JPH04118847A - Automatic focus detecting device for electron beam microanalyser - Google Patents

Automatic focus detecting device for electron beam microanalyser

Info

Publication number
JPH04118847A
JPH04118847A JP2237467A JP23746790A JPH04118847A JP H04118847 A JPH04118847 A JP H04118847A JP 2237467 A JP2237467 A JP 2237467A JP 23746790 A JP23746790 A JP 23746790A JP H04118847 A JPH04118847 A JP H04118847A
Authority
JP
Japan
Prior art keywords
difference
density
electron beam
axis direction
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2237467A
Other languages
Japanese (ja)
Other versions
JP2964591B2 (en
Inventor
Kazunori Kitajima
北島 一憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2237467A priority Critical patent/JP2964591B2/en
Publication of JPH04118847A publication Critical patent/JPH04118847A/en
Application granted granted Critical
Publication of JP2964591B2 publication Critical patent/JP2964591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make it possible to detect the focusing of electron beams with no special focus detector by calculating the difference between densities of a central pixel and peripheral pixels and detecting the position of Z axis direction in which the difference becomes maximal. CONSTITUTION:A difference calculating means 25 samples pixel data of one frame stored in a buffer memory 24 dividing into matrixes S1-S9, and multiplies a factor (8) to the density of a central pixel and a factor (-1) to the density of peripheral pixels to calculate the total sum to obtain the difference. This procedure is carried out for every region P1-Pn in one frame to calculate the difference, and when the procedure is completed for one frame a sample table is displaced by a micro distance in Z axis direction, and similar calculations are carried out to store the results in a calculated results storing means 26 together with position data of the sample table in Z axis direction. Then for a region of interest, for instance, for instance, for a central portion, adjacent regions and corner regions factors (4), (1) and (1/2) are allocated respectively, and differences for every position in Z axis direction are read out from the memory means 26 to calculate evaluation values and to obtain the position of Z axis in which the evaluation value becomes maximal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子線プローブマイクロアナライザfこ適し
た自動焦点調節装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an automatic focusing device suitable for an electron beam probe microanalyzer.

(従来の技術) 電子線プローブマイクロアナライザは、試料表面に集束
された電子ビームを照射して、試料表面から放射された
X線を検出することにより、試料表面近傍の性状を観察
する装置で、電子ビームが試料表面に焦点を結んでいる
ことが重要な要素となる。
(Prior Art) An electron beam probe microanalyzer is a device that observes the properties near the sample surface by irradiating the sample surface with a focused electron beam and detecting the X-rays emitted from the sample surface. An important factor is that the electron beam is focused on the sample surface.

このため、電子ビームの照射方向に平行に試料を移動さ
せる軸、いわゆるZ軸を調整して常に電子と−ムが試料
の表面に焦点を結ぶように制御されている。このような
焦点の検出には、焦点検出器を零体装画内に組込んで、
これからの信号により試料台を制御することにより行わ
れている。
For this reason, the axis for moving the sample parallel to the electron beam irradiation direction, the so-called Z axis, is adjusted so that the electron beam is always focused on the surface of the sample. To detect such a focus, a focus detector is incorporated into the zero body image.
This is done by controlling the sample stage using signals from this.

(発明が解決しようとする課題) このため、本体製画への焦点検出器の組込みか必要とな
って、装置が複雑化するという問題がある。
(Problem to be Solved by the Invention) For this reason, it is necessary to incorporate a focus detector into the main body drawing, which causes a problem that the apparatus becomes complicated.

本発明はこのような問題1こ鑑みてなされたものであっ
て、その目的とするところは、特別な焦点検出器を必要
とすることなく、電子ζ−ムの集束度を検出することが
できる電子線マイクロアナライザに適した新規な自動焦
点検出装置を提供することにある。
The present invention was made in view of the above-mentioned problem 1, and its purpose is to be able to detect the degree of convergence of electron ζ-me without the need for a special focus detector. An object of the present invention is to provide a new automatic focus detection device suitable for an electron beam microanalyzer.

