JPH041181B2 - - Google Patents

Info

Publication number
JPH041181B2
JPH041181B2 JP56157534A JP15753481A JPH041181B2 JP H041181 B2 JPH041181 B2 JP H041181B2 JP 56157534 A JP56157534 A JP 56157534A JP 15753481 A JP15753481 A JP 15753481A JP H041181 B2 JPH041181 B2 JP H041181B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
oxygen concentration
concentration detector
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56157534A
Other languages
Japanese (ja)
Other versions
JPS5859332A (en
Inventor
Yoshiki Nakajo
Soichi Matsushita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15753481A priority Critical patent/JPS5859332A/en
Publication of JPS5859332A publication Critical patent/JPS5859332A/en
Publication of JPH041181B2 publication Critical patent/JPH041181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • F02D41/1476Biasing of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Description

【発明の詳細な説明】 本発明は内燃機関の空燃比制御装置に関する。[Detailed description of the invention] The present invention relates to an air-fuel ratio control device for an internal combustion engine.

気体中の酸素濃度を検出することのできる酸素
濃度検出器として例えば特開昭52−72286号公報
に記載されているようにジルコニアのような酸素
イオン伝導性固体電解質を用いた酸素濃度検出器
が公知である。この酸素濃度検出器ではジルコニ
ア板の一側表面上に陰極をなす薄膜をコーテイン
グすると共にジルコニア板の他側表面上に陽極を
なす薄膜をコーテンイングしてこれら陰極と陽極
との間に電圧を印加し、陰極に接触して電子を付
与された酸素分子がジルコニア板内を通過した後
に陽極において電子を放出することにより陽極か
ら陰極に向かう電流が発生せしめられ、この電流
がジルコニア板内を通過する酸素分子の数、即ち
陰極に接触する気体中の酸素の分圧に比例するの
でこの電流値から酸素濃度を知ることができる。
従つてこの酸素濃度検出器を機関排気通路内に取
付けると排気通路内を酸素濃度を検出でき、従つ
て機関シリンダ内に供給される混合気の空燃比を
知ることができる。なお、この酸素濃度検出器は
排気通路内の酸素濃度を検出するようにしている
ので機関シリンダ内に供給される混合気が稀薄混
合気のときに空燃比を検出することができる。一
方、この酸素濃度検出器においてジルコニア板の
陽極と陰極間に電圧を印加しない場合にはジルコ
ニア板の一側表面上に接触する気体中の酸素濃度
とジルコニア板の他側表面上に接触する気体中の
酸素濃度との濃度差により起電力を発生し、この
性質を利用すると機関シリンダ内に供給される混
合気が理論空燃比よりも大きいか否かが判別され
る。内燃機関では機関運転状態に応じて機関シリ
ンダ内に供給される混合気の空燃比を理論空燃比
にしたり、或いは稀薄混合気にしたりする必要が
あり、従つて上述のような酸素濃度検出器を用い
ると空燃比を広い範囲に亘つて精密に制御できる
ことになる。
As an oxygen concentration detector capable of detecting the oxygen concentration in a gas, there is an oxygen concentration detector using an oxygen ion conductive solid electrolyte such as zirconia, as described in Japanese Patent Application Laid-Open No. 52-72286. It is publicly known. In this oxygen concentration sensor, a thin film that serves as a cathode is coated on one surface of a zirconia plate, a thin film that serves as an anode is coated on the other surface of the zirconia plate, and a voltage is applied between the cathode and the anode. Oxygen molecules, which have been given electrons upon contact with the cathode, pass through the zirconia plate and then emit electrons at the anode, generating a current from the anode to the cathode, and this current causes the oxygen passing through the zirconia plate Since it is proportional to the number of molecules, that is, the partial pressure of oxygen in the gas that contacts the cathode, the oxygen concentration can be determined from this current value.
Therefore, if this oxygen concentration detector is installed in the engine exhaust passage, the oxygen concentration in the exhaust passage can be detected, and therefore the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder can be known. Note that since this oxygen concentration detector detects the oxygen concentration in the exhaust passage, it is possible to detect the air-fuel ratio when the air-fuel mixture supplied into the engine cylinder is a lean air-fuel mixture. On the other hand, when no voltage is applied between the anode and cathode of the zirconia plate in this oxygen concentration detector, the oxygen concentration in the gas that contacts one surface of the zirconia plate and the gas that contacts the other surface of the zirconia plate An electromotive force is generated due to the concentration difference with the oxygen concentration in the engine cylinder, and by utilizing this property, it is determined whether the air-fuel mixture supplied into the engine cylinder is higher than the stoichiometric air-fuel ratio. In an internal combustion engine, it is necessary to adjust the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders to the stoichiometric air-fuel ratio or to a lean mixture depending on the engine operating conditions. When used, the air-fuel ratio can be precisely controlled over a wide range.

