JPH04119219A - Dynamic bearing - Google Patents

Dynamic bearing

Info

Publication number
JPH04119219A
JPH04119219A JP23614890A JP23614890A JPH04119219A JP H04119219 A JPH04119219 A JP H04119219A JP 23614890 A JP23614890 A JP 23614890A JP 23614890 A JP23614890 A JP 23614890A JP H04119219 A JPH04119219 A JP H04119219A
Authority
JP
Japan
Prior art keywords
magnetic fluid
magnetic
dynamic pressure
magnetic field
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23614890A
Other languages
Japanese (ja)
Inventor
Koji Shimado
島戸 幸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP23614890A priority Critical patent/JPH04119219A/en
Publication of JPH04119219A publication Critical patent/JPH04119219A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/1035Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing by a magnetic field acting on a magnetic liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To enable control of load allowable capacity by providing a magnetic fluid between both opposite faces of a pair of members capable of turning relatively freely, and providing a magnetic field forming means controlling the viscousity of magnetic fluid through formation of magnetic field between both the opposite faces. CONSTITUTION:Magnetic fluid L is filled in a crearance between a radial bearing member 21 and a sleeve-shaped opposite member 24 fitted on a rotary shaft in an integrated manner, and the fluid L is retained without falling out of the clearance with its surface tention. When a rotary shaft 22 tends to rotate in a specified direction, the magnetic fluid L generates dynamic pressure due to action of dynamic groove 25 to rotate the shaft 22 in a non-contact manner with a radial bearing member 21 and control the movement in the radial direction. On the circumferential face of the radial bearing member 21 a plurality of magnetic coil 26 are arranged and through the conductive condition of solenoid coil 26 magnetic field is formed between the coil 26 and the iron core 23 built in the rotary shaft 22. With this arrangement, the viscousity of magnetic fluid L is changed to enable control the load allowable quantity as bearing.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、流体の動圧効果を利用して回転体の荷重を支
持する動圧軸受けに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dynamic pressure bearing that supports the load of a rotating body by utilizing the dynamic pressure effect of a fluid.

[従来の技術] 一般に、動圧軸受けは回転体と、この回転体を回転可能
に支持する軸受は体とからなり、それらの各対向面の何
れか一方には動圧溝が形成されている。そして、回転体
が回転されると、前記動圧溝の作用に基づいて、回転体
と軸受は体との間に介在する作動流体に動圧が発生し、
この作動流体の圧力膜によって回転体が軸受は体に対し
非接触にて支持される。
[Prior Art] In general, a dynamic pressure bearing consists of a rotating body and a body that rotatably supports the rotating body, and a dynamic pressure groove is formed on one of the opposing surfaces of the bearing. . When the rotating body is rotated, dynamic pressure is generated in the working fluid interposed between the rotating body and the bearing based on the action of the dynamic pressure groove.
The pressure film of the working fluid supports the rotor and the bearing without contacting the body.

[発明が解決しようとする課題] 一般に、動圧軸受けにおいては、使用する作動流体の特
性を配慮しつつ、支持すべき負荷の大、きさに応じて、
回転体及び軸受は体の寸法等が決定されている。それ故
、作動流体の粘性は軸受けの性能、特に負荷許容量に重
大な影響を及ぼす。
[Problems to be Solved by the Invention] In general, in dynamic pressure bearings, depending on the size and magnitude of the load to be supported, while considering the characteristics of the working fluid used,
The body dimensions of the rotating body and the bearing are determined. Therefore, the viscosity of the working fluid has a significant influence on the performance of the bearing, especially the load carrying capacity.

しかし、作動流体の粘性は温度によって影響される。そ
のため、作動流体として液状の潤滑剤等を使用した場合
、高速回転時に流体の粘性抵抗による発熱や外気温の影
響を受けて、負荷許容量が変動し、動圧軸受けが設計通
りの性能を発揮することができないという問題があった
However, the viscosity of the working fluid is affected by temperature. Therefore, when a liquid lubricant is used as the working fluid, the load capacity fluctuates due to heat generation due to the viscous resistance of the fluid and the influence of outside temperature during high-speed rotation, and the hydrodynamic bearing does not perform as designed. The problem was that I couldn't do it.

本発明は上記事情に鑑みなされたものであり、その目的
は、相対回転可能な一対の部材間に介在される作動流体
の粘性を調節可能とすることにより、負荷許容量を調節
可能な動圧軸受けを提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide dynamic pressure that allows the load capacity to be adjusted by making it possible to adjust the viscosity of the working fluid interposed between a pair of relatively rotatable members. Our goal is to provide bearings.

