating line. A cleaning fluid is introduced from the downstream side of the mechanical filter and discharged from the upstream side to backwash the mechanical filter. By this method, the efficiency in removing the deteriorated material in the adsorbent is kept high over a long period, and the deterioration of adsorbent is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は精製用吸着液の劣化物除去方法に係り、石油精
製プラント等における吸着洗浄式の不純物除去工程など
に利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for removing degraded substances from an adsorbent for refining, and can be used in an adsorption cleaning type impurity removal process in an oil refining plant or the like.

〔背景技術〕[Background technology]

従来より、石油精製プラント等においては、硫化水素や
二酸化炭素等を含むサワーガスやLPG等の軽質炭化水
素を精製するために、アミン系等の精製用吸着液を用い
た吸着洗浄式の不純物除去が行われている。
Conventionally, in petroleum refining plants, etc., impurity removal using an adsorption cleaning method using an amine-based refining adsorption liquid has been used to purify sour gas containing hydrogen sulfide, carbon dioxide, etc., and light hydrocarbons such as LPG. It is being done.

吸着洗浄式の精製では、不純物を吸着液に吸着させて原
料を精製する吸着系と、吸着液から不純物を分離排出す
る再生系と、吸着液を両系の間で循環させる循環経路と
を設け、循環する吸着液による連続的な吸着再生処理が
行われている。
Adsorption cleaning purification involves an adsorption system that purifies the raw material by adsorbing impurities to the adsorbent, a regeneration system that separates and discharges impurities from the adsorbent, and a circulation path that circulates the adsorbent between the two systems. , a continuous adsorption regeneration process using circulating adsorption liquid is performed.

ここで、再生系は複数の吸着系で共用されることか多く
、例えばLPG、 HPGAS、 LPGAS等を精製
する多数の吸着系をそれぞれ循環経路を介して一個の再
生系に接続し、各々からの吸着液を同じ再生系で処理す
る方式が多用されている。
Here, the regeneration system is often shared by multiple adsorption systems, and for example, a large number of adsorption systems for purifying LPG, HPGAS, LPGAS, etc. are each connected to one regeneration system via a circulation path, and the regeneration system from each is connected. A method in which the adsorbent is treated in the same regeneration system is often used.

一方、吸着洗浄式の精製では、繰返し循環される間に吸
着液中にアミン劣化物や熱安定性塩類などの腐食原因物
質が生じ、処理系などに悪影響を及ぼすことがある。こ
のため、吸着液中の劣化物は適宜除去する必要があり、
例えばリクレーマでソーダ灰や苛性ソーダ等を加えて劣
化物をスラッジとしたうえ、蒸留により吸着液を分離し
て残留分を系外に排出したり、吸着液の循環経路に配置
された活性炭フィルタ等を用いた濾過手段により劣化物
を吸着除去する方法が採用されている。
On the other hand, in adsorption-washing purification, corrosion-causing substances such as amine deterioration products and heat-stable salts are generated in the adsorbent during repeated circulation, which may have an adverse effect on the processing system. Therefore, it is necessary to remove degraded substances in the adsorbent as appropriate.
For example, in a reclaimer, soda ash, caustic soda, etc. are added to turn degraded materials into sludge, and then the adsorbent is separated by distillation and the residual content is discharged outside the system, or an activated carbon filter, etc. placed in the circulation path of the adsorbent is used. A method of adsorbing and removing degraded substances using the filtration means used is adopted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前述のような濾過手段においては、使用に伴
って活性炭フィルタに吸着された劣化物が増し、吸着液
に対する抵抗が大きくなるほか、吸着性能か低下するこ
とになる。
By the way, in the above-mentioned filtration means, as the activated carbon filter is used, the amount of degraded substances adsorbed on the activated carbon filter increases, and the resistance to the adsorbing liquid increases, and the adsorption performance decreases.

これに対し、循環経路の活性炭フィルタより上流側にメ
カニカルフィルタ等を配置し、予め吸着液中の比較的粗
い不純物粒子を濾過しておき、活性炭フィルタでは微粒
子のみ吸着すればよいようにして負荷を軽減する試みが
なされている。
To deal with this, a mechanical filter or the like is placed upstream of the activated carbon filter in the circulation path to filter relatively coarse impurity particles in the adsorption liquid in advance, so that the activated carbon filter only needs to adsorb fine particles to reduce the load. Attempts are being made to reduce it.

しかし、メカニカルフィルタ等のメツシュを粗くすると
濾過を有効に行えず、吸着液の劣化を充分に防止できな
くなる。一方、メツシュを細かくすると目詰まりを生じ
やすくなり、清掃等の作業を頻繁に行う必要が生じる。
However, if the mesh of a mechanical filter or the like is made coarse, filtration cannot be performed effectively and deterioration of the adsorbent cannot be sufficiently prevented. On the other hand, if the mesh is made finer, it is more likely to become clogged, and cleaning and other operations will need to be carried out frequently.

特に、メカニカルフィルタの清掃には、循環経路からの
開放、洗浄、復元等の煩雑な作業が必要となる。また、
洗浄の際にメカニカルフィルタ部分に残留していた吸着
液が不純物粒子とともに排出されて無駄になる。
In particular, cleaning a mechanical filter requires complicated operations such as opening it from the circulation path, cleaning it, and restoring it. Also,
During cleaning, the adsorbent remaining in the mechanical filter is discharged together with impurity particles and is wasted.

さらに、復元時にメカニカルフィルタ部分に空気等か残
留していると、処理を再開した際に循環経路内に空気等
が混入し、吸着液が酸化されて全体的な劣化か進むこと
になる。このようなことから、メカニカルフィルタ等に
よる伴動な予備濾過は実用化か難しかった。
Furthermore, if air or the like remains in the mechanical filter during restoration, air or the like will enter the circulation path when the process is restarted, oxidizing the adsorbent and causing overall deterioration. For these reasons, it has been difficult to implement preliminary filtration using a mechanical filter or the like.