本発明は一個の酸素濃度検出器を用いて空燃比
を理論空燃比又は予め定められた稀薄側空燃比の
いずれか一方に正確にフイードバツク制御できる
ようにした空燃比制御装置を提供することにあ
る。
An object of the present invention is to provide an air-fuel ratio control device that can accurately feedback control the air-fuel ratio to either the stoichiometric air-fuel ratio or a predetermined lean side air-fuel ratio using a single oxygen concentration detector. .

以下、添附図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図を参照すると、1は機関本体、2はシリ
ンダブロツク、3はシリンダブロツク2内におい
て往復動するピストン、4はシリンダブロツク2
上に固締されたシリンダヘツド、5はピストン3
とシリンダヘツド4間に形成された燃焼室、6は
燃焼室5内に配置された点火栓、7は吸気ポー
ト、8は吸気弁、9は排気ポート、10は排気弁
を夫夫示す。吸気ポート7は枝管11を介して共
通のサージツタンク12に連結され、一方排気ポ
ート9は排気マニホルド13に連結される。各枝
管11には電子制御ユニツト14の出力信号によ
つて制御される燃料噴射弁15が夫々設けられ、
これらの燃料噴射弁15から対応する吸気ポート
7に向けて燃料が噴射される。サージタンク12
は吸気管16を介して図示しないエアクリーナに
接続され、この吸気管16内にアクセルペタル連
結されたスロツトル弁17が配置される。サージ
タンク12内には負圧センサ18が取付けられ、
この負圧センサ18並びに回転数センサ19は電
子制御ユニツト14に接続される。一方、排気マ
ニホルド13には酸素濃度検出器20が取付けら
れ、この酸素濃度検出器20は電子制御ユニツト
14に接続される。酸素濃度検出器20は例えば
第2図に示すようにジルコニアからなるカツプ状
の酸素イオン伝導性固体電解質21と、その外周
面を覆う多孔質セラミツク22とを具備し、この
多孔質セラミツク22が排気ガス流中に配置され
る。また、酸素イオン伝導性固定電解質21の内
周面並びに外周面上には夫々陽極用白金薄膜並び
に陰極用白金薄膜がコーテイングされ、これら白
金薄膜はリード線23a並びに23bを介して切
換回路24に接続される。第2図に示されるよう
に切換回路24は3個の切換スイツチ25a,2
5b,25cと、電源26と、抵抗27とを具備
し、後述するように各切換スイツチ25a,25
b,25cは同時に切換制御される。切換スイツ
チ25aはリード線23aに接続された可動接点
dと、一対の固定接点e,fからなり、一方切換
スイツチ25bは出力端子28aに接続された可
動接点gと、一対の固定接点h,fからなる。ま
た、切換スイツチ25cは出力端子28bに接続
された可動接点kと、一対の固定接点l,mから
なる。切換スイツチ25aの固定接点eは切換ス
イツチ25cの固定接点lに接続され、切換スイ
ツチ25cの固定接点mはリード線23bに接続
される。また、切換スイツチ25aの固定接点e
と切換スイツチ25cの固定接点m間には電源2
6と抵抗27とが直列に接続され、これら電源2
6と抵抗27との接続点は切換スイツチ25bの
固定接点hに接続できる。
Referring to FIG. 1, 1 is the engine body, 2 is the cylinder block, 3 is the piston that reciprocates within the cylinder block 2, and 4 is the cylinder block 2.
Cylinder head fixed on top, 5 is piston 3
and a combustion chamber formed between the cylinder head 4, 6 an ignition plug disposed within the combustion chamber 5, 7 an intake port, 8 an intake valve, 9 an exhaust port, and 10 an exhaust valve. The intake port 7 is connected to a common surge tank 12 via a branch pipe 11, while the exhaust port 9 is connected to an exhaust manifold 13. Each branch pipe 11 is provided with a fuel injection valve 15 that is controlled by an output signal from an electronic control unit 14.
Fuel is injected from these fuel injection valves 15 toward the corresponding intake ports 7. surge tank 12
is connected to an air cleaner (not shown) via an intake pipe 16, and a throttle valve 17 connected to an accelerator pedal is disposed within this intake pipe 16. A negative pressure sensor 18 is installed inside the surge tank 12,
The negative pressure sensor 18 and the rotational speed sensor 19 are connected to the electronic control unit 14. On the other hand, an oxygen concentration detector 20 is attached to the exhaust manifold 13, and this oxygen concentration detector 20 is connected to the electronic control unit 14. As shown in FIG. 2, the oxygen concentration detector 20 includes, for example, a cup-shaped oxygen ion conductive solid electrolyte 21 made of zirconia, and a porous ceramic 22 covering the outer peripheral surface of the electrolyte. Placed in a gas stream. Further, a thin platinum film for an anode and a thin platinum film for a cathode are coated on the inner and outer peripheral surfaces of the oxygen ion conductive fixed electrolyte 21, respectively, and these platinum thin films are connected to a switching circuit 24 via lead wires 23a and 23b. be done. As shown in FIG. 2, the switching circuit 24 includes three switching switches 25a, 2
5b, 25c, a power supply 26, and a resistor 27, and as described later, each changeover switch 25a, 25
b and 25c are switched and controlled at the same time. The changeover switch 25a consists of a movable contact d connected to a lead wire 23a and a pair of fixed contacts e and f, while the changeover switch 25b consists of a movable contact g connected to an output terminal 28a and a pair of fixed contacts h and f. Consisting of Further, the changeover switch 25c includes a movable contact k connected to the output terminal 28b and a pair of fixed contacts l and m. A fixed contact e of the changeover switch 25a is connected to a fixed contact l of the changeover switch 25c, and a fixed contact m of the changeover switch 25c is connected to the lead wire 23b. In addition, the fixed contact e of the changeover switch 25a
A power supply 2 is connected between the fixed contact m of the changeover switch 25c and
6 and a resistor 27 are connected in series, and these power supplies 2
6 and the resistor 27 can be connected to a fixed contact h of the changeover switch 25b.