[課題を解決するための手段及び作用]上記課題を解決
するために本発明は、相対回転可能な一対の部材の各対
向面の何れか一方に動圧溝が形成された動圧軸受けであ
って、 前記両対向面間には磁性流体が介在されると共に、これ
ら両対向面間に磁場を形成して磁性流体の粘性を制御す
る磁場形成手段が設けられている。
[Means and operations for solving the problems] In order to solve the above problems, the present invention provides a dynamic pressure bearing in which a dynamic pressure groove is formed on either one of the opposing surfaces of a pair of relatively rotatable members. A magnetic fluid is interposed between the opposing surfaces, and a magnetic field forming means is provided for forming a magnetic field between the opposing surfaces to control the viscosity of the magnetic fluid.

この軸受は構成によれば、磁性流体が作動流体として一
対の部材の各対向面間に介在されているため、これら一
対の部材が相対回転されると、前記動圧溝の作用に基づ
いて、磁性流体に動圧が発生し、一方の部材が他方の部
材に対し非接触にて支持される。
According to the structure of this bearing, since a magnetic fluid is interposed as a working fluid between each opposing surface of a pair of members, when these pair of members are rotated relative to each other, based on the action of the dynamic pressure groove, Dynamic pressure is generated in the magnetic fluid, and one member is supported without contacting the other member.

ここで、磁場形成手段によって、前記一対の部材の両対
向面間に磁場が形成されると、磁性流体がその影響を受
けると共に、磁場の大きさに応じて、磁性流体の粘性が
制御される。従って、両部材の相対回転に伴って、流体
の粘性抵抗に基づき磁性流体の温度が上昇し、粘度の低
下を来すような場合でも、磁場の大きさを調節して、磁
性流体の粘度を相対的に上昇させることにより、温度変
化にかかわらず、磁性流体の粘性を一定に保持して、軸
受けの負荷許容量を一定に保つことができる。
Here, when a magnetic field is formed between both opposing surfaces of the pair of members by the magnetic field forming means, the magnetic fluid is influenced by the magnetic field, and the viscosity of the magnetic fluid is controlled according to the magnitude of the magnetic field. . Therefore, even if the temperature of the magnetic fluid increases due to the viscous resistance of the fluid and the viscosity decreases as the two members rotate relative to each other, the viscosity of the magnetic fluid can be reduced by adjusting the magnitude of the magnetic field. By increasing the relative value, the viscosity of the magnetic fluid can be kept constant regardless of temperature changes, and the load capacity of the bearing can be kept constant.

前記磁場形成手段は磁性材料と電磁コイルとの組合せか
らなることが好ましい。
Preferably, the magnetic field forming means is composed of a combination of a magnetic material and an electromagnetic coil.

この構成によれば、電磁コイルへの通電量に応じて、磁
界の大きさが調節される。更に、磁性材料との組合せと
することにより、より大きな磁場が形成される。
According to this configuration, the magnitude of the magnetic field is adjusted depending on the amount of current applied to the electromagnetic coil. Furthermore, by combining it with a magnetic material, a larger magnetic field can be created.

前記磁性流体としては、例えば、窒化鉄、酸化鉄等の磁
性粒子(粒径50〜150人)をハイドロカーボン、ケ
ロシン、フッ素オイル、水等の分散媒体に分散したもの
があげられる。
Examples of the magnetic fluid include those obtained by dispersing magnetic particles (particle size: 50 to 150) such as iron nitride and iron oxide in a dispersion medium such as hydrocarbon, kerosene, fluorine oil, and water.

[実施例] 以下に、本発明をスラスト軸受けに具体化した一実施例
について、図面を参照して説明する。
[Example] An example in which the present invention is embodied in a thrust bearing will be described below with reference to the drawings.

第1図に示すように、スラスト軸受けlの下端部には球
体支持部材2が設けられ、その上方には13%クロム系
ステンレス鋼によって円板状に形成された下部対向部材
3が球体4を介して設けられている。この下部対向部材
3の周縁部下面には係合凹部(図示路)が設けられ、該
係合凹部に前記球体支持部材2の周縁部上面に突設され
たピン5の先端が係入することにより、下部対向部材4
の自由回転が規制されている。
As shown in FIG. 1, a sphere support member 2 is provided at the lower end of the thrust bearing l, and above the sphere support member 3, a lower opposing member 3 formed in the shape of a disk from 13% chromium stainless steel supports a sphere 4. It is provided through. An engagement recess (path shown) is provided on the lower surface of the periphery of the lower facing member 3, and the tip of a pin 5 protruding from the upper surface of the periphery of the spherical body support member 2 engages in the engagement recess. Accordingly, the lower facing member 4
Free rotation of is restricted.