本発明の目的は、劣化物の除去を効率よく行え、吸着液
の劣化を防止できるとともに、保守等の作業が容易にで
きる精製用吸着液の劣化物除去方法を提供することにあ
る。
An object of the present invention is to provide a method for removing degraded substances from a refining adsorption liquid that can efficiently remove degraded substances, prevent deterioration of the adsorption liquid, and facilitate maintenance and other operations.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、吸着系と再生系との間を連続的に循環され、
吸着系で吸着した原料中の不純物を再生糸で分離する精
製用吸着液の劣(ヒ物を除去するために、第一の方法と
して、前記吸着液の循環経路に設けたバイパス経路に吸
着液の一部を迂回させ、当該バイパス経路を通る吸着液
をメカニカルフィルタおよび活性炭フィルタで順次濾過
して劣化物を除去するとともに、前記メカニカルフィル
タか一定の吸着状態に達した際に、バイパス経路を循環
経路から遮断し、洗浄流体をメカニカルフィルタの下流
側から導入し、上流側から排出して逆方向洗浄を行うと
いう各手順を採用したものである。
The present invention provides continuous circulation between the adsorption system and the regeneration system,
In order to remove impurities in the raw material adsorbed by the adsorption system using regenerated fibers, the first method is to remove the impurities from the adsorption solution in a bypass path provided in the circulation path of the adsorption solution. The adsorbed liquid passing through the bypass route is filtered sequentially through a mechanical filter and an activated carbon filter to remove degraded substances, and when the mechanical filter reaches a certain adsorption state, the adsorbed liquid is circulated through the bypass route. This method adopts the steps of blocking the mechanical filter from the mechanical filter, introducing cleaning fluid from the downstream side of the mechanical filter, and discharging it from the upstream side to perform reverse cleaning.

また、第二の方法として、前記第一の方法の逆方向洗浄
の前に、吸着液溶媒をメカニカルフィルタの上流側から
導入し、活性炭フィルタを経由させたのち循環経路中に
回収させるとしたものである。
In addition, as a second method, before the reverse washing of the first method, the adsorbent solvent is introduced from the upstream side of the mechanical filter, passed through an activated carbon filter, and then collected into the circulation path. It is.

さらに、第三の方法として、前記第一または第二の方法
の逆方向洗浄の後に、吸着液溶媒をメカニカルフィルタ
の上流側から導入し、下流側から排出して掃気を行うと
したものである。
Furthermore, as a third method, after the reverse cleaning in the first or second method, the adsorbent solvent is introduced from the upstream side of the mechanical filter and exhausted from the downstream side to perform scavenging. .

〔作 用〕[For production]

このような本発明においては、前記第一の方法により、
吸着液はバイパス経路を通過する間にメカニカルフィル
タおよび活性炭フィルタで濾過され、吸着液中の劣化物
は順次吸着除去される。
In such the present invention, by the first method,
The adsorbent is filtered by a mechanical filter and an activated carbon filter while passing through the bypass path, and degraded substances in the adsorbent are successively adsorbed and removed.

ここで、メカニカルフィルタおよび活性炭フィルタをバ
イパス経路に配置することで循環経路と適宜分離可能と
なり、循環経路における通常の精製処理などに係わりな
く各フィルタの清掃等の作業を行うことが可能となる。
Here, by arranging the mechanical filter and the activated carbon filter in the bypass path, they can be appropriately separated from the circulation path, and it is possible to perform work such as cleaning each filter regardless of the normal purification process in the circulation path.

そシテ、メカニカルフィルタに対しては吸着状態に応じ
て自動的に逆方向洗浄を行うことにより、従来の手動洗
浄等に比べて保守作業が容易になるうえ、頻繁に行って
も問題が生じないためメカニカルフィルタに細かいメツ
シュの使用が可能となり、予備吸着の性能を高めて活性
炭フィルタの寿命の延長か可能となる。
For mechanical filters, by automatically performing reverse cleaning according to the adsorption state, maintenance work is easier compared to conventional manual cleaning, and there is no problem even if it is performed frequently. Therefore, it becomes possible to use a fine mesh in a mechanical filter, which improves the pre-adsorption performance and extends the life of the activated carbon filter.

さらに、前記第二の方法により、逆方向洗浄の前に吸着
液溶媒でメカニカルフィルタおよび活性炭フィルタを洗
浄することで、各フィルタ部分に残留する吸着液を循環
経路中に回収することが可能となり、頻繁に洗浄を行っ
た場合でも吸着液の無駄を低減することか可能になる。
Furthermore, according to the second method, by cleaning the mechanical filter and the activated carbon filter with the adsorbent solvent before reverse cleaning, it becomes possible to collect the adsorbent remaining in each filter part into the circulation path, Even when cleaning is performed frequently, it is possible to reduce wastage of adsorbent liquid.

そして、前記第二の方法により、逆方向洗浄の後に吸着
液溶媒で掃気を行うことで、洗浄の際にメカニカルフィ
ルタ部分に残留した空気等を排除することが可能となり
、再び循環経路と接続した際に循環経路内の吸着液の酸
化等を未然に防止することか可能となる。
Then, by using the second method, by performing air scavenging with the adsorbent solvent after reverse cleaning, it becomes possible to eliminate air remaining in the mechanical filter part during cleaning, and connect it to the circulation path again. At the same time, it becomes possible to prevent oxidation of the adsorbent in the circulation path.

本発明は、これらにより吸着液の劣化物の除去を確実か
つ効率よく行うとともに、保守等の作業を容易にして前
記目的を達成するものである。
The present invention achieves the above objects by reliably and efficiently removing degraded substances from the adsorbent, and by facilitating maintenance and other operations.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基ついて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図に示す処理系lは、サワーカスやLPG等の原料
から硫化水素等の不純物を除去して精製するものであり
、吸着系10および再生糸20を備えている。
The processing system 1 shown in FIG. 1 purifies raw materials such as sour dregs and LPG by removing impurities such as hydrogen sulfide, and includes an adsorption system 10 and a regenerated yarn 20.

