JPH04118858A - Low temperature type fuel cell - Google Patents

Low temperature type fuel cell

Info

Publication number
JPH04118858A
JPH04118858A JP2239303A JP23930390A JPH04118858A JP H04118858 A JPH04118858 A JP H04118858A JP 2239303 A JP2239303 A JP 2239303A JP 23930390 A JP23930390 A JP 23930390A JP H04118858 A JPH04118858 A JP H04118858A
Authority
JP
Japan
Prior art keywords
layer
electrode
catalyst layer
electrode catalyst
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2239303A
Other languages
Japanese (ja)
Inventor
Shigeki Takahashi
茂樹 高橋
Shuzo Waratani
修三 藁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2239303A priority Critical patent/JPH04118858A/en
Publication of JPH04118858A publication Critical patent/JPH04118858A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To improve the polarization property and the reliability by improving the gas diffusing property and the ion conductivity of an electrode catalyst layer, and preventing to block a gas passage by the electrolyte. CONSTITUTION:Strip-form hydrophilic layers 11 and gas diffusing layers 12 are laminated alternatively. To the main surface of an electrode catalyst layer 20, an electrolyte layer and an electrode substrate are provided respectively. Such an electrode catalyst layer is produced by dispersing the catalyst particles carrying precious metal particles and a fluorinated hydrocarbon resin in the water sufficiently, and adding an organic solvent making into a paste. This paste is mixed and churned sufficiently so as to make the fluorinated hydrocarbon resin particles into a fiber. Then, an organic solvent made by adding and mixing a fluorinated hydrocarbon resin to a carbon fluoride is added and mixed to produce a paste. These two sorts of pastes are superposed and extruded to form in a specified thickness. In this case, the thickness of the hydrophilic layer 11 is made in the scope 0.1 to 2mum. The resultant multi-layer membranes are laminated and put in a mold and pressed. After pressing it, it is cut square to the laminating direction. Then after a baking, and a binding process to the electrode substrate, an electrode is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は低温型燃料電池のカソードに係り、特にガス
拡散性に優れる電極触媒層に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a cathode for a low-temperature fuel cell, and particularly to an electrode catalyst layer having excellent gas diffusivity.

(従来の技術〕 低温型燃料電池にはリン酸型燃料電池や固体高分子電解
質型燃料電池が含まれる。
(Prior Art) Low-temperature fuel cells include phosphoric acid fuel cells and solid polymer electrolyte fuel cells.

リン酸型燃料電池の電極構造が第3図に示される。電極
は多孔質で電気伝導性に優れるカーボン材からなる電極
基板34の上に白金などの貴金属31を担持させた触媒
担体32と、撥水材としてのフッ素樹脂33を均一に混
合した電極触媒層35を積層して形成され、さらに電極
には電気絶縁性に優れるシリコンカーバイド (図示せ
ず)と結合材としてのフッ素樹脂(TI!J示せず)を
混合したマトリックス層38が積層される。マトリック
ス層38は電解液であるリン酸が含浸されており、電極
触媒層35には、マトリックス層38から電解液が、電
極基板34より反応ガスが供給される。マトリックス層
38には図示しないが他の電極がマトリックス層3Bを
中心として対称に配置され、各電極がアノードまたはカ
ソードとなる。電極触媒層35の内部では触媒(固体)
と電解液(液体)と反応ガス (気体)の3相界面が形
成され電気化学的反応がおこって系外に電気エネルギを
取り出すことができる。
The electrode structure of a phosphoric acid fuel cell is shown in FIG. The electrode has an electrode substrate 34 made of a porous carbon material with excellent electrical conductivity, and an electrode catalyst layer made of a uniform mixture of a catalyst carrier 32 supporting a noble metal 31 such as platinum, and a fluororesin 33 as a water repellent material. Further, a matrix layer 38 made of a mixture of silicon carbide (not shown), which has excellent electrical insulation properties, and fluororesin (TI!J, not shown) as a binding material is laminated on the electrode. The matrix layer 38 is impregnated with phosphoric acid, which is an electrolyte, and the electrode catalyst layer 35 is supplied with the electrolyte from the matrix layer 38 and the reaction gas from the electrode substrate 34 . Although not shown in the drawings, other electrodes are arranged in the matrix layer 38 symmetrically with respect to the matrix layer 3B, and each electrode serves as an anode or a cathode. Inside the electrode catalyst layer 35, the catalyst (solid)
A three-phase interface between the electrolyte (liquid) and the reactant gas (gas) is formed, an electrochemical reaction occurs, and electrical energy can be taken out of the system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述のような従来の燃料電池のカソードに
おいては電極触媒層内の酸素の拡散がわるいため、多く
の酸素を必要とする高電流密度での運転では充分な酸素
が供給されなくなり特性が低下する。また高電流密度域
では電極触媒層内部のイオン抵抗の影響によっても特性
が低下する。
However, in the cathode of a conventional fuel cell as described above, oxygen diffusion within the electrode catalyst layer is poor, so when operating at high current density, which requires a large amount of oxygen, sufficient oxygen is not supplied and the characteristics deteriorate. . Furthermore, in the high current density region, the characteristics are also degraded due to the influence of ionic resistance inside the electrode catalyst layer.