スラスト軸受け1の上端部には軸支持部材6が配設され
、この軸支持部材6には回転軸7が回転可能に装着され
ている。この回転軸7の下端部には13%クロム系ステ
ンレス鋼によって円板状に形成された上部対向部材8が
ボルト9によって固着されている。そして、この上部対
向部材8の下面は、前記下部対向部材3の上面に対して
平行に対向配置されている。
A shaft support member 6 is disposed at the upper end of the thrust bearing 1, and a rotating shaft 7 is rotatably mounted on the shaft support member 6. An upper opposing member 8 formed into a disk shape and made of 13% chromium-based stainless steel is fixed to the lower end of the rotating shaft 7 with bolts 9. The lower surface of this upper opposing member 8 is arranged to face the upper surface of the lower opposing member 3 in parallel.

前記上下両対向部材3,8間には、炭化珪素焼結材料に
よって円板状に形成されたセラミックス板10が介装さ
れている。第1,2図に示すように、このセラミックス
板10の中心部には貫通孔11が設けられている。更に
、セラミックス板lOには、前記貫通孔11の周囲にお
いて、その内周縁に連続したランド12が所定幅にわた
って設けられている。また、セラミックス板10の上下
各面において、前記ランド12の外周縁からセラミック
ス板10の外周縁にわたる領域にはスパイラル状の動圧
溝13,14(第2図では黒塗り部分)が複数形成され
ている。
A ceramic plate 10 formed into a disk shape and made of sintered silicon carbide material is interposed between the upper and lower opposing members 3 and 8. As shown in FIGS. 1 and 2, a through hole 11 is provided in the center of this ceramic plate 10. Further, the ceramic plate IO is provided with a land 12 continuous to the inner peripheral edge of the through hole 11 over a predetermined width. Further, on each of the upper and lower surfaces of the ceramic plate 10, a plurality of spiral dynamic pressure grooves 13 and 14 (black colored portions in FIG. 2) are formed in a region extending from the outer peripheral edge of the land 12 to the outer peripheral edge of the ceramic plate 10. ing.

尚、前記セラミックス板10の上面に形成された動圧溝
13は、回転軸7と共に上部対向部材8が特定方向(正
方向)へ回転された場合、その動圧溝13の作用に基づ
いて、セラミックス板10と上部対向部材8との間に介
在されている作動流体に動圧が発生するように、スパイ
ラルの向きが決定されている。一方、セラミックス板1
0の下面に形成された動圧溝14は、セラミックス板1
0が前記特定方向と反対方向(逆方向)へ回転された場
合に、その動圧溝14の作用に基づいて、セラミックス
板10と下部対向部材3との間に介在されている作動流
体に動圧が発生するように、スパイラルの向きが決定さ
れている。
Note that, when the upper opposing member 8 is rotated in a specific direction (positive direction) together with the rotating shaft 7, the dynamic pressure grooves 13 formed on the upper surface of the ceramic plate 10 have the following effects: The direction of the spiral is determined so that dynamic pressure is generated in the working fluid interposed between the ceramic plate 10 and the upper opposing member 8. On the other hand, ceramic plate 1
The dynamic pressure grooves 14 formed on the lower surface of the ceramic plate 1
0 is rotated in the opposite direction (reverse direction) to the specific direction, the working fluid interposed between the ceramic plate 10 and the lower facing member 3 is moved based on the action of the dynamic pressure groove 14. The direction of the spiral is determined so that pressure is generated.

第1図に示すように、前記下部対向部材3の中心部には
留めピン15が突設され、その先端がセラミックス板I
Oの貫通孔11内に係入されている。そして、この留め
ピン15と貫通孔11との係合によって、セラミックス
板10はその半径方向への移動を規制され、かつ、常に
この留めピン15を中心として回転される。
As shown in FIG. 1, a retaining pin 15 is protruded from the center of the lower facing member 3, and its tip is connected to the ceramic plate I
It is inserted into the through hole 11 of O. Due to the engagement between the retaining pin 15 and the through hole 11, the ceramic plate 10 is restricted from moving in the radial direction, and is constantly rotated around the retaining pin 15.