各切換スイツチ25a,25b,25cが第2
図に示すような接続状態にあるときはリード線2
3a,23b間に電源26の電圧が印加される。
このとき排気ガス中の酸素分子は多孔質セラミツ
ク22内の拡散により通過して酸素イオン伝導性
固体電解質21の陰極用白金薄膜に到達し、ここ
で電子を付与された酸素分子が酸素イオン伝導性
固体電解質21内を通過した後に酸素イオン伝導
性固体電解質21の陽極用白金薄膜と接触して電
子を放出することにより電流が発生せしめられ
る。第5図は排気ガス中の酸素濃度P(重量パー
セント)と発生電流A(mA)との関係を示す。
第5図において実線Kで示されるように発生電源
Aは酸素濃度にほぼ比例することがわかる。な
お、排気ガス中の酸素濃度がわかれば機関シリン
ダ内に供給される空燃比がわかり、この空燃比を
第5図の横軸A/Fに示す。従つて第5図から発
生電流がわかれば機関シリンダ内に供給される混
合気の空燃比を検出できることがわかる。なお、
第2図に示すように出力端子28a,28bは抵
抗27の両端に接続されているので出力端子28
a,28b間には発生電流に比例した電圧が発生
し、従つて第5図の縦軸は出力電圧Vを表わして
いると考えることができる。このように出力電圧
Vが酸素濃度に比例しているときを第1の検出状
態という。
Each changeover switch 25a, 25b, 25c is
When the connection is as shown in the figure, lead wire 2
A voltage from a power supply 26 is applied between 3a and 23b.
At this time, the oxygen molecules in the exhaust gas pass through the porous ceramic 22 by diffusion and reach the cathode platinum thin film of the oxygen ion conductive solid electrolyte 21, where the oxygen molecules endowed with electrons become oxygen ion conductive. After passing through the solid electrolyte 21, the electrons come into contact with the anode platinum thin film of the oxygen ion conductive solid electrolyte 21 and emit electrons, thereby generating an electric current. FIG. 5 shows the relationship between the oxygen concentration P (weight percent) in the exhaust gas and the generated current A (mA).
As shown by the solid line K in FIG. 5, it can be seen that the generated power A is approximately proportional to the oxygen concentration. Note that if the oxygen concentration in the exhaust gas is known, the air-fuel ratio supplied into the engine cylinder can be found, and this air-fuel ratio is shown on the horizontal axis A/F in FIG. Therefore, it can be seen from FIG. 5 that if the generated current is known, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder can be detected. In addition,
As shown in FIG. 2, the output terminals 28a and 28b are connected to both ends of the resistor 27.
A voltage proportional to the generated current is generated between a and 28b, and therefore the vertical axis in FIG. 5 can be considered to represent the output voltage V. A state in which the output voltage V is proportional to the oxygen concentration is referred to as a first detection state.