さらに長時間の運転では、電解液であるリン酸がマトリ
ックスからカソードに移動し空孔を埋めてガス通路が塞
がれて特性j(徐々に低下するという問題があった。こ
の経時的特性劣化の防止法としては、触媒層をぬれに<
<シて電解液の触媒層への浸入を防止すればよいが触媒
層をぬれにくくするために撥水剤であるPTFEを大量
に使用すると、逆にPTFEがガス通路を閉塞して特性
が低下してしまう、さらにこの場合、PTFEが白金触
媒表面を覆い白金比表面積が減少するという問題もあっ
た。
In addition, during long-term operation, phosphoric acid, which is an electrolytic solution, moves from the matrix to the cathode, fills the pores, and blocks the gas passage, causing a problem in which the characteristics (j) gradually deteriorate. To prevent this, wet the catalyst layer.
<It is possible to prevent the electrolyte from entering the catalyst layer, but if a large amount of PTFE, which is a water repellent, is used to make the catalyst layer difficult to wet, the PTFE will clog the gas passages and deteriorate the properties. Moreover, in this case, there was also the problem that the PTFE covered the surface of the platinum catalyst, reducing the platinum specific surface area.

この発明は上述の点に鑑みてなされ、その目的は電極触
媒層のガス拡散性とイオン伝導性を向上させ、かつ電解
液によるガス通路の閉塞を回避して分極特性と信鯨性に
優れる低温型燃料電池を提供することにある。
This invention was made in view of the above points, and its purpose is to improve the gas diffusivity and ion conductivity of the electrode catalyst layer, and to avoid clogging of the gas passage by the electrolyte, thereby achieving excellent polarization characteristics and stability at low temperatures. The objective is to provide a type fuel cell.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば 1)電極触媒層20と電解質層と、電極基板を有し、電
解質層は電極触媒層の1つの主面に配され、電極触媒層
に水素イオンを供給し、 電極基板は電極触媒層の他の主面に配され、電極触媒層
に酸素を供給し、 電極触媒層はストリップ状の親水層11とガス拡散層1
2とを交互に積層してなり、それぞれ電解質層と電極基
板に接すること、 2)請求項1記載の燃料電池において、親水層はその犀
さが2n以下であること、または 3)請求項1記載の燃料電池において、ガス拡散層はフ
ッ化カーボンとフッ素樹脂から構成されるとすることに
より達成される。
The above objects are achieved according to the present invention by 1) comprising an electrode catalyst layer 20, an electrolyte layer, and an electrode substrate, the electrolyte layer being disposed on one main surface of the electrode catalyst layer, and supplying hydrogen ions to the electrode catalyst layer; , the electrode substrate is arranged on the other main surface of the electrode catalyst layer and supplies oxygen to the electrode catalyst layer, and the electrode catalyst layer includes a strip-shaped hydrophilic layer 11 and a gas diffusion layer 1.
2) in the fuel cell according to claim 1, the hydrophilic layer has a density of 2n or less, or 3) claim 1 In the described fuel cell, this is achieved by the gas diffusion layer being composed of fluorocarbon and fluororesin.