また、前記下部対向部材3とセラミックス板lOとの間
、及び上部対向部材8とセラミックス板IOとの間の各
クリアランスには、窒化鉄微粒子をハイドロカーボンに
分散させてなる磁性流体りが充填されている。尚、この
ような磁性流体りは、外部磁場の影響を受けて磁化され
、磁化の増大と共に粘度も増大するという特性を有する
Further, each clearance between the lower facing member 3 and the ceramic plate IO and between the upper facing member 8 and the ceramic plate IO is filled with a magnetic fluid made by dispersing iron nitride fine particles in hydrocarbon. ing. Incidentally, such a magnetic fluid has a characteristic that it is magnetized under the influence of an external magnetic field, and as the magnetization increases, the viscosity also increases.

更に、前記下部対向部材3の下面側には複数の電磁コイ
ル16が装着されると共に、前記上部対向部材8の上面
側には前記各電磁コイル16にそれぞれ対応する複数の
マグネッ)17が嵌着されている。尚、各電磁コイル1
6及びマグネット17により、磁場形成手段が構成され
る。
Furthermore, a plurality of electromagnetic coils 16 are attached to the lower surface side of the lower opposing member 3, and a plurality of magnets 17 corresponding to the respective electromagnetic coils 16 are fitted to the upper surface side of the upper opposing member 8. has been done. In addition, each electromagnetic coil 1
6 and the magnet 17 constitute a magnetic field forming means.

さて、上述のように構成されたスラスト軸受けにおいて
、回転軸7に下向きの負荷(スラスト荷重)がかけられ
ると、下部対向部材3とセラミックス板10との間、及
び、セラミックス板lOと上部対向部材8との間に磁性
流体りを介在させた状態で、前記各部材3,8.10が
互いに吸着される。
Now, in the thrust bearing configured as described above, when a downward load (thrust load) is applied to the rotating shaft 7, there are The members 3, 8 and 10 are attracted to each other with a magnetic fluid interposed between them.

ここで、回転軸7が正方向へ回転されると、上部対向部
材8とセラミックス板10との間の磁性流体りはその粘
性に基づき上部対向部材8の回転に伴って移動される。
Here, when the rotating shaft 7 is rotated in the forward direction, the magnetic fluid between the upper opposing member 8 and the ceramic plate 10 is moved as the upper opposing member 8 rotates based on its viscosity.

この時、磁性流体りはセラミックス板lO上面の動圧溝
13に案内されて次第に板10の中心部へ誘導されるた
め、板lOの中心部において上部対向部材8とセラミッ
クス板IOとを離間させようとする動圧が発生する。こ
の動圧によって、回転軸7のスラスト荷重が支えられ、
回転軸7及び上部対向部材8がセラミックス板IOと非
接触状態で回転される。尚、この時、セラミックス板I
Oと下部対向部材3との間には動圧が発生せず、セラミ
ックス板10は下部対向部材3に吸着されている。
At this time, the magnetic fluid is guided by the dynamic pressure grooves 13 on the top surface of the ceramic plate 10 and gradually guided to the center of the plate 10, so that the upper opposing member 8 and the ceramic plate IO are separated from each other at the center of the plate 10. Dynamic pressure is generated. This dynamic pressure supports the thrust load of the rotating shaft 7,
The rotating shaft 7 and the upper opposing member 8 are rotated without contacting the ceramic plate IO. Furthermore, at this time, the ceramic plate I
No dynamic pressure is generated between O and the lower opposing member 3, and the ceramic plate 10 is attracted to the lower opposing member 3.