一方、第2図において破線で示すように切換ス
イツチ25aの可動接点dが固定接点fに接続
し、切換スイツチ25bの可動接点gが固定接点
fに接続し、切換スイツチ25cの可動接点kが
固定接点mに接続された状態を第2の検出状態と
いう。このときリード線23a,23bは直接出
力端子28a,28bに接続され、リード線23
a,23b間には電圧が印加されていない。この
ときには酸素濃度検出器20が濃淡電池の作用を
なし、排気マニホルド13内の酸素濃度と大気中
の酸素濃度、即ち酸素イオン伝導性固体電解質2
1の両側面に接触する気体間の酸素濃度差によつ
て酸素イオン伝導性固体電解質21の両側面間に
は第6図に示すような電圧が発生する。第6図に
おいて縦軸Vは電圧を示し、横軸A/Fは空燃比
を示す。従つて第2検出状態では空燃比が理論空
燃比よりも小さなときに出力端子28a,28b
間に0.9ボルト程度の出力電圧が発生し、空燃比
が理論空燃比よりも大きなときに出力端子28
a,28b間に0.1ボルト程度の出力電圧が発生
することがわかる。このように第2検出状態では
空燃比が理論空燃比よりも大きいか小さいかが検
出できる。
On the other hand, as shown by the broken line in FIG. 2, the movable contact d of the changeover switch 25a is connected to the fixed contact f, the movable contact g of the changeover switch 25b is connected to the fixed contact f, and the movable contact k of the changeover switch 25c is fixed. The state where the contact point m is connected is called a second detection state. At this time, the lead wires 23a and 23b are directly connected to the output terminals 28a and 28b, and the lead wire 23
No voltage is applied between a and 23b. At this time, the oxygen concentration detector 20 functions as a concentration battery, and detects the oxygen concentration in the exhaust manifold 13 and the oxygen concentration in the atmosphere, that is, the oxygen ion conductive solid electrolyte 2.
A voltage as shown in FIG. 6 is generated between both sides of the oxygen ion conductive solid electrolyte 21 due to the difference in oxygen concentration between the gases in contact with both sides of the solid electrolyte 21 . In FIG. 6, the vertical axis V shows the voltage, and the horizontal axis A/F shows the air-fuel ratio. Therefore, in the second detection state, when the air-fuel ratio is smaller than the stoichiometric air-fuel ratio, the output terminals 28a and 28b
When an output voltage of about 0.9 volts is generated between the output terminals 28 and the air-fuel ratio is larger than the stoichiometric air-fuel ratio,
It can be seen that an output voltage of about 0.1 volt is generated between a and 28b. In this way, in the second detection state, it is possible to detect whether the air-fuel ratio is larger or smaller than the stoichiometric air-fuel ratio.