(課Mを解決するための手段) このような問題を解決するために本発明においては、電
子ど一ムを走査しながら照射して試料からの放射線を前
記走査に同期させてフレームメモリ1こ格納する電子線
マイクロアナライザにおいて、試料の相対Z軸方向の位
置毎に前記フレームメモリ内の画像データを格納するバ
ッファメモリと、前記バッファメモリ内の画像データI
MxN画素の領域毎にサンプリングし、中心画素の濃度
と周囲画素の濃度との差分を演算する手段と、前記差分
値が最大となるZ軸方向の位II%検出する手段を備え
るようにした。
(Means for Solving Section M) In order to solve such problems, in the present invention, an electron beam is irradiated while scanning, and the radiation from the sample is synchronized with the scanning, thereby creating a frame memory 1. In the electron beam microanalyzer, a buffer memory stores image data in the frame memory for each relative Z-axis direction position of the sample, and image data I in the buffer memory.
The present invention includes means for sampling each area of M×N pixels and calculating the difference between the density of the center pixel and the density of surrounding pixels, and means for detecting the position II% in the Z-axis direction at which the difference value is maximum.

(発明の作用) 画像データに基づいて、中心点とその周囲との濃度の差
分値を求めることにより、焦点が合っている場合1こは
差分値が大きくなることを積極的に利用して合焦時点を
検出することができる。
(Operation of the invention) By calculating the difference value of the density between the center point and its surroundings based on the image data, the difference value becomes large when the focus is in focus. Focus point can be detected.

(実施例) そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
(Example) The details of the present invention will be described below based on illustrated examples.

第1図は、本発明の一実施例を示すものであって、図中
符号1は電子ビーム発生器で、フィラメント2からの熱
電子を集束レンズ3により集束させ、対物絞りレンズ4
を介して対物レンズ5に入射させ、試料台6の試料を照
射するようになっている。
FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 is an electron beam generator, in which thermoelectrons from a filament 2 are focused by a focusing lens 3, and an objective aperture lens 4 is used.
The light is made incident on the objective lens 5 through the beam, and the sample on the sample stage 6 is irradiated.

6は試料台で、微動駆動機構7により試料を平面内での
移動と、電子ビーム照射軸方向に移動されるようになっ
ている。8は放射線検出器で、この実施例においては試
料表面から放射されたX線を検出するため、X線分光器
9を介してX線を受けるようにX線検出器が用いられて
あり、これからの検出信号を後述する信号処理袋M1o
に出力するものである。
Reference numeral 6 denotes a sample stage, and a fine movement drive mechanism 7 moves the sample within a plane and in the direction of the electron beam irradiation axis. Reference numeral 8 denotes a radiation detector. In this embodiment, in order to detect the X-rays emitted from the sample surface, the X-ray detector is used to receive X-rays via the X-ray spectrometer 9. Signal processing bag M1o whose detection signal will be described later
This is what is output to.

10は前述のマイクロコンピュータからなる信号処理装
置で、X線検出器9がらの信号に基づいて画像信号を発
庄させてメモリー11にするとともに、ブラウン管等の
表示器12に画像信号し、ざらに焦点調整時に微動駆動
機構7のZ軸駆動回路13に信号を出力するように構成
されている。
Reference numeral 10 denotes a signal processing device consisting of the aforementioned microcomputer, which generates an image signal based on the signal from the X-ray detector 9 and stores it in the memory 11, as well as sends the image signal to a display 12 such as a cathode ray tube, and roughly displays the image signal. It is configured to output a signal to the Z-axis drive circuit 13 of the fine movement drive mechanism 7 during focus adjustment.

を駆動するように構成されている。is configured to drive.

第2図は、マイクロコンピュータが奏すべき機能を示す
ものであって、メモリ11により構成されているフレー
ムメモリ21内の画像データの各画素の濃度と、それの
頻度を計算して濃度ヒストグラムを作成するヒストグラ
ム演算手段22と、濃度ヒストグラムから濃度変換−!
Iを作成し、これに基づいて濃度を向上させた画像デー
タをバッファ24に出力する濃度変換手段23と、バッ
ファメモリ24内の画像データを一定の大きさMXN画
素の領域で順次サンプリングし、サンプリング領域の中
心点の画素の濃度と、これの周囲の画素の濃度との差分
を計算し、その結果を2軸の位置とともに演算結果記憶
手段26に出力する差分演算手段25と、注目している
領域の差分が最大となるZ軸の位置を演算する評価点数
演算手段27とを備えるよう1こプログラムされている
FIG. 2 shows the functions that the microcomputer should perform, and creates a density histogram by calculating the density of each pixel of image data in the frame memory 21 constituted by the memory 11 and its frequency. The histogram calculating means 22 performs density conversion from the density histogram.
density conversion means 23 which creates image data with improved density based on the image data and outputs it to the buffer 24; Attention is focused on the difference calculation means 25 that calculates the difference between the density of the pixel at the center point of the area and the density of the surrounding pixels, and outputs the result to the calculation result storage means 26 along with the position on two axes. It is programmed to include evaluation score calculation means 27 for calculating the position on the Z axis where the difference between regions is maximum.