吸着系IOは内部のアミン系吸着液により原料中の不純
物の吸着洗浄を行うものであり、原料の導入管11およ
び精製済原料の取出管12か接続されている。
The adsorption system IO adsorbs and cleans impurities in the raw material using an internal amine-based adsorption liquid, and is connected to a raw material inlet pipe 11 and a purified raw material outlet pipe 12.

再生系20は吸着系10て使用される吸着液か連続的に
導入され、吸着液中の不純物を分離排出して再生するも
のであり、出口側にはリボイラ系21が設置されるとと
もに、循環経路30を介して吸着系10に接続されてい
る。
The regeneration system 20 is a system into which the adsorbent used in the adsorption system 10 is continuously introduced, and the impurities in the adsorbent are separated and discharged for regeneration. It is connected to the adsorption system 10 via a path 30.

循環経路30は、吸着系IOの吸着液出口から再生系2
0の吸着液入口に至る送り管31と、再生系20の吸着
液出口から吸着系10の吸着液入口に至る戻り管32と
を備えている。これらの送り管31と戻り管32との間
には熱交換器33が設置され、各県10.20での熱損
失の低減か図られている。また、送り管31には流量調
整弁34が配置され、循環経路30を通して各県10.
20間を循環される吸着液の流量が調整される。
The circulation path 30 runs from the adsorption liquid outlet of the adsorption system IO to the regeneration system 2.
0, and a return pipe 32 from the adsorption liquid outlet of the regeneration system 20 to the adsorption liquid inlet of the adsorption system 10. A heat exchanger 33 is installed between these sending pipes 31 and return pipes 32 to reduce heat loss in each prefecture 10.20. Further, a flow rate regulating valve 34 is disposed in the feed pipe 31, and the circulation path 30 is passed through each prefecture 10.
The flow rate of the adsorption liquid circulated between the two is adjusted.

ここで、循環経路30には、再生糸20の出口側と熱交
換器33との間の部分に、吸着液に発生するアミン劣化
物を除去するための濾過手段40が設置されている。
Here, in the circulation path 30, a filtration means 40 is installed between the outlet side of the regenerated yarn 20 and the heat exchanger 33 for removing amine deterioration products generated in the adsorbent.

濾過手段40は、循環経路30の二つの分岐点Sl。The filtration means 40 is located at two branch points Sl of the circulation path 30.

S2を結ぶバイパス経路41を有し、循環経路30の分
岐点Sl、 32間に設置された流量調整弁42の加減
により、循環経路30を通る吸着液の一部(2〜20%
程度)はバイパス経路41に分岐して流される。バイパ
ス経路41にはメカニカルフィルタ43および活性炭フ
ィルタ44が直列配置されている。このうち、メカニカ
ルフィルタ43は細かいメツシュ(5〜40μm程度)
のものとされ、通過する吸着液中の比較的大きな劣化物
の粒子を濾過して活性炭フィルタ44の負荷を軽減する
ものである。また、活性炭フィルタ44は通過する吸着
液中の劣化物の微粒子を吸着して除去するものである。
It has a bypass path 41 connecting S2, and a part (2 to 20%) of the adsorbent passing through the circulation path 30 can be
degree) is branched into a bypass path 41 and flown. A mechanical filter 43 and an activated carbon filter 44 are arranged in series in the bypass path 41 . Among these, the mechanical filter 43 has a fine mesh (about 5 to 40 μm).
This filter reduces the load on the activated carbon filter 44 by filtering out relatively large particles of degraded substances in the adsorption liquid passing through. Further, the activated carbon filter 44 adsorbs and removes fine particles of degraded substances in the adsorption liquid passing therethrough.

さらに、濾過手段40には、メカニカルフィルタ43で
濾過された劣化物の除去等を行う劣化物除去手段50が
設置されている。
Further, the filtration means 40 is provided with a deterioration material removal means 50 for removing deterioration materials filtered by the mechanical filter 43.

第2図に示すように、劣化物除去手段50は、バイパス
経路41に接続された昇順や管路、洗浄用流体の供給手
段60、これらの制御を行う制御手段70等により構成
されたものである。
As shown in FIG. 2, the degraded product removing means 50 is composed of an ascending pipe or a pipe connected to the bypass path 41, a cleaning fluid supply means 60, a control means 70 for controlling these, and the like. be.

バイパス経路41のメカニカルフィルタ43の上流側に
は入口側遮断弁51か配置され、この遮断弁51とフィ
ルタ43との間には逆洗トレン管52 Aが接続されて
いる。逆洗ドレン管52へは逆洗トレン弁52を介して
外部の廃液タンク等に接続されているとともに、逆洗ド
レン弁52とバイパス経路41との間には順法導入管6
1Aが接続されている。
An inlet-side cutoff valve 51 is arranged on the upstream side of the mechanical filter 43 in the bypass path 41, and a backwash drain pipe 52A is connected between the cutoff valve 51 and the filter 43. The backwash drain pipe 52 is connected to an external waste liquid tank or the like via a backwash drain valve 52, and a law-compliant introduction pipe 6 is connected between the backwash drain valve 52 and the bypass path 41.
1A is connected.

順法導入管61八は順法導入弁61を介して外部の水供
給源に接続されている。ここで、順法導入管61Aに供
給される水はアミン系吸着液の溶媒であり、予め脱気さ
れている。
The legal introduction pipe 618 is connected to an external water supply source via the legal introduction valve 61. Here, the water supplied to the law-compliant introduction pipe 61A is a solvent for the amine-based adsorption liquid, and has been degassed in advance.