第3図に電子制御ユニツト14を示す。第3図
を参照すると、電子制御ユニツト14はデイジタ
ルコンピユータからなり、各種の演算処理を行な
うマイクロプロセツサ(MPU)30、ランダム
アクセスメモリ(RAM)31、制御プログラ
ム、演算定数等が予め格納されているリードオン
リメモリ(ROM)32、入力ポート33並びに
出力ポート34が双方向性バス35を介して互に
連結されている。更に、電子制御ユニツト14内
には各種のクロツク信号を発生するクロツク発生
器36が設けられる。第3図に示されるように負
圧センサ18はバツフア37並びにAD変換器3
8を介して入力ポート33に接続される。負圧セ
ンサ18はサージタンク12内に発生する負圧、
即ち吸気管負圧Pに比例した出力電圧を発生し、
この出力電圧がAD変換器38において対応する
2進数に変換されてこの2進数が入力ポート33
並びにバス35を介してMPU30に入力される。
一方、回転数センサ19はバツフア39を介して
入力ポート33に接続される。この回転数センサ
19は機関クランクシヤフトが所定のクランク角
度回転する毎にパルスを発生し、このパルスが入
力ポート33並びにバス35を介してMPU30
に入力される。MPU30では回転数センサ19
の出力パルスから機関回転数が計算される。ま
た、酸素濃度検出器20の出力端子は前述したよ
うに切換回路24に接続され、この切換回路24
は増巾器40並びにAD変換器41を介して入力
ポート33に接続される。切換回路24の出力電
圧はAD変換器41において対応する2進数に変
換され、この2進数が入力ポート33並びにバス
35を介してMPU30に入力される。なお、第
5図において実線Kで示す出力電圧Vと空燃比
A/Fとの関係は予めROM32内に関数或いは
データテーブルの形で記憶されている。
FIG. 3 shows the electronic control unit 14. Referring to FIG. 3, the electronic control unit 14 is composed of a digital computer, in which a microprocessor (MPU) 30 that performs various calculation processes, a random access memory (RAM) 31, control programs, calculation constants, etc. are stored in advance. A read-only memory (ROM) 32, an input port 33, and an output port 34 are interconnected via a bidirectional bus 35. Furthermore, a clock generator 36 is provided within the electronic control unit 14 for generating various clock signals. As shown in FIG. 3, the negative pressure sensor 18 is connected to the buffer 37 and the AD converter 3.
8 to the input port 33. The negative pressure sensor 18 detects the negative pressure generated within the surge tank 12,
That is, it generates an output voltage proportional to the intake pipe negative pressure P,
This output voltage is converted into a corresponding binary number at the AD converter 38, and this binary number is converted to the input port 33.
It is also input to the MPU 30 via the bus 35.
On the other hand, the rotation speed sensor 19 is connected to the input port 33 via a buffer 39. This rotation speed sensor 19 generates a pulse every time the engine crankshaft rotates by a predetermined crank angle, and this pulse is transmitted to the MPU 30 via an input port 33 and a bus 35.
is input. In MPU30, rotation speed sensor 19
The engine speed is calculated from the output pulse. Further, the output terminal of the oxygen concentration detector 20 is connected to the switching circuit 24 as described above, and this switching circuit 24
is connected to the input port 33 via an amplifier 40 and an AD converter 41. The output voltage of the switching circuit 24 is converted into a corresponding binary number by the AD converter 41, and this binary number is input to the MPU 30 via the input port 33 and the bus 35. Note that the relationship between the output voltage V and the air-fuel ratio A/F, indicated by the solid line K in FIG. 5, is stored in advance in the ROM 32 in the form of a function or a data table.

出力ポート34は切換回路24は各切換スイツ
チ25a,25b,25cを作動するためのデー
タ、並びに燃料噴射弁15を作動するためのデー
タを出力するために設けられており、この出力ポ
ート34には2進数のデータがMPU30からバ
ス35を介して書き込まれる。出力ポート34の
出力端子は一方では切換回路24に接続され、他
方ではダウンカウンタ43の入力端子に接続され
る。従つて各切換スイツチ25a,25b,25
cは出力ポート34に書き込まれたデータに基い
て第1検出状態或いは第2検出状態のいづれか一
方に切換制御される。一方、ダウンカウンタ43
はMPU30から書き込まれた2進数のデータを
それに対応する時間の長さに変換するために設け
られており、このダウンカウンタ43は出力ポー
ト34から送り込まれたデータのダウンカウント
をクロツク発生器36のクロツク信号によつて開
始し、カウント値が0になるとカウントを完了し
て出力端子にカウント完了信号を発生する。S−
Rフリツプフロツプ44のリセツト入力端子Rは
ダウンカウンタ43の出力端子に接続され、S−
Rフリツプフロツプ44のセツト入力端子Sはク
ロツク発生器36に接続される。このS−Rフリ
ツプフロツプ44はクロツク発生器36のクロツ
ク信号によりダウンカウント開始と同時にセツト
され、ダウンカウント完了時にダウンカウンタ4
3のカウント完了信号によつてリセツトされる。
従つてS−Rフリツプフロツプ44の出力端子Q
はダウンカウントが行なわれている間高レベルと
なる。S−Rフリツプフロツプ44の出力端子Q
は電力増巾回路45を介して燃料噴射弁15に接
続されており、従つて燃料噴射弁15はダウンカ
ウンタ43がダウンカウントしている間付勢され
ることがわかる。
The output port 34 is provided so that the switching circuit 24 outputs data for operating each of the switching switches 25a, 25b, and 25c as well as data for operating the fuel injection valve 15. Binary data is written from the MPU 30 via the bus 35. The output terminal of the output port 34 is connected to the switching circuit 24 on the one hand and to the input terminal of the down counter 43 on the other hand. Therefore, each changeover switch 25a, 25b, 25
c is controlled to switch to either the first detection state or the second detection state based on the data written to the output port 34. On the other hand, the down counter 43
is provided to convert the binary data written from the MPU 30 into the corresponding time length, and this down counter 43 counts down the data sent from the output port 34 to the clock generator 36. It starts with a clock signal, completes counting when the count value reaches 0, and generates a count completion signal at the output terminal. S-
The reset input terminal R of the R flip-flop 44 is connected to the output terminal of the down counter 43, and the S-
The set input terminal S of R flip-flop 44 is connected to clock generator 36. This S-R flip-flop 44 is set by the clock signal of the clock generator 36 at the same time as the down count starts, and when the down count is completed, the down counter 4 is set.
It is reset by the count completion signal of 3.
Therefore, the output terminal Q of the S-R flip-flop 44
is at a high level while the down count is being performed. Output terminal Q of S-R flip-flop 44
is connected to the fuel injection valve 15 via the power amplification circuit 45, and therefore, it can be seen that the fuel injection valve 15 is energized while the down counter 43 is counting down.