次に、このように構成した装置の動作を第3図に示した
フローチャートに基づいて説明する。
Next, the operation of the apparatus configured as described above will be explained based on the flowchart shown in FIG.

試料台6に試料を載置して装置を作動させると、電子ど
一ム発生器1からの電子ビームは、集束レンズ系3.4
.51こ導かれて試料表面を2次元に走査しながら照射
し、各照射点からX線を放射させる。このX線は検出器
8により検出され、電子ビームの走査に同期してフレー
ムメモリ21に格納される。
When a sample is placed on the sample stage 6 and the apparatus is operated, the electron beam from the electron beam generator 1 is focused on the focusing lens system 3.4.
.. 51 is guided to irradiate the sample surface while scanning it two-dimensionally, and emit X-rays from each irradiation point. This X-ray is detected by the detector 8 and stored in the frame memory 21 in synchronization with the scanning of the electron beam.

一方、ヒストグラム演算手段22はフレームメモリ21
に格納されている画像データの各画素の濃度を検出して
画素濃度についてのヒストグラム¥j:W出する。濃度
変換手段23は、ヒストグラムに基づいて最低濃度の頻
度から順番に積分した濃度変換曲線を算出しで、コント
ラストの強調された画像デークをバッファメモリ24に
出力する。
On the other hand, the histogram calculation means 22 is connected to the frame memory 21.
The density of each pixel of the image data stored in is detected and a histogram \j:W of the pixel density is output. The density conversion means 23 calculates a density conversion curve that is integrated in order from the frequency of the lowest density based on the histogram, and outputs the contrast-enhanced image data to the buffer memory 24.

差分演算手段26はバ・シフアメモリ24内に格納され
でいる1フレ一ム分、例えば512画素×512画素の
画像データを一定、例えば3×3画素のマトリ・ンクス
S、、S2、S3、S4・・−89C第4図)で区切っ
てサンプリングして、第5図に示したように各サンプリ
ング領域の内、サンプリングマトリックスの中心の画素
の濃度にファクタ「8」を、また周囲の画素の濃度に「
−1」を乗算し、その合計値を算出して差分値を求める
。このような操作を1つのフレームのサンプリング領域
P7、P2、P3、P4・・・P、、毎に計算しで、そ
の結果を試料台6のZ方向の位置データとともに演算結
果記憶手段27に格納する。言うまでもなく、焦点が合
っている場合にはコントラストが高くなるので、差分値
は合焦の程度に比例して大きくなる。
The difference calculation means 26 converts the image data of one frame, for example, 512 pixels x 512 pixels, stored in the buffer memory 24 into a constant, for example, 3 x 3 pixel matrix matrix S, S2, S3, S4. ...-89C (Figure 4)), and as shown in Figure 5, a factor of 8 is applied to the density of the pixel at the center of the sampling matrix within each sampling area, and the density of the surrounding pixels is to "
-1'' and calculate the total value to obtain the difference value. Such operations are calculated for each sampling area P7, P2, P3, P4...P of one frame, and the results are stored in the calculation result storage means 27 together with the position data of the sample stage 6 in the Z direction. do. Needless to say, when the image is in focus, the contrast becomes high, so the difference value increases in proportion to the degree of focus.

1つのフレームについての差分計算が終了した時点で2
軸駆動回路13に駆動信号を出力して試料台6を2軸方
向に微小移動させ、前述と同様の経過により1フレ一ム
分の差分値の演算を行って試料台の2軸方向の位置デー
タとともに演算結果記憶手段27に格納する。
2 when the difference calculation for one frame is completed.
A drive signal is output to the axis drive circuit 13 to move the sample stage 6 minutely in the two-axis directions, and the difference value for one frame is calculated in the same manner as described above to determine the position of the sample stage in the two-axis directions. It is stored in the calculation result storage means 27 together with the data.