バイパス経路41のメカニカルフィルタ43の出口側に
は活性炭フィルタ44との間に出口側遮断弁53が配置
され、この遮断弁53とフィルタ43との間には逆洗導
入管62Aが接続されている。
An outlet-side cutoff valve 53 is disposed on the outlet side of the mechanical filter 43 in the bypass path 41 between it and the activated carbon filter 44, and a backwash introduction pipe 62A is connected between the cutoff valve 53 and the filter 43. .

逆洗導入管62Aは逆洗導入弁62を介して逆洗流体混
合タンク63に接続されている。逆洗流体混合タンク6
3には窒素ガス補給管64Aおよび水補給管65Aか接
続され、窒素ガス補給管64Aは窒素ガス補給弁64を
介して外部の窒素ガス(N2)供給源に接続されるとと
もに、水補給管65Aは水補給弁65を介して順法導入
管61Aと同じ水供給源に接続されている。また、逆洗
流体混合タンク63にはエア抜き弁66を介して外部に
開放されるエア抜き管66Aが接続されるとともに、混
合弁67を介して逆洗導入管62Aに接続される混合管
67Aが接続され、混合弁67を開くことで逆洗流体混
合タンク63内の窒素ガスと水とが混合されて発泡状態
で逆洗導入管62Aに送出される。
The backwash introduction pipe 62A is connected to a backwash fluid mixing tank 63 via a backwash introduction valve 62. Backwash fluid mixing tank 6
3 is connected to a nitrogen gas supply pipe 64A and a water supply pipe 65A, and the nitrogen gas supply pipe 64A is connected to an external nitrogen gas (N2) supply source via a nitrogen gas supply valve 64, and the water supply pipe 65A is connected to the nitrogen gas supply pipe 64A. is connected to the same water supply source as the legal introduction pipe 61A via a water supply valve 65. Further, an air bleed pipe 66A that is opened to the outside is connected to the backwash fluid mixing tank 63 via an air bleed valve 66, and a mixing pipe 67A that is connected to the backwash introduction pipe 62A via a mixing valve 67. is connected, and by opening the mixing valve 67, the nitrogen gas and water in the backwash fluid mixing tank 63 are mixed and sent in a foamed state to the backwash introduction pipe 62A.

これらの各管路61A・・・67A、多弁61・・・6
7および混合タンク63により洗浄用流体の供給手段6
0が構成されている。
Each of these pipe lines 61A...67A, multi-valve 61...6
7 and a mixing tank 63 for supplying cleaning fluid 6
0 is configured.

一方、前述した多弁51・・・53.61・・・67は
、それぞれシーケンサ71に接続されている。また、順
法導入管61Aの途中には流量計72が配置され、メカ
ニカルフィルタ43には入口側と出口側との圧力差を検
出する差圧計73か設置され、逆洗流体混合タンク63
には内部の液面レベルを検出するレベル計74が設置さ
れ、各々の出力はシーケンサ71に入力されている。
On the other hand, the aforementioned multiple valves 51...53, 61...67 are each connected to the sequencer 71. Further, a flow meter 72 is disposed in the middle of the legal introduction pipe 61A, a differential pressure gauge 73 is installed in the mechanical filter 43 to detect the pressure difference between the inlet side and the outlet side, and the backwash fluid mixing tank 63 is disposed in the mechanical filter 43.
A level meter 74 is installed to detect the internal liquid level, and each output is input to a sequencer 71.

シーケンサ71は、内蔵タイマおよび各計器72〜74
の出力を参照し、予め設定されたタイムチャート(第3
図参照)に従って多弁51・・・67を切り換えるもの
であり、これらのシーケンサ71等により制御手段70
か構成されている。
The sequencer 71 has a built-in timer and each meter 72 to 74.
Refer to the output of the preset time chart (third
(see figure), the control means 70 is switched by these sequencers 71, etc.
or configured.

次に、本実施例における処理手順について説明する。Next, the processing procedure in this embodiment will be explained.

通常、シーケンサ71は劣化物除去手段50を濾過処理
状態に設定し、濾過手段40により循環する吸着液から
劣化物を濾過する。
Normally, the sequencer 71 sets the degraded product removing means 50 to a filtering state, and the filtering means 40 filters degraded products from the circulating adsorption liquid.

濾過処理においては、第3図の時刻T1より左側に示さ
れるように、シーケンサ71により入口側遮断弁51お
よび出口側段弁53が開かれ、他の昇順は全て閉じられ
る。これにより、第4図に示すように、バイパス経路4
1は分岐点S1. S2を結ぶ状態とされ、循環経路3
0からの吸着液の一部が迂回されてメカニカルフィルタ
43および活性炭フィルタ44により吸着液の濾過が行
われる。
In the filtration process, as shown on the left side from time T1 in FIG. 3, the sequencer 71 opens the inlet-side shutoff valve 51 and the outlet-side stage valve 53, and closes all other ascending valves. As a result, as shown in FIG.
1 is the branch point S1. S2 is connected, and circulation route 3
A part of the adsorbent from 0 is bypassed and filtered by the mechanical filter 43 and activated carbon filter 44 .

ここで、差圧計73によりメカニカルフィルタ43にお
ける差圧が予め設定された基準値より高くなったことが
検知されると、シーケンサ71は劣化物除去手段50を
順法処理状態に設定し、濾過手段40のバイパス経路4
1に残留している吸着液の回収を行う。
Here, when the differential pressure gauge 73 detects that the differential pressure in the mechanical filter 43 has become higher than a preset reference value, the sequencer 71 sets the degraded product removing means 50 to a law-compliant processing state, and the filtering means 40 bypass routes 4
Collect the adsorbent remaining in step 1.