次に第4図を参照して本発明による空燃比制御
装置の作動について説明する。第4図を参照する
とまず始めにステツプ50において負圧センサ18
と回転数センサ19の出力信号から目標空燃比が
設定される。この目標空燃比は例えば第7図に示
すように吸気管負圧Pと機関回転数Nの関数とし
て予めROM32内に記憶されている。なお、第
7図中の数値は空燃比を示す。従つてステツプ50
では第7図に示す関係から目標空燃比が計算され
る。第7図からわかるようにこの目標値は機関回
転数Nがほぼ1000r.p.mよりも低いとき、並びに
ほぼ4000r.p.mよりも高いときには理論空燃比と
なつており、機関回転数Nがほぼ1000r.p.mから
4000r.p.mの間では数値で示すような稀薄側空燃
比となつている。ステツプ50において目標空燃比
が決定されると次いでステツプ51において基本燃
料噴射時間τ0が計算される。この基本燃料噴射時
間は第7図に示すような空燃比の混合気を形成す
るのに必要な時間であり、この基本燃料噴射時間
τ0は第7図に示すのと同様に吸気管負圧Pと機関
回転数Nの関数としてマツプの形で予めROM3
2内に記憶されている。次いでステツプ52では目
標空燃比が稀薄側であるか否かが判別され、目標
空燃比が稀薄側である場合にはステツプ53に進
む。ステツプ53では切換回路24の切換スイツ
チ25a,25b,26cを第2図に示すように
切換えて第1検出状態にする。次いでステツプ54
では第5図に示す関係から切換回路24の目標出
力電圧値V0が計算される。次いでステツプ55
では切換回路20の現在の出力電圧値Vが目標電
圧値V0よりも小さくないか否か判別される。ス
テツプ55において現在の出力電圧値Vが目標電
圧値V0よりも小さくないと判別されたときには
ステツプ56において補正係数fに一定値αを加算
し、その加算結果をfとした後にステツプ57に
進む。一方、ステツプ55において現在の出力電圧
値Vが目標電圧値V0よりも小さいと判別された
ときはステツプ58において補正係数fから一定値
βを減算し、その減算結果をfとした後にステツ
プ57に進む。ステツプ57では基本燃料噴射時間τ0
に補正係数fが乗算されて燃料噴射時間τが計算
され、この燃料噴射時間τに対応した時間だけ燃
料が燃料噴射弁15から噴射される。第8図に切
換回路24の出力電圧Vと補正係数fの変化に示
す。第8図に示すように切換回路24の出力電圧
Vが目標電圧値V0よりも大きくなると、即ち空
燃比が目標空燃比よりも大きくなると補正係数f
がαづつ増大せしめられるために燃料噴射量が増
大せしめられ、一方切換回路24の出力電圧Vが
目標電圧値V0よりも小さくなると、即ち空燃比
が目標空燃比よりも小さくなるの補正係数fがβ
づつ減少せしめられるために燃料噴射量が減少せ
しめられる。
Next, the operation of the air-fuel ratio control device according to the present invention will be explained with reference to FIG. Referring to FIG. 4, first, in step 50, the negative pressure sensor 18 is
The target air-fuel ratio is set from the output signal of the rotation speed sensor 19. This target air-fuel ratio is stored in advance in the ROM 32 as a function of the intake pipe negative pressure P and the engine speed N, as shown in FIG. 7, for example. Note that the numerical values in FIG. 7 indicate the air-fuel ratio. Therefore step 50
Then, the target air-fuel ratio is calculated from the relationship shown in FIG. As can be seen from Fig. 7, this target value is the stoichiometric air-fuel ratio when the engine speed N is lower than approximately 1000 r.pm and when it is higher than approximately 4000 r.pm, and when the engine speed N is approximately 1000 r.pm. from pm
Between 4000rpm, the air-fuel ratio is on the lean side as shown in the numbers. After the target air-fuel ratio is determined in step 50, the basic fuel injection time τ 0 is then calculated in step 51. This basic fuel injection time is the time required to form a mixture with an air-fuel ratio as shown in Fig. 7, and this basic fuel injection time τ 0 is the same as shown in Fig. ROM3 in the form of a map as a function of P and engine speed N.
It is stored in 2. Next, in step 52, it is determined whether or not the target air-fuel ratio is on the lean side. If the target air-fuel ratio is on the lean side, the process proceeds to step 53. In step 53, the changeover switches 25a, 25b, and 26c of the changeover circuit 24 are changed over as shown in FIG. 2 to bring them into the first detection state. Then step 54
Then, the target output voltage value V 0 of the switching circuit 24 is calculated from the relationship shown in FIG. Then step 55
Then, it is determined whether the current output voltage value V of the switching circuit 20 is not smaller than the target voltage value V0 . If it is determined in step 55 that the current output voltage value V is not smaller than the target voltage value V0 , then in step 56 a constant value α is added to the correction coefficient f, and after setting the addition result to f, the process proceeds to step 57. . On the other hand, when it is determined in step 55 that the current output voltage value V is smaller than the target voltage value V0 , a constant value β is subtracted from the correction coefficient f in step 58, and after setting the subtraction result to f, the process proceeds to step 57. Proceed to. In step 57, the basic fuel injection time τ 0
is multiplied by the correction coefficient f to calculate the fuel injection time τ, and fuel is injected from the fuel injection valve 15 for a time corresponding to the fuel injection time τ. FIG. 8 shows changes in the output voltage V of the switching circuit 24 and the correction coefficient f. As shown in FIG. 8, when the output voltage V of the switching circuit 24 becomes larger than the target voltage value V0 , that is, when the air-fuel ratio becomes larger than the target air-fuel ratio, the correction coefficient f
is increased by α, the fuel injection amount is increased, and on the other hand, when the output voltage V of the switching circuit 24 becomes smaller than the target voltage value V0 , that is, when the air-fuel ratio becomes smaller than the target air-fuel ratio, the correction coefficient f is β
Since the fuel injection amount is gradually decreased, the fuel injection amount is decreased.