親水層は触媒を含む親水性の層で触媒において電気化学
反応がおこる。!l水層には電解質層より電解質が供給
される。電極基板は治水性であるので、電極基板には電
解質は移動しない。
The hydrophilic layer is a hydrophilic layer containing a catalyst, and an electrochemical reaction occurs in the catalyst. ! An electrolyte is supplied to the aqueous layer from the electrolyte layer. Since the electrode substrate has flood control properties, electrolyte does not move to the electrode substrate.

ガス拡散層は治水性であり、電解質層からの電解質の供
給が制限される。ガス拡散層には電極基板よりガスが供
給される。ガス拡散層を拡散したガスは電解質層で拡散
が止まる。
The gas diffusion layer has flood control properties and limits the supply of electrolyte from the electrolyte layer. Gas is supplied to the gas diffusion layer from the electrode substrate. The gas that has diffused through the gas diffusion layer stops diffusing at the electrolyte layer.

〔作用〕[Effect]

ガス拡散層はその内部に電解質を含み難く、ガスが拡散
しやすくなる。!I水層はその内部で電解質膜が途切れ
ることなくよ(発達するのでイオンが移動しやすくなる
。触媒の利用率も高くなる。
The gas diffusion layer is difficult to contain an electrolyte therein, and gas is easily diffused therein. ! The electrolyte membrane develops without interruption within the water layer, making it easier for ions to move.The utilization rate of the catalyst also increases.

ガスはガス拡散層より親水層に溶解して触媒に到達する
ので電解質によるガス通路閉塞の問題を生じない。
Since the gas reaches the catalyst by being dissolved in the hydrophilic layer rather than the gas diffusion layer, there is no problem of gas passage blockage caused by electrolyte.

フッ化カーボンは治水性であり、電極焼成工程て溶融し
ないのでフッ素樹脂を結合剤として用いることにより治
水性とガス拡散性をともに高めることができる。
Fluorinated carbon has water control properties and does not melt during the electrode firing process, so by using a fluororesin as a binder, both water control properties and gas diffusivity can be improved.

親水層の厚さを2ira以下にすると、ガス拡散層から
溶解した酸素が触媒に到達しやすくなる。
When the thickness of the hydrophilic layer is set to 2 ira or less, dissolved oxygen from the gas diffusion layer easily reaches the catalyst.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図はこの発明の実施例に係る低温型燃料電池の電極
触媒層を示す斜視図である。ストリップ状の親水層11
とガス拡散層とが交互に積層される。
FIG. 1 is a perspective view showing an electrode catalyst layer of a low temperature fuel cell according to an embodiment of the present invention. Strip-shaped hydrophilic layer 11
and gas diffusion layers are alternately stacked.

図示しないが電極触媒層の主面にはそれぞれ電解質層と
電極基板とが配される。
Although not shown, an electrolyte layer and an electrode substrate are arranged on the main surface of the electrode catalyst layer, respectively.

このような電極触媒層は次のようにして調製される。貴
金属粒子を担持した触媒の粒子と20重量%のフッ素樹
脂とを水に良く分散させ、エチレングリコール、イソプ
ロピルアルコール等の有1am媒を加えて混合してペー
ストを調製した。このペーストを良く混練し、フッ素樹
脂粒子を繊維化するとともに良く絡み合わせた0次にフ
ッ化カーボンにフッ素樹脂を20重量%混合した有a溶
媒を加えて混合してペーストを調製した。
Such an electrode catalyst layer is prepared as follows. A paste was prepared by thoroughly dispersing catalyst particles carrying noble metal particles and 20% by weight of fluororesin in water, and adding and mixing a 100% solvent such as ethylene glycol or isopropyl alcohol. This paste was thoroughly kneaded, and an aqueous solvent containing 20% by weight of a fluororesin was added to the 0-order fluorinated carbon in which the fluororesin particles were made into fibers and well entangled, and mixed to prepare a paste.