順法処理においては、第3図の時刻T+−72間に示さ
れるように、シーケンサ71により入口側遮断弁51が
閉じられ、順法導入弁61が開かれる。
In the compliance process, as shown between times T+-72 in FIG. 3, the sequencer 71 closes the inlet-side shutoff valve 51 and opens the compliance introduction valve 61.

なお、出口側遮断弁53は開かれたままとされる。Note that the outlet-side shutoff valve 53 remains open.

これにより、第5図に示すように、バイパス経路41は
分岐点St側を遮断され、代わりに順法導入管61Aか
らの水が導入される。この水によりメカニカルフィルタ
43および活性炭フィルタ44等に付着残留している吸
着液は溶かし落とされ、水とともにバイパス経路41を
通って分岐点S2から循環経路30に回収される。
As a result, as shown in FIG. 5, the bypass path 41 is blocked on the branch point St side, and water from the law-compliant introduction pipe 61A is introduced instead. The adsorbed liquid remaining on the mechanical filter 43, activated carbon filter 44, etc. is dissolved by this water, and is collected along with the water through the bypass path 41 from the branch point S2 to the circulation path 30.

ここで、流量計72により順次の水量か予め設定された
値に達したことが検知されると、シーケンサ71は劣化
物除去手段50を逆洗処理状態に設定し、濾過手段40
のメカニカルフィルタ43に対して濾過物を除去して清
掃を行う。
Here, when it is detected by the flow meter 72 that the amount of water has reached a preset value, the sequencer 71 sets the degraded product removal means 50 to a backwash processing state, and the filtration means 40
The mechanical filter 43 is cleaned by removing filtrate.

逆洗処理においては、第3図の時刻T2〜T。In the backwashing process, time T2 to T in FIG.

間に示されるように、シーケンサ71により出口側遮断
弁53および順法導入弁61が閉じられ、逆洗ドレン弁
52が開かれる。そして、内蔵タイマに基づいて、水補
給弁65およびエア抜き弁66が一定時間開かれ、逆洗
流体混合タンク63にはレベル計74か予め設定した値
以上になるまで水が供給される。
As shown in between, the sequencer 71 closes the outlet-side shutoff valve 53 and the compliance introduction valve 61, and opens the backwash drain valve 52. Then, based on the built-in timer, the water supply valve 65 and the air vent valve 66 are opened for a certain period of time, and water is supplied to the backwash fluid mixing tank 63 until the level meter 74 reaches a preset value or more.

続いて、窒素ガス供給弁64か一定時間開かれ、逆洗流
体混合タンク63内に窒素カスが供給されるとともに、
その間に混合弁67および逆洗導入弁62が一定時間開
かれる。これにより、第6図に示すように、逆洗導入管
62Aには水と窒素ガスとが混合した発泡状態の逆洗流
体が送り出され、バイパス経路41にはメカニカルフィ
ルタ43の下流側から上流側に向けて発泡状態の逆洗流
体が流通される。
Subsequently, the nitrogen gas supply valve 64 is opened for a certain period of time, and nitrogen gas is supplied into the backwash fluid mixing tank 63.
During this time, the mixing valve 67 and the backwash introduction valve 62 are opened for a certain period of time. As a result, as shown in FIG. 6, a foamed backwash fluid containing a mixture of water and nitrogen gas is sent to the backwash introduction pipe 62A, and the bypass path 41 is supplied from the downstream side to the upstream side of the mechanical filter 43. Backwash fluid in a foamed state is distributed toward.

この逆洗流体によりメカニカルフィルタ43に濾し取ら
れていた劣化物等が流し落とされ、逆洗ドレン管52A
を通って排出される。
This backwash fluid flushes out degraded substances that have been filtered out by the mechanical filter 43, and the backwash drain pipe 52A
is discharged through the

なお、これらの逆洗動作は逆洗処理の間に三回繰り返さ
れ、三回目の動作の際には逆洗導入弁62は開放状態で
維持される。また、−回目の水の供給にあたっては、シ
ーケンサ71はレベル計74を調べ、設定値未満の場合
のみ水の供給を行い、それ以外の場合は水の供給を省略
する。
Note that these backwash operations are repeated three times during the backwash process, and during the third operation, the backwash introduction valve 62 is maintained in an open state. Furthermore, when supplying water for the -th time, the sequencer 71 checks the level meter 74, and supplies water only when the level is less than the set value, otherwise omitting the supply of water.

これらの逆洗処理が終了すると、シーケンサ71は劣化
物除去手段50を掃気処理状態に設定し、逆洗処理の間
に逆洗流体とともに濾過手段40に導入された気体分の
排除を行う。
When these backwashing processes are completed, the sequencer 71 sets the degraded product removing means 50 to a scavenging state, and removes the gas introduced into the filtration means 40 together with the backwashing fluid during the backwashing process.

掃気処理においては、第3図の時刻13〜14間に示さ
れるように、逆洗導入弁53が開かれたまま、シーケン
サ71により逆洗トレン弁52か閉じられ、順法導入弁
61およびエア抜き弁66か開かれる。
In the scavenging process, as shown between time 13 and time 14 in FIG. The drain valve 66 is opened.

これにより、第7図に示すように、逆洗トレン管52A
には順法導入管61Aから水か導入され、この水はバイ
パス経路41およびメカニカルフィルタ43を通り、逆
洗導入管62Aから逆洗流体混合タンク63へ送られる
。この水により、バイパス経路41およびメカニカルフ
ィルタ43の掃気が行われ、先の逆洗処理により残留し
た空気等が排除される。
As a result, as shown in FIG. 7, the backwash drain pipe 52A
Water is introduced from the compliant introduction pipe 61A, passes through the bypass path 41 and the mechanical filter 43, and is sent to the backwash fluid mixing tank 63 from the backwash introduction pipe 62A. This water scavenges the bypass path 41 and mechanical filter 43, and removes air and the like remaining from the previous backwashing process.