一方、回転軸7が逆方向へ回転されると、前述の場合と
は異なり、上部対向部材8とセラミックス板lOとの間
には動圧が発生せず、セラミ・ソクス板lOは上部対向
部材8に吸着された状態で同方向へ回転される。すると
、下部対向部材3とセラミックス板10との間の磁性流
体りは、セラミックス板10下面の動圧溝14に案内さ
れて次第に板lOの中心部へ誘導されるため、板10の
中心部において下部対向部材3とセラミックス板lOと
を離間させようとする動圧が発生する。この動圧によっ
て、回転軸7のスラスト荷重が支えられ、回転軸7、上
部対向部材8及びセラミ、ソクス板lOが下部対向部材
3と非接触状態で回転される。この際、下部対向部材3
とセラミックス板10とは離間されるが、留めピン15
と貫通孔11との係合によって、セラミックス板lOは
上下両対向部材3,8の回転軸線に対して偏心すること
がない。
On the other hand, when the rotating shaft 7 is rotated in the opposite direction, unlike the above case, no dynamic pressure is generated between the upper opposing member 8 and the ceramic plate lO, and the ceramic plate lO is 8 and rotated in the same direction. Then, the magnetic fluid between the lower facing member 3 and the ceramic plate 10 is guided by the dynamic pressure grooves 14 on the lower surface of the ceramic plate 10 and gradually guided to the center of the plate 10, so that the magnetic fluid flow is generated at the center of the plate 10. Dynamic pressure is generated that tends to separate the lower facing member 3 and the ceramic plate IO. The thrust load of the rotating shaft 7 is supported by this dynamic pressure, and the rotating shaft 7, the upper opposing member 8, and the ceramic and sock plate 10 are rotated without contacting the lower opposing member 3. At this time, the lower facing member 3
and the ceramic plate 10 are separated from each other, but the retaining pin 15
Due to the engagement between the ceramic plate 10 and the through hole 11, the ceramic plate 1O does not become eccentric with respect to the rotation axis of the upper and lower opposing members 3 and 8.

ところで、長時間にわたる回転軸7の回転に伴い、各部
材3,8.10と磁性流体りとの粘性抵抗に基づき、磁
性流体りの温度が上昇して、粘度の絶対値の低下を来す
ことがある。このような場合に、前記各電磁コイル16
の通電制御を開始して、各マグネット17との間に磁場
を形成することにより、その磁界の大きさに応じて磁性
流体りが磁化され、磁性流体りの粘度が上昇される。そ
れ故、磁性流体りの温度上昇にかかわらず、各部材3,
8.10間における磁性流体りの粘度が一定に保持され
、常に安定した動圧が発生される。
By the way, as the rotating shaft 7 rotates for a long period of time, the temperature of the magnetic fluid increases due to the viscous resistance between each member 3, 8, 10 and the magnetic fluid, causing a decrease in the absolute value of the viscosity. Sometimes. In such a case, each electromagnetic coil 16
By starting the energization control and forming a magnetic field between each magnet 17, the magnetic fluid is magnetized according to the magnitude of the magnetic field, and the viscosity of the magnetic fluid is increased. Therefore, regardless of the temperature rise of the magnetic fluid, each member 3,
The viscosity of the magnetic fluid between 8 and 10 is maintained constant, and stable dynamic pressure is always generated.

このように本実施例は、作動流体として磁性流体りを使
用すると共に、電磁コイル16とマグネット17とによ
って上下両対向部材3,8間に磁場を形成可能としたこ
とにより、磁性流体りの温度上昇に伴う粘度の低下にか
かわらず、磁性流体りの絶対粘度を上昇させて作動中の
粘度を一定に保持することができる。従って、軸受けと
して安定した性能を発揮することができる。また、前述
の磁場の大きさを適宜調節して磁性流体りの粘度を変化
させることにより、軸受けの負荷許容量を一定範囲で自
由に変更することができる。
In this way, this embodiment uses a magnetic fluid as the working fluid, and by making it possible to form a magnetic field between the upper and lower opposed members 3 and 8 by the electromagnetic coil 16 and the magnet 17, the temperature of the magnetic fluid can be controlled. Despite the decrease in viscosity associated with increase, the absolute viscosity of the magnetic fluid can be increased to maintain a constant viscosity during operation. Therefore, stable performance as a bearing can be exhibited. Further, by appropriately adjusting the magnitude of the magnetic field described above and changing the viscosity of the magnetic fluid, the load capacity of the bearing can be freely changed within a certain range.

また、回転軸7が正逆いずれの方向へ回転する場合でも
、そのスラスト荷重を動圧にて支えることができる。そ
れ故、このスラスト軸受け1を例えばモータ等に応用し
た場合に、結線ミスのために誤って回転軸7が本来の回
転方向と異なる方向へ回転される事態が生じても、スラ
スト荷重を動圧にて支えることができるため、軸受けを
構成する部材が過大な負荷を受けた状態で摩擦接触し、
焼き付いて破損するということがない。
Furthermore, even when the rotating shaft 7 rotates in either the forward or reverse direction, the thrust load can be supported by dynamic pressure. Therefore, when this thrust bearing 1 is applied to, for example, a motor, even if the rotating shaft 7 is accidentally rotated in a direction different from the original rotation direction due to a wiring error, the thrust load can be reduced by dynamic pressure. Because the components that make up the bearing come into frictional contact under excessive load,
There is no risk of burning and damage.