上記2種類のペーストを重ね合わせて押し出し機により
成形し、2つ折りにしこれを10回程度くり返し、最後
に所定の厚さに成形する。このとき繰り返し回数と最終
成形厚さは親水層の厚さが0.1〜2−の範囲になるよ
うに選ばれる。
The above two types of pastes are superimposed and molded using an extruder, folded in half and repeated about 10 times, and finally molded to a predetermined thickness. At this time, the number of repetitions and the final molding thickness are selected so that the thickness of the hydrophilic layer is in the range of 0.1 to 2-2.

このように得られた多層の膜を重ねて30cm角ブロツ
クを作成する。これを成形型に入れてプレスする。プレ
ス後0.5 ミリ厚さに積層方向と垂直にカットする。
A 30 cm square block is created by stacking the multilayer films thus obtained. Put this into a mold and press. After pressing, cut perpendicular to the stacking direction to a thickness of 0.5 mm.

つづいて焼成、電極基板への結着工程をへて電極が作製
される。
Subsequently, the electrode is produced through firing and bonding to the electrode substrate.

第2図は燃料電池電圧の親水層厚さ依存性を示す線図で
ある。電流密度は300e+^/−の高電流密度で行わ
れた。親水層の厚さが2μを越えると、電池電圧が急激
に降下する。ガス拡散層からの溶解酸素が親水層内の触
媒に到達するのに時間がかかり、濃度分極が大きくなる
ためである。しかしながら親水層の厚さが2μ以下のと
きは酸素の補給は速やかであり、電池電圧は分極が少な
く 780mVの高い値を示す、この良好な酸素補給は
ガス拡散層と2uva以下の親水層によって実現された
ものである。なお上記電流密度での従来の電池電圧は7
60mVである。
FIG. 2 is a diagram showing the dependence of fuel cell voltage on the thickness of the hydrophilic layer. The current density was 300e+^/-. When the thickness of the hydrophilic layer exceeds 2μ, the battery voltage drops rapidly. This is because it takes time for dissolved oxygen from the gas diffusion layer to reach the catalyst in the hydrophilic layer, increasing concentration polarization. However, when the thickness of the hydrophilic layer is 2 μ or less, oxygen replenishment is rapid, and the battery voltage shows a high value of 780 mV with little polarization. This good oxygen replenishment is achieved by the gas diffusion layer and the hydrophilic layer of 2 uVA or less. It is what was done. The conventional battery voltage at the above current density is 7
It is 60mV.

なお本発明に係る電極触媒層は固体高分子電解質型燃料
電池のカソードに使用することも可能である。この場合
電解質層には固体高分子電解質が用いられる。親水層に
は溶液化した高分子電解質を含浸させることができる。
Note that the electrode catalyst layer according to the present invention can also be used as a cathode of a solid polymer electrolyte fuel cell. In this case, a solid polymer electrolyte is used for the electrolyte layer. The hydrophilic layer can be impregnated with a solution of a polymer electrolyte.