そして、流量計72により順法の水量か予め設定された
値に達したことが検知されてから一定時間経過すると、
シーケンサ71により入口側遮断弁51および出口側段
弁53が開かれ、他の昇順は全て閉しられる。これによ
り、劣化物除去手段50は再び第4図に示す濾過処理状
態に復元され、バイパス経路41を通る吸着液に対して
メカニカルフィルタ43および活性炭フィルタ44によ
る濾過が行われる。
Then, when a certain period of time has elapsed since the flowmeter 72 detected that the amount of water had reached a preset value or a legal amount,
The sequencer 71 opens the inlet-side shutoff valve 51 and the outlet-side stage valve 53, and closes all other ascending valves. As a result, the degraded substance removing means 50 is restored to the filtering state shown in FIG. 4 again, and the adsorbent passing through the bypass path 41 is filtered by the mechanical filter 43 and the activated carbon filter 44.

このような本実施例によれば、以下に示すような効果が
ある。
According to this embodiment, the following effects can be obtained.

すなわち、濾過手段40には本発明に基づいて処理を行
う劣化物除去手段50を設けたため、メカニカルフィル
タ43の汚れ具合を監視し、汚れがひどくなった際には
自動的に洗浄処理を実行し、メカニカルフィルタ43の
機能を回復することができる。
That is, since the filtration means 40 is provided with the degraded substance removal means 50 that performs the treatment based on the present invention, the degree of contamination of the mechanical filter 43 is monitored, and when the contamination becomes severe, cleaning processing is automatically executed. , the function of the mechanical filter 43 can be restored.

このため、メカニカルフィルタ43の汚れに伴う人手に
よる作業等を解消することができ、濾過手段40の保守
が簡単にできるとともに、細かいメツシュを使用しても
作業が煩雑になる等の不都合は生じることがない。
Therefore, it is possible to eliminate the need for manual work due to dirt on the mechanical filter 43, and the maintenance of the filtration means 40 can be easily performed, and even if a fine mesh is used, inconveniences such as complicated work will not occur. There is no.

従って、メカニカルフィルタ43に一層細かいメツシュ
が使用できることになり、濾過性能を高めることができ
るとともに、活性炭フィルタ44の負荷を軽減し、寿命
を延長することができる。
Therefore, a finer mesh can be used for the mechanical filter 43, which can improve filtration performance, reduce the load on the activated carbon filter 44, and extend its life.

一方、メカニカルフィルタ43の機能回復にあたっては
、基本的に逆洗処理を採用するとともに、水に窒素ガス
を混合して発泡状態にした流体を用いることにより、洗
浄効果を高めることかできる。
On the other hand, when recovering the function of the mechanical filter 43, the cleaning effect can be enhanced by basically employing backwashing processing and using a foamed fluid made by mixing nitrogen gas with water.

また、逆洗処理に先立って順法処理を行うとしたため、
アミン系吸着液の溶媒である水によりメカニカルフィル
タ43ないし活性炭フィルタ44に残留した吸着液を循
環経路30に回収することかできる。このため、逆洗処
理の際に吸着液か失われて無駄になる等の不都合を未然
に回避することかできる。
In addition, since it was decided that legal compliance treatment would be carried out prior to backwashing treatment,
The adsorbent remaining in the mechanical filter 43 or the activated carbon filter 44 can be collected into the circulation path 30 by using water as a solvent for the amine-based adsorbent. Therefore, inconveniences such as the adsorption liquid being lost and wasted during the backwashing process can be avoided.

さらに、逆洗処理の後には掃気処理を行うとしたため、
逆洗流体とともに空気等か導入されてメカニカルフィル
タ43等に残留していても確実に排除することかできる
。このため、通常のa過処理に復帰した際に空気等が循
環経路30内に侵入し、吸着液か酸化されて劣化か進む
等の不都合を未然に回避することができる。
Furthermore, since backwashing is followed by scavenging,
Even if air or the like is introduced together with the backwash fluid and remains in the mechanical filter 43 or the like, it can be reliably removed. Therefore, it is possible to avoid inconveniences such as air or the like entering the circulation path 30 when the normal a-overtreatment is resumed, and the adsorbent being oxidized and deteriorating further.

また、濾過手段40を循環経路30から分岐したバイパ
ス経路41に構成したため、洗浄等の処理はバイパス経
路41側だけで行える。このため、洗浄等の処理の間に
も吸着液の循環を維持することができ、吸着系10およ
び再生糸20における連続的な精製処理を阻害すること
はなく、作業効率を高く維持することができる。
Further, since the filtering means 40 is configured in a bypass path 41 branched from the circulation path 30, processing such as cleaning can be performed only on the bypass path 41 side. Therefore, circulation of the adsorbent can be maintained even during processing such as washing, and continuous purification processing in the adsorption system 10 and regenerated yarn 20 is not hindered, and work efficiency can be maintained at a high level. can.

なお、本発明は前記実施例に限定されるものではなく、
以下に示すような変形をも含むものである。
Note that the present invention is not limited to the above embodiments,
It also includes the following modifications.

すなわち、逆洗処理に使用する流体としては、水に窒素
ガスを混合して発泡させたものに限らず、ヘリウムガス
等の他の不活性ガスを利用してもよい。また、発泡させ
ることは必須ではなく、水だけであってもよいが、発泡
させることで洗浄効果を高めることができる。さらに、
洗浄用の液体としては水に限らないか、復帰した際の吸
着液との親和性等を考慮して吸着液の溶媒となり得る液
体を用いることが望ましい。
That is, the fluid used for backwashing is not limited to a mixture of water and nitrogen gas and foamed, but other inert gases such as helium gas may also be used. Furthermore, foaming is not essential and only water may be used, but foaming can enhance the cleaning effect. moreover,
The cleaning liquid is not limited to water, but it is preferable to use a liquid that can serve as a solvent for the adsorbent, taking into consideration its affinity with the adsorbent upon return.