尚、本実施例においては、マグネット17を省略し、電
磁コイル16のみによって磁場形成手段を構成してもよ
い。
In this embodiment, the magnet 17 may be omitted and the magnetic field forming means may be configured only by the electromagnetic coil 16.

[実施例2] 本発明をラジアル軸受けに具体化した実施例について説
明する。
[Example 2] An example in which the present invention is embodied in a radial bearing will be described.

第3図に示すように、固定側であるスリーブ状のラジア
ル軸受は部材21には、回転軸22が回転可能に挿通さ
れている。この回転軸22にはその中心軸線に沿って延
びる鉄芯23が内蔵され、この回転軸22の外周部には
、前記ラジアル軸受は部材21の内周面に対し、所定の
間隔を隔てて対向するスリーブ状の対向部材24が一体
回転可能に装着されている。
As shown in FIG. 3, a rotating shaft 22 is rotatably inserted into a member 21 of the sleeve-shaped radial bearing on the fixed side. The rotating shaft 22 has a built-in iron core 23 that extends along its central axis, and the radial bearing is disposed on the outer circumference of the rotating shaft 22 and faces the inner circumferential surface of the member 21 at a predetermined distance. A sleeve-shaped opposing member 24 is attached so as to be rotatable therewith.

この対向部材24の外周面上には、ヘリングボーン状の
動圧溝25が形成されている。また、ラジアル軸受は部
材21と対向部材24との間のクリアランスには、前記
実施例1と同じ磁性流体りが満たされると共に、磁性流
体りはその表面張力によって、前記クリアランスから流
れ落ちることなく保持されている。そして、前記回転軸
22が特定方向へ回転されると、前記動圧溝25の作用
に基づいて磁性流体りは動圧を発生し、回転軸22がラ
ジアル軸受は部材21に対し非接触にて回転されると共
に、回転軸22のラジアル方向への移動が規制される。
A herringbone-shaped dynamic pressure groove 25 is formed on the outer circumferential surface of this facing member 24 . Further, in the radial bearing, the clearance between the member 21 and the opposing member 24 is filled with the same magnetic fluid as in the first embodiment, and the magnetic fluid is held by its surface tension without flowing down from the clearance. ing. Then, when the rotating shaft 22 is rotated in a specific direction, the magnetic fluid generates dynamic pressure based on the action of the dynamic pressure groove 25, and the rotating shaft 22 is rotated by the radial bearing without contacting the member 21. While being rotated, movement of the rotating shaft 22 in the radial direction is restricted.

また、ラジアル軸受は部材21の外周面上には、複数の
電磁コイル26が配設されており、各電磁コイル26へ
の通電によって、前記鉄芯23と各電磁コイル26との
間に磁場が形成される。
Furthermore, in the radial bearing, a plurality of electromagnetic coils 26 are arranged on the outer circumferential surface of the member 21, and when each electromagnetic coil 26 is energized, a magnetic field is created between the iron core 23 and each electromagnetic coil 26. It is formed.

これにより、磁性流体りの粘度を変化させて、軸受けと
しての負荷許容量を調節することができる。
Thereby, the load capacity of the bearing can be adjusted by changing the viscosity of the magnetic fluid.

[実施例3] 本発明をラジアル及びスラストの両方向を支持する軸受
けに具体化した実施例について説明する。
[Example 3] An example in which the present invention is embodied in a bearing that supports both radial and thrust directions will be described.

第4図に示すように、固定側であるリング状の軸受は部
材31には、鉄製の回転軸32が回転可能に挿通されて
いる。この回転軸32の外周部には、前記軸受は部材3
1の内周面に対し5〜50μmの間隔を隔てて対向する
スリーブ状のラジアル対向部材33が一体回転可能に装
着されている。
As shown in FIG. 4, an iron rotating shaft 32 is rotatably inserted into a member 31 of the ring-shaped bearing on the fixed side. The bearing is attached to the member 3 on the outer periphery of the rotating shaft 32.
A sleeve-shaped radial opposing member 33 is mounted so as to be integrally rotatable with respect to the inner circumferential surface of the member 1 at an interval of 5 to 50 μm.