一方、ステツプ52において目標空燃比が稀薄側
でないの判別された場合、即ち目標空燃比が第7
図のハツチングで示されるように理論空燃比であ
るときにはステツプ59に進む。ステツプ59では
切換回路24の各切換スイツチ25a,25b,
25cを作動せしめて破線で示す第2検出状態に
切換える。次いでステツプ60では切換回路24の
出力電圧Vが第6図に示す基準電圧Vrよりも小
さくないか否かが判別される。なお、この基準電
圧Vrは予めROM32内に記憶されている。ステ
ツプ60において切換回路24の出力電圧Vが基準
電圧Vrよりも小さいと判別されたとき、即ち空
燃比が理論空燃比よりも大きいときはステツプ61
において補正係数fにγが加算され、その加算結
果をfとする。従つてこのときには燃料噴射時間
τが徐々に増大せしめられる。一方、ステツプ60
において切換回路24の出力電圧Vが基準電圧
Vrよりも小さくないと判別されたとき、即ち空
燃比が理論空燃比よりも小さいときはステツプ62
において補正係数fからδが減算され、その減算
結果をfとする。従つてこのときには燃料噴射時
間τが徐々に増大せしめられる。このようにして
空燃比が理論空燃比にフイードバツク制御され
る。
On the other hand, if it is determined in step 52 that the target air-fuel ratio is not on the lean side, that is, the target air-fuel ratio is
When the air-fuel ratio is the stoichiometric air-fuel ratio, as shown by the hatching in the figure, the process proceeds to step 59. In step 59, each changeover switch 25a, 25b,
25c is activated to switch to the second detection state shown by the broken line. Next, in step 60, it is determined whether the output voltage V of the switching circuit 24 is not smaller than the reference voltage Vr shown in FIG. Note that this reference voltage Vr is stored in the ROM 32 in advance. When it is determined in step 60 that the output voltage V of the switching circuit 24 is smaller than the reference voltage Vr, that is, when the air-fuel ratio is larger than the stoichiometric air-fuel ratio, the process proceeds to step 61.
γ is added to the correction coefficient f, and the addition result is set as f. Therefore, at this time, the fuel injection time τ is gradually increased. On the other hand, step 60
, the output voltage V of the switching circuit 24 is the reference voltage
When it is determined that the air-fuel ratio is not smaller than Vr, that is, when the air-fuel ratio is smaller than the stoichiometric air-fuel ratio, step 62
δ is subtracted from the correction coefficient f, and the subtraction result is set as f. Therefore, at this time, the fuel injection time τ is gradually increased. In this way, the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio.