また、順次処理に使用する流体についても吸着液の溶媒
となりつる液体を用いることが望ましい。
Furthermore, as for the fluid used in the sequential processing, it is desirable to use a liquid that can serve as a solvent for the adsorption liquid.

さらに、順次処理は活性炭フィルタ44まで行うのでは
なく、続く逆洗処理か行われる範囲内のみであっでもよ
い。なお、順次処理は本発明に必須ではなく、適宜省略
してもよい。
Furthermore, the sequential processing may not be performed up to the activated carbon filter 44, but only within the range where the subsequent backwashing processing is performed. Note that sequential processing is not essential to the present invention and may be omitted as appropriate.

さらに、掃気処理は順法処理用の経路および逆洗処理用
の経路を流用するものに限らず、別途専用の配管等を利
用してもよい。この際、掃気処理に利用する流体は吸着
液の溶媒となり得る液体であることが望ましく、あるい
は吸着液自体を利用してもよい。なお、掃気処理は本発
明に必須ではなく、適宜省略してもよい。
Furthermore, the scavenging process is not limited to using the legal process route and the backwash process route, but may also utilize separate dedicated piping or the like. At this time, the fluid used for the scavenging process is preferably a liquid that can serve as a solvent for the adsorption liquid, or the adsorption liquid itself may be used. Note that the scavenging process is not essential to the present invention and may be omitted as appropriate.

一方、前記実施例では第3図に示すような手順で処理を
行ったが、細部のタイミング設定等は実施にあたって適
宜変更すればよく、例えば逆洗処理の際に実行する水供
給および逆洗動作の繰り返し回数等は任意に設定すれば
よい。
On the other hand, in the above-mentioned embodiment, the process was performed according to the procedure shown in FIG. 3, but the detailed timing settings etc. may be changed as appropriate during implementation. The number of repetitions, etc. may be set arbitrarily.

また、前記実施例ではシーケンサ71を中心とした制御
手段70により処理の制御を行ったか、これらの具体的
構成や参照する状態量等は実施の際に適宜設定すればよ
い。例えば、メカニカルフィルタ43の汚れ具合は差圧
の検出によるものではなく、前後の劣化物混入状態を比
較したり、あるいはメカニカルフィルタ43の目詰まり
状態を光学的に検査してもよい。
Further, in the embodiment described above, the processing was controlled by the control means 70 centered on the sequencer 71, but the specific configuration thereof, the state quantities to be referred to, etc. may be set as appropriate during implementation. For example, the degree of contamination of the mechanical filter 43 may not be determined by detecting the differential pressure, but may be determined by comparing the state of contaminated substances before and after, or by optically inspecting the state of clogging of the mechanical filter 43.

さらに、劣化物除去手段50の配管構成や弁配置等も前
記実施例に限らず、洗浄処理として採用する逆洗、順法
、掃気等が行えるように実施にあたって適宜変更すれば
よい。
Furthermore, the piping configuration, valve arrangement, etc. of the deteriorating product removing means 50 are not limited to those in the above embodiments, and may be changed as appropriate in implementation so that backwashing, compliance, scavenging, etc. employed as the cleaning process can be performed.

また、劣化物除去手段50は前記実施例のような濾過手
段40および処理系lに限らず、他にも各種の濾過手段
に適用することができる。また、本発明の方法を実現す
る手段としては前記実施例の劣化物除去手段50に限ら
す、実施にあたって適宜設計すればよいものである。
Furthermore, the degraded product removing means 50 is not limited to the filtration means 40 and the treatment system 1 as in the embodiment described above, but can be applied to various other filtration means. Further, the means for realizing the method of the present invention is limited to the deteriorated product removing means 50 of the above-mentioned embodiment, and may be appropriately designed for implementation.

〔発明の効果] 以上に述べたように、本発明によれば、メカニカルフィ
ルタの清掃が自動的に行えるため、吸着液劣化物の除去
性能を長期間にわたって高く維持でき、吸着液の劣化を
防止できるとともに、保守等の作業か極めて容易になる
[Effects of the Invention] As described above, according to the present invention, since the mechanical filter can be automatically cleaned, the removal performance of the degraded substances of the adsorbent can be maintained at a high level over a long period of time, and the deterioration of the adsorbent can be prevented. This also makes maintenance work extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体構成を示す配管図、第
2図は同実施例の要部を示す配管図、第3図は同実施例
における処理を示すタイムチャート、第4図ないし第7
図はそれぞれ同実施例における各処理の際の流れを示す
配管図である。 10・・・吸着系、20・・・再生系、30・・・循環
経路、40・・・濾過手段、41・・・バイパス経路、
43・・・メカニカルフィルタ、44・・・活性炭フィ
ルタ、50・・・劣化物除去手段、51・・・入口側遮
断弁、52.52A・・・逆洗トレン弁および逆洗トレ
ン管、53・・・出口側遮断弁、60・・・洗浄用流体
の供給手段、61.61A・・・順法導入弁および順法
導入管、62.62A・・・逆洗導入弁および逆洗導入
管、70・・・制御手段。 出願人 出光エンジニアリング株式会社代理人 弁理士
 木下 實三(外二名)−′4図 第 口 図 第6図 ?さ。
Fig. 1 is a piping diagram showing the overall configuration of an embodiment of the present invention, Fig. 2 is a piping diagram showing the main parts of the embodiment, Fig. 3 is a time chart showing the processing in the embodiment, and Fig. 4. or seventh
Each figure is a piping diagram showing the flow of each process in the same embodiment. DESCRIPTION OF SYMBOLS 10... Adsorption system, 20... Regeneration system, 30... Circulation route, 40... Filtration means, 41... Bypass route,
43... Mechanical filter, 44... Activated carbon filter, 50... Degraded product removal means, 51... Inlet side shutoff valve, 52. 52A... Backwash drain valve and backwash drain pipe, 53... ... Outlet side shutoff valve, 60... Cleaning fluid supply means, 61.61A... Law-compliant introduction valve and law-compliant introduction pipe, 62.62A... Backwash introduction valve and backwash introduction pipe, 70... Control means. Applicant Idemitsu Engineering Co., Ltd. Agent Patent Attorney Sanzo Kinoshita (two others) - Figure '4 Figure 6? difference.