また前記フッ化カーボンにかえて、アセチレンブランク
を使用し、フッ素樹脂を60重量%混合して有機溶媒を
加えガス拡散層12をアセチレンブランクとフッ素樹脂
で構成することもできる。
Alternatively, instead of the fluorinated carbon, an acetylene blank may be used, 60% by weight of a fluororesin is mixed therein, an organic solvent is added, and the gas diffusion layer 12 is composed of the acetylene blank and the fluororesin.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、 1)電極触媒層と電解質層と、電極基板を有し、電解質
層は電極触媒層の1つの主面に配され、電極触媒層に水
素イオンを供給し、 電極基板は電極触媒層の他の主面に配され、電極触媒層
に酸素を供給し、 電極触媒層はストリップ状の親水層とガス拡散層とを交
互に積層してなり、それぞれ電解質層と電極基板に接す
ること、 2)請求項1記載の燃料電池において、親水層はその厚
さが2n以下であること、または 3)請求項1記載の燃料電池において、ガス拡散層はフ
ッ化カーボンとフッ素樹脂から構成されるので、 電解質を含み難く、ガスの拡散しやすいガス拡散層を介
して反応ガスが親水層に供給される0反応ガスはガス拡
散層より親水層に熔解し、その後溶存酸素の形で容易に
触媒に到達させることができる。このようにして、高電
流密度に必要とされる触媒への高い反応ガス供給を実現
することができる。
According to this invention, 1) It has an electrode catalyst layer, an electrolyte layer, and an electrode substrate, the electrolyte layer is arranged on one main surface of the electrode catalyst layer and supplies hydrogen ions to the electrode catalyst layer, and the electrode substrate has the following features: The electrode catalyst layer is arranged on the other main surface of the electrode catalyst layer and supplies oxygen to the electrode catalyst layer. 2) In the fuel cell according to claim 1, the hydrophilic layer has a thickness of 2n or less, or 3) In the fuel cell according to claim 1, the gas diffusion layer is made of fluorocarbon and fluororesin. The reaction gas is supplied to the hydrophilic layer through the gas diffusion layer, which does not easily contain electrolyte and allows gas to easily diffuse.The reaction gas melts into the hydrophilic layer from the gas diffusion layer, and is then dissolved in the form of dissolved oxygen. It can easily reach the catalyst. In this way, a high reaction gas supply to the catalyst, which is required for high current densities, can be achieved.

親水層はその厚さが2μ以下であるときは、ガス拡散層
より親水層に溶解した反応ガスは液中拡散により容易に
触媒に到達する。
When the thickness of the hydrophilic layer is 2 μm or less, the reaction gas dissolved in the hydrophilic layer can reach the catalyst more easily than the gas diffusion layer by diffusion in the liquid.

フッ化カーボンは撥水性であり、ガス拡散層を形成した
ときに内部に電解質を含むことがない。
Carbon fluoride is water repellent and does not contain an electrolyte when forming a gas diffusion layer.

またフッ化カーボンは電極焼成工程で溶融することがな
く、ガス拡散路の閉塞をおこさない、このようにしてフ
ッ化カーボンをフッ素樹脂で結合してガス拡散層を形成
し、ガス拡散性を高めることができる。
In addition, fluorinated carbon does not melt during the electrode firing process and does not block the gas diffusion path. In this way, fluorinated carbon is bonded with fluororesin to form a gas diffusion layer and improve gas diffusion. be able to.

親水層はその内部で電解質膜が途切れることなくよく発
達し、イオンが移動しやすく、高電流密度において抵抗
分極が小さくなる。また電解質膜がよく発達して触媒と
充分接触し、触媒の利用率が高まる。
In the hydrophilic layer, the electrolyte membrane is well developed without interruption, allowing ions to move easily, and resistive polarization becomes small at high current densities. In addition, the electrolyte membrane is well developed and makes sufficient contact with the catalyst, increasing the utilization rate of the catalyst.

また反応ガスはガス拡散層より親水層に熔解して触媒に
到達するので電解質によるガス拡散路の閉塞の問題が解
消され、電池の信転性が高まる。
In addition, since the reactive gas is dissolved in the hydrophilic layer rather than the gas diffusion layer and reaches the catalyst, the problem of gas diffusion path clogging by the electrolyte is solved, and the reliability of the battery is improved.

このようにして分極特性と信鎖性に優れる低温型燃料電
池が得られる。
In this way, a low-temperature fuel cell with excellent polarization characteristics and reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る低温型燃料電池の電極
触媒層を示す斜視図、第2図はこの発明の実施例に係る
低温型燃料電池の電極触媒層につき、電池電圧の親水層
厚さ依存性を示す線図、第3図は従来の電池を示す断面
図である。 OVa水層、12:ガス拡散層、2o:電極触媒層。
FIG. 1 is a perspective view showing an electrode catalyst layer of a low temperature fuel cell according to an embodiment of the present invention, and FIG. 2 is a perspective view showing an electrode catalyst layer of a low temperature fuel cell according to an embodiment of the present invention. A diagram showing thickness dependence, and FIG. 3 is a cross-sectional view showing a conventional battery. OVa water layer, 12: gas diffusion layer, 2o: electrode catalyst layer.