以上述べたように本発明によれば唯一個の酸素
濃度検出器を用いて目標空燃比が理論空燃比であ
つても稀薄側空燃比であつても機関シリンダ内に
供給される混合気の空燃比を目標空燃比に正確に
フイードバツク制御すことができる。
As described above, according to the present invention, by using a single oxygen concentration detector, the air-fuel mixture supplied into the engine cylinder is The fuel ratio can be accurately feedback-controlled to the target air-fuel ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る内燃機関の側面断面図、
第2図は酸素濃度検出器の切換回路の回路図、第
3図は電子制御ユニツトの回路図、第4図は空燃
比制御装置の作動を説明するためのフローチヤー
ト、第5図は第1検出状態における酸素濃度検出
器の出力電圧を示す図、第6図は第2検出状態に
おける酸素濃度検出器の出力電圧を示す図、第7
図は目標空燃比を示す図、第8図は補正係数の変
化を示す図である。 12……サージタンク、13……排気マニホル
ド、14……電子制御ユニツト、15……燃料噴
射弁、17……スロツトル弁、18……負圧セン
サ、19……回転数センサ、20……酸素濃度検
出器。
FIG. 1 is a side sectional view of an internal combustion engine according to the present invention;
Fig. 2 is a circuit diagram of the switching circuit of the oxygen concentration detector, Fig. 3 is a circuit diagram of the electronic control unit, Fig. 4 is a flowchart for explaining the operation of the air-fuel ratio control device, and Fig. 5 is a circuit diagram of the switching circuit of the oxygen concentration detector. FIG. 6 is a diagram showing the output voltage of the oxygen concentration detector in the detection state, FIG. 6 is a diagram showing the output voltage of the oxygen concentration detector in the second detection state, and FIG.
8 is a diagram showing the target air-fuel ratio, and FIG. 8 is a diagram showing changes in the correction coefficient. 12... Surge tank, 13... Exhaust manifold, 14... Electronic control unit, 15... Fuel injection valve, 17... Throttle valve, 18... Negative pressure sensor, 19... Rotation speed sensor, 20... Oxygen Concentration detector.

Claims (1)

【特許請求の範囲】[Claims] 1 機関排気通路に排気ガス中の酸素濃度を検出
可能な酸素濃度検出器を取付け、該酸素濃度検出
器の出力信号に基いて機関シリンダ内に供給され
る混合気の空燃比をフイードバツク制御するよう
にした空燃比制御装置において、酸素イオン伝導
性固体電解質の外周面および内周面上に夫々陰極
および陽極を形成すると共に酸素分子が拡散によ
り通過する拡散通過手段を該酸素イオン伝導性固
体電解質の外周面周りに設けて排気ガス中の酸素
分子が該拡散通過手段を介して該酸素イオン伝導
性固体電解質の外周面上に到達するようにした酸
素濃度検出器であつて該陰極および陽極間に電圧
を印加したときには排気ガス中の酸素濃度に比例
した出力電流を発生しかつ該電圧の印加を停止し
たときには濃淡電池の作用をして空燃比が理論空
燃比よりも大きいか否かを示す出力電圧を発生す
る酸素濃度検出器を用い、該電圧を印加させるか
又は該電圧の印加を停止させる切換回路を具備す
ると共に機関の運転状態に応じて空燃比を理論空
燃比にすべきか或いは予め定められた稀薄側空燃
比にすべきかの情報を記憶した記憶手段を具備
し、該記憶情報に基き該切換回路を切換制御して
空燃比を理論空燃比とすべきときには上記酸素濃
度検出器の出力電圧に基いて空燃比をフイードバ