Claims (3)

【特許請求の範囲】[Claims] (1)吸着系と再生系との間を連続的に循環され、吸着
系で吸着した原料中の不純物を再生系で分離する精製用
吸着液の劣化物除去方法であって、前記吸着液の循環経
路に設けたバイパス経路に吸着液の一部を迂回させ、当
該バイパス経路を通る吸着液をメカニカルフィルタおよ
び活性炭フィルタで順次濾過して劣化物を除去するとと
もに、前記メカニカルフィルタが一定の吸着状態に達し
た際に、バイパス経路を循環経路から遮断し、洗浄流体
をメカニカルフィルタの下流側から導入し、上流側から
排出して逆方向洗浄を行うことを特徴とする精製用吸着
液の劣化物除去方法。
(1) A method for removing degraded substances from a refining adsorbent, which is continuously circulated between an adsorption system and a regeneration system, and the regeneration system separates impurities in the raw material adsorbed by the adsorption system, the method comprising: A part of the adsorbent is diverted to a bypass path provided in the circulation path, and the adsorbent passing through the bypass path is sequentially filtered with a mechanical filter and an activated carbon filter to remove degraded substances, and the mechanical filter maintains a constant adsorption state. Degraded products of the purification adsorption liquid characterized in that when the amount reaches the limit, the bypass path is cut off from the circulation path, the cleaning fluid is introduced from the downstream side of the mechanical filter, and the cleaning fluid is discharged from the upstream side to perform reverse cleaning. Removal method.
(2)特許請求の範囲第1項において、前記逆方向洗浄
の前に、吸着液溶媒をメカニカルフィルタの上流側から
導入し、活性炭フィルタを経由させたのち循環経路中に
回収させることを特徴とする精製用吸着液の劣化物除去
方法。
(2) Claim 1 is characterized in that before the reverse washing, the adsorbent solvent is introduced from the upstream side of the mechanical filter, passed through an activated carbon filter, and then collected into the circulation path. A method for removing degraded substances from an adsorption solution for purification.
(3)特許請求の範囲第1項または第2項において、前
記逆方向洗浄の後に、吸着液溶媒をメカニカルフィルタ
の上流側から導入し、下流側から排出して掃気を行うこ
とを特徴とする精製用吸着液の劣化物除去方法。
(3) Claim 1 or 2, characterized in that after the reverse cleaning, an adsorption liquid solvent is introduced from the upstream side of the mechanical filter and discharged from the downstream side to perform scavenging. A method for removing degraded substances from an adsorption solution for purification.
JP2115393A 1990-05-01 1990-05-01 Method for removing deteriorated material from refining liquid adsorbent Pending JPH0411921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2115393A JPH0411921A (en) 1990-05-01 1990-05-01 Method for removing deteriorated material from refining liquid adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115393A JPH0411921A (en) 1990-05-01 1990-05-01 Method for removing deteriorated material from refining liquid adsorbent

Publications (1)

Publication Number Publication Date
JPH0411921A true JPH0411921A (en) 1992-01-16

Family

ID=14661445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115393A Pending JPH0411921A (en) 1990-05-01 1990-05-01 Method for removing deteriorated material from refining liquid adsorbent

Country Status (1)

Country Link
JP (1) JPH0411921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264746A (en) * 2005-03-24 2006-10-05 Aohata Corp Packaging bag with zipper
JP2009179546A (en) * 2008-02-01 2009-08-13 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and method for cleaning filtration membrane apparatus
JP2012086216A (en) * 2011-11-30 2012-05-10 Toshiba Corp Carbon dioxide recovery apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264746A (en) * 2005-03-24 2006-10-05 Aohata Corp Packaging bag with zipper
JP2009179546A (en) * 2008-02-01 2009-08-13 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and method for cleaning filtration membrane apparatus
JP2012086216A (en) * 2011-11-30 2012-05-10 Toshiba Corp Carbon dioxide recovery apparatus

Similar Documents

Publication Publication Date Title
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
US5281344A (en) Regenerable sorbent system
CN211971963U (en) Reverse osmosis system capable of continuously running and continuously and chemically cleaning
JPH0411921A (en) Method for removing deteriorated material from refining liquid adsorbent
JP2007117947A (en) Water purifying facilities and its operation method
JP2950621B2 (en) Ultrapure water production method
JP5434752B2 (en) Filtration device and operation method thereof
KR200191691Y1 (en) Automatic recleanable water purifier system with air drop
JP3648790B2 (en) Membrane separator
JP2004130205A (en) Method and apparatus for backwashing filter membrane with ozone-containing water
JP2922059B2 (en) Operating method of hollow fiber membrane filter
JPH04354581A (en) Water treating apparatus
JPH08243560A (en) Water purifier
JP2004130211A (en) Filtration unit, filter, and method for controlling the filter
JP2960258B2 (en) Ultrapure water production equipment
JPH11244673A (en) Washing of membrane
JP2021191566A (en) Pure water production method and apparatus
JP2521350B2 (en) Cross flow filtration device
JP3627253B2 (en) Water purifier with automatic cleaning device
JPH07171561A (en) Hydrogen peroxide removal method using granular activated carbon packed tower
JPS63185419A (en) Apparatus for backwashing safety filter
JPH07961A (en) Water treatment device
JPH04250831A (en) Method and device for recovering filter device
RU2102340C1 (en) Method and apparatus for water treatment
KR200313849Y1 (en) Activated carbon & Metalbar Microfilter