Claims (1)

【特許請求の範囲】 1)電極触媒層と電解質層と、電極基板を有し、電解質
層は電極触媒層の1つの主面に配され、電極触媒層に水
素イオンを供給し、 電極基板は電極触媒層の他の主面に配され、電極触媒層
に酸素を供給し、 電極触媒層はストリップ状の親水層とガス拡散層とを交
互に積層してなり、それぞれ電解質層と電極基板に接す
ることを特徴とする低温型燃料電池。 2)請求項1記載の燃料電池において、親水層はその厚
さが2μm以下であることを特徴とする低温型燃料電池
。 3)請求項1記載の燃料電池において、ガス拡散層はフ
ッ化カーボンとフッ素樹脂から構成されることを特徴と
する低温型燃料電池。
[Claims] 1) An electrode catalyst layer, an electrolyte layer, and an electrode substrate, the electrolyte layer being disposed on one main surface of the electrode catalyst layer and supplying hydrogen ions to the electrode catalyst layer; The electrode catalyst layer is arranged on the other main surface of the electrode catalyst layer and supplies oxygen to the electrode catalyst layer. A low-temperature fuel cell that is characterized by 2) A low-temperature fuel cell according to claim 1, wherein the hydrophilic layer has a thickness of 2 μm or less. 3) A low-temperature fuel cell according to claim 1, wherein the gas diffusion layer is composed of fluorocarbon and fluororesin.
JP2239303A 1990-09-10 1990-09-10 Low temperature type fuel cell Pending JPH04118858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2239303A JPH04118858A (en) 1990-09-10 1990-09-10 Low temperature type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2239303A JPH04118858A (en) 1990-09-10 1990-09-10 Low temperature type fuel cell

Publications (1)

Publication Number Publication Date
JPH04118858A true JPH04118858A (en) 1992-04-20

Family

ID=17042720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239303A Pending JPH04118858A (en) 1990-09-10 1990-09-10 Low temperature type fuel cell

Country Status (1)

Country Link
JP (1) JPH04118858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123274A1 (en) * 2008-04-01 2009-10-08 新日本製鐵株式会社 Fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123274A1 (en) * 2008-04-01 2009-10-08 新日本製鐵株式会社 Fuel cell
JP2009252359A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Fuel cell
US9735433B2 (en) 2008-04-01 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Fuel cell

Similar Documents

Publication Publication Date Title
US5958616A (en) Membrane and electrode structure for methanol fuel cell
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP2003515894A (en) Direct methanol battery with circulating electrolyte
US3575718A (en) Composite electrolyte member for fuel cell
US10916780B2 (en) Membrane electrode gas diffusion layer assembly and manufacturing method thereof
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
JP3113499B2 (en) Electrode for imparting ionic conductivity and electrode-electrolyte assembly and cell using such electrode
US3553022A (en) Electrochemical cell
JP3813406B2 (en) Fuel cell
JP3547013B2 (en) Electrode for polymer electrolyte fuel cell and fuel cell using the same
CA1182520A (en) Electrochemical power generator
CA2312534C (en) Fuel cell and polymer electrolyte membrane
US20100009230A1 (en) Fuel cells based on hollow conductive carbon fibres
JPS60500190A (en) electrochemical cell with at least one gas electrode
JPH04118858A (en) Low temperature type fuel cell
JPH0684528A (en) Solid high polymer electrolyte type fuel cell
JPS6376265A (en) Ordinary type acid methanol fuel cell
JPH0495356A (en) Construction of solid-state macromolecular electrolytic type fuel cell and water and gas supply to same cell
JPH061700B2 (en) Composite electrode for fuel cell
CN113471494A (en) Membrane electrode based on molten proton conductor electrolyte membrane and preparation method thereof
Wang et al. simulation Studies on the Fuel Electrode of a Methanol Air Polymer Electrolyte Fuel Cell'
Xu Polymer/carbon blend electrodes and polyphosphonate membranes for PEM fuel cells
JPH07235308A (en) Electrode used in electrochemical reaction and fuel cell using this
JPS61181078A (en) Electrolyte for fuel cell