また、回転軸32の外周部で前記ラジアル対向部材33
の上下隣接位置には、前記軸受は部材31の上下各面に
対し、それぞれ5〜50μmの間隔を隔てて対向する円
板状に形成された一対のスラスト対向部材34が一体回
転可能に装着されている。
Furthermore, the radial opposing member 33 is
At upper and lower adjacent positions of the bearing, a pair of thrust opposing members 34 formed in the shape of discs facing each other with an interval of 5 to 50 μm are mounted on the upper and lower surfaces of the member 31 so as to be integrally rotatable. ing.

前記ラジアル対向部材33の外周面上には、ヘリングボ
ーン状の動圧溝35が形成され、前記両スラスト対向部
材34の各対向面上には、それぞれスパイラル状の動圧
溝36が形成されている。
A herringbone-shaped dynamic pressure groove 35 is formed on the outer peripheral surface of the radial opposing member 33, and a spiral dynamic pressure groove 36 is formed on each opposing surface of both thrust opposing members 34. There is.

また、前記軸受は部材31と、ラジアル対向部材33及
びスラスト対向部材34との間のクリアランスには、前
記実施例1と同じ磁性流体りが満たされると共に、磁性
流体りはその表面張力によって保持されている。そして
、前記回転軸32が特定方向へ回転されると、前記各動
圧溝35,36の作用に基づいて磁性流体りは動圧を発
生し、回転軸32並びにラジアル及びスラスト対向部材
33.34が軸受は部材31に対し非接触にて回転され
、回転軸32のラジアル方向及びスラスト方向への移動
が規制される。
Further, in the bearing, the clearance between the member 31 and the radial opposing member 33 and thrust opposing member 34 is filled with the same magnetic fluid as in the first embodiment, and the magnetic fluid is held by its surface tension. ing. When the rotating shaft 32 is rotated in a specific direction, the magnetic fluid generates dynamic pressure based on the action of the dynamic pressure grooves 35 and 36, and the rotating shaft 32 and the radial and thrust opposing members 33, 34 However, the bearing rotates without contacting the member 31, and movement of the rotating shaft 32 in the radial direction and the thrust direction is restricted.

また、軸受は部材31の外周部には、複数の電磁コイル
37が配設されている。そして、各電磁コイル37への
通電によって、前記鉄製の回転軸32と各電磁コイル3
7との間に磁場が形成される。
Further, a plurality of electromagnetic coils 37 are arranged on the outer circumference of the bearing member 31. Then, by energizing each electromagnetic coil 37, the iron rotating shaft 32 and each electromagnetic coil 3
A magnetic field is formed between 7 and 7.

これにより、磁性流体L′の粘度を変化させて、軸受け
としての負荷許容量を調節することができる。
Thereby, the load capacity of the bearing can be adjusted by changing the viscosity of the magnetic fluid L'.

[発明の効果] 以上詳述したように本発明によれば、相対回転可能な一
対の部材間に介在される作動流体の粘性を調節可能とす
ることにより、負荷許容量を調節可能な動圧軸受けを桓
供するこ9とがで□きるという優れた効果を奏する。
[Effects of the Invention] As detailed above, according to the present invention, by making it possible to adjust the viscosity of the working fluid interposed between a pair of relatively rotatable members, the dynamic pressure that allows the load capacity to be adjusted is adjusted. This has the excellent effect of eliminating the need to provide bearings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を具体化した実施例1を示す断面図、第
2図は同じくセラミックス板の平面図、第3図は実施例
2を示す断面図、第4図は実施例3を示す断面図である
。 3.8・・・下部及び上部対向部材、10・・・セラミ
ックス板(3と10.8とIOによりそれぞれ一対の部
材が構成される)、13. 1.4. 25. 35.
36・・・動圧溝、16,26,37・・・電磁コイル
、17,23.32・・・磁性材料としてのマグネット
、鉄芯、回転軸、21・・・ラジアル軸受は部材、24
・・・対向部材(21と24により一対の部材が構成さ
れる)、31・・・軸受は部材、33ラジアル対向部材
、34・・・スラスト対向部材(31と33.31と3
4によりそれぞれ一対の部材が構成される)、L・・・
磁性流体。 特許出願人  イビデン 株式会社 代 理 人  弁理士 恩田博宣(ほか1名)第2図
FIG. 1 is a sectional view showing Example 1 embodying the present invention, FIG. 2 is a plan view of the same ceramic plate, FIG. 3 is a sectional view showing Example 2, and FIG. 4 is Example 3. FIG. 3.8... Lower and upper opposing members, 10... Ceramic plate (3, 10.8, and IO each constitute a pair of members), 13. 1.4. 25. 35.
36... Dynamic pressure groove, 16, 26, 37... Electromagnetic coil, 17, 23. 32... Magnet as magnetic material, iron core, rotating shaft, 21... Radial bearing is member, 24
... Opposing member (21 and 24 constitute a pair of members), 31... Bearing is a member, 33 Radial opposing member, 34... Thrust opposing member (31 and 33. 31 and 3
4 respectively constitute a pair of members), L...
magnetic fluid. Patent applicant: IBIDEN Co., Ltd. Agent: Patent attorney: Hironobu Onda (and one other person) Figure 2