このようにして所定のZ軸移動節回内での演算が終了し
た時点で、複数、例えば3×3領域に分割されでいる内
で関心の成る領域、例えば中心部が最大値となるファク
タ「4J、またこれの上下、左右に隣接する領域に中程
度のファクタ「1」、ざらに斜め方向に位置する領域に
最小値となるファクタ「1/2」を設定して(第6図)
、Z軸方向の位置毎における差分値を演算結果記憶手段
26から読み出して評価点数を算出する。この演算の結
果、評価点数が最大となるZ軸の位置に試料台6を移動
させると、目的とする領域に焦点が一致した画像が得ら
れることになる。このように関心がある領vtを最大値
とする係数を持つマトリックスを入力することにより、
簡単に目的の領域に焦点か合った画像を得ることができ
る。
In this way, when the computation within a predetermined Z-axis moving node is completed, the factor "," which has the maximum value in the region of interest, for example, the center, is divided into multiple, for example, 3×3 regions. 4J, and set a medium factor of ``1'' in the areas adjacent to this above, below, left and right, and a minimum factor of ``1/2'' in the area located roughly diagonally (Figure 6).
, the difference value for each position in the Z-axis direction is read out from the calculation result storage means 26, and the evaluation score is calculated. As a result of this calculation, when the sample stage 6 is moved to the Z-axis position where the evaluation score is maximum, an image that is focused on the target area will be obtained. By inputting a matrix with coefficients whose maximum value is the region vt of interest,
You can easily get an image that focuses on the desired area.

なおこの実施例においては、フレーム全体を評価対象と
する場合に例を採って説明したが、特定の領域に関心が
ある場合にはその領域についての演算を行わせることに
より合焦動作を高速化させることができる。
In this example, the explanation was given using an example where the entire frame is the subject of evaluation, but if there is interest in a specific area, the focusing operation can be sped up by performing calculations on that area. can be done.

またこの実施例においては1フレームを3×3の領域に
分割するとともに、差分値の演算領域を3×3画素とし
ているが、倍率等により任意に変更したり、また評価の
ための係数を適宜変更しても同様の作用を奏することは
明らかである。
In addition, in this example, one frame is divided into 3 x 3 areas, and the calculation area for the difference value is set to 3 x 3 pixels, but it may be changed arbitrarily by the magnification etc., or the coefficients for evaluation may be changed as appropriate. It is clear that the same effect can be achieved even if the changes are made.

さらに、この実施例においては試料からのX線を検出す
るようにしているが、試料からの反射電子ヤニ次電子を
検出して画像とするものに適用しても同様の作用を奏す
ることは明らかである。
Furthermore, in this example, X-rays from the sample are detected, but it is clear that the same effect can be achieved even when applied to detecting reflected electrons and secondary electrons from the sample to create an image. It is.

(発明の効果) 以上、説明したように本発明においては、電子ビームを
走査しながら照射して試料からの放射線を前記走査に同
期させてフレームメモリに格納する電子線マイクロアナ
ライザにおいて、試料の相対Z軸方向の位置毎に前記フ
レームメモリ内の画像データを格納するバッファメモリ
と、バッファメモリ内の画像データをMXN画素の領域
毎にサンプリングし、中心画素の濃度と周囲画素の濃度
との差分を演算する手段と、この差分値が最大となるZ
軸方向の位置泡検出する手段を備えるようにしたので、
特別な焦点検出装置の本体製雪への組込みを不要とする
ことができるばかりでなく、中心部以外の関心のある領
域に合焦する位置を簡単に検出することができる。
(Effects of the Invention) As described above, in the present invention, in an electron beam microanalyzer in which an electron beam is irradiated while scanning and radiation from a sample is stored in a frame memory in synchronization with the scanning, the relative A buffer memory stores the image data in the frame memory for each position in the Z-axis direction, and the image data in the buffer memory is sampled for each region of MXN pixels, and the difference between the density of the center pixel and the density of surrounding pixels is calculated. A means of calculation and Z for which this difference value is maximum
Since it is equipped with means for detecting bubbles in the axial direction,
Not only does it become unnecessary to incorporate a special focus detection device into the main body of the snowmaking machine, but it is also possible to easily detect the position where a region of interest other than the center is in focus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置の構成図、第2図
は第1図におけるマイクロコンピュータが奏する機能で
もって表わしたブロック図、第3図は同上装置の動作を
示すフローチャート、第4図は1フレームの分割領域を
示す模式図、第5図はサンプリング領域の各画素の係数
を示す模式図、第6図は評価点数を得るためのフレーム
分割された領域毎の係数の一例を示す模式図である。
FIG. 1 is a block diagram of a device showing an embodiment of the present invention, FIG. 2 is a block diagram showing the functions performed by the microcomputer in FIG. 1, FIG. 3 is a flowchart showing the operation of the same device, and FIG. Figure 4 is a schematic diagram showing the divided areas of one frame, Figure 5 is a schematic diagram showing the coefficients of each pixel in the sampling area, and Figure 6 is an example of the coefficients for each frame divided area to obtain evaluation points. FIG.

Claims (1)

【特許請求の範囲】[Claims] 電子ビームを走査しながら照射して試料からの放射線を
前記走査に同期させてフレームメモリに格納する電子線
マイクロアナライザにおいて、試料の相対Z軸方向の位
置毎に前記フレームメモリ内の画像データを格納するバ
ッファメモリと、前記バッファメモリ内の画像データを
M×N画素の領域毎にサンプリングし、中心画素の濃度
と周囲画素の濃度との差分を演算する手段と、前記差分
値が最大となるZ軸方向の位置を検出する手段からなる
電子線マイクロアナライザ用自動焦点検出装置。
In an electron beam microanalyzer that irradiates with an electron beam while scanning and synchronizes radiation from a sample with the scanning and stores it in a frame memory, image data in the frame memory is stored for each relative Z-axis direction position of the sample. a buffer memory for sampling image data in the buffer memory for each region of M×N pixels, and means for calculating the difference between the density of the center pixel and the density of the surrounding pixels; An automatic focus detection device for an electron beam microanalyzer consisting of means for detecting the position in the axial direction.
JP2237467A 1990-09-07 1990-09-07 Automatic focus detector for electron beam micro analyzer Expired - Lifetime JP2964591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2237467A JP2964591B2 (en) 1990-09-07 1990-09-07 Automatic focus detector for electron beam micro analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2237467A JP2964591B2 (en) 1990-09-07 1990-09-07 Automatic focus detector for electron beam micro analyzer

Publications (2)

Publication Number Publication Date
JPH04118847A true JPH04118847A (en) 1992-04-20
JP2964591B2 JP2964591B2 (en) 1999-10-18

Family

ID=17015767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2237467A Expired - Lifetime JP2964591B2 (en) 1990-09-07 1990-09-07 Automatic focus detector for electron beam micro analyzer

Country Status (1)

Country Link
JP (1) JP2964591B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221918A (en) * 2005-02-09 2006-08-24 Jeol Ltd Measuring method of testpiece surface, analysis device and electron beam device
JPWO2021199235A1 (en) * 2020-03-31 2021-10-07

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221918A (en) * 2005-02-09 2006-08-24 Jeol Ltd Measuring method of testpiece surface, analysis device and electron beam device
JP4628127B2 (en) * 2005-02-09 2011-02-09 日本電子株式会社 Sample surface measurement method and analysis method, and electron beam apparatus
JPWO2021199235A1 (en) * 2020-03-31 2021-10-07
WO2021199235A1 (en) * 2020-03-31 2021-10-07 株式会社日立ハイテク Charged particle beam device

Also Published As

Publication number Publication date
JP2964591B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JP3754696B2 (en) Electrically isolated specimen surface analyzer
JP6346034B2 (en) 3D image construction method, image processing apparatus, and electron microscope
US6282261B1 (en) Multi-mode x-ray image intensifier system
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
US4910757A (en) Method and apparatus for X-ray imaging
JPH04118847A (en) Automatic focus detecting device for electron beam microanalyser
JP4129088B2 (en) Scanning transmission electron microscope
US4665539A (en) Method and apparatus for forming tomographic images
JP2867664B2 (en) Position reproduction device for electron beam micro analyzer
JP4200831B2 (en) X-ray imaging apparatus and X-ray tube used therefor
US20230115486A1 (en) Charged Particle Beam System and Control Method Therefor
JP3790629B2 (en) Scanning charged particle beam apparatus and method of operating scanning charged particle beam apparatus
JPH1167138A (en) Micro-area observation device
JPS633258B2 (en)
JPH02267894A (en) Focus compensation device for x-ray generator
JPS6352424B2 (en)
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JP2022011089A (en) X-ray diagnostic apparatus
JPH08273568A (en) Method for adjusting diaphragm position in electron beam device, and electron beam device
JP2000228165A (en) Electron beam device
JPH11264940A (en) Sample height adjusting device
JPH0668830A (en) Correction method for luminance in scanning electron microscope
JP2502050B2 (en) Electron beam micro analyzer
JPH06300900A (en) Soft x-ray microscope
JPH0619967B2 (en) Sample position setting method for X-ray microanalyzer, etc.