Claims (1)

【特許請求の範囲】 1 相対回転可能な一対の部材(3、8、10等)の各
対向面の何れか一方に動圧溝(13、14等)が形成さ
れた動圧軸受けであって、前記両対向面間には磁性流体
(L)が介在されると共に、これら両対向面間に磁場を
形成して磁性流体の粘性を制御する磁場形成手段(16
、17等)が設けられていることを特徴とする動圧軸受
け。 2 前記磁場形成手段は磁性材料(17等)と電磁コイ
ル(16等)との組合せからなることを特徴とする請求
項1に記載の動圧軸受け。
[Scope of Claims] 1. A dynamic pressure bearing in which a dynamic pressure groove (13, 14, etc.) is formed on one of the opposing surfaces of a pair of relatively rotatable members (3, 8, 10, etc.), , a magnetic fluid (L) is interposed between the two opposing surfaces, and a magnetic field forming means (16) for controlling the viscosity of the magnetic fluid by forming a magnetic field between the two opposing surfaces.
, 17, etc.). 2. The hydrodynamic bearing according to claim 1, wherein the magnetic field forming means comprises a combination of a magnetic material (17, etc.) and an electromagnetic coil (16, etc.).
JP23614890A 1990-09-05 1990-09-05 Dynamic bearing Pending JPH04119219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23614890A JPH04119219A (en) 1990-09-05 1990-09-05 Dynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23614890A JPH04119219A (en) 1990-09-05 1990-09-05 Dynamic bearing

Publications (1)

Publication Number Publication Date
JPH04119219A true JPH04119219A (en) 1992-04-20

Family

ID=16996470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23614890A Pending JPH04119219A (en) 1990-09-05 1990-09-05 Dynamic bearing

Country Status (1)

Country Link
JP (1) JPH04119219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979263A (en) * 1995-09-20 1997-03-25 Hitachi Ltd Bearing device and spindle motor provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979263A (en) * 1995-09-20 1997-03-25 Hitachi Ltd Bearing device and spindle motor provided with same

Similar Documents

Publication Publication Date Title
US6664687B2 (en) Motor having single cone fluid dynamic bearing balanced with shaft end magnetic attraction
US5328271A (en) Hydrodynamic spindle bearing for ultra-slim disk storage unit
US5908247A (en) Sinusoidal grooving pattern for grooved journal bearing
US5795074A (en) Grooved hydrodynamic thrust bearing
US4938611A (en) Bearing apparatus
US3377113A (en) Hydrodynamic bearing
JPS6410687B2 (en)
JPH0328522A (en) Thrust or angular contact sliding bearing
JPH04119219A (en) Dynamic bearing
KR100383010B1 (en) A bearing device comprising a slide member and a holding member, both made of porous sintered metal impregnated with lubricating oil
JPH04119220A (en) Dynamic pressure bearing
KR100224533B1 (en) Magnetic bearing of spindle motor of which rotary axis is rotating together
JP2022140801A (en) Magnetic viscous fluid device
USRE35718E (en) Bearing apparatus
JP3629106B2 (en) Hydrodynamic bearing device and motor equipped with the same
JPH10112956A (en) Bearing device and motor
US5052823A (en) Magnetic bearing bushing i
RU2084718C1 (en) Magnetic bearing unit
JP4024007B2 (en) Hydrodynamic bearing unit
EP4045805B1 (en) Self-healing bearing device using electric or magnetic fluids
WO1997025543A1 (en) Grooved hydrodynamic thrust bearing
RU1277698C (en) Magnet-fluid bearing
JP3352697B2 (en) Groove pattern of sinusoid for grooved journal bearing
JPH03255220A (en) Magnetic bearing device
JPS6215775B2 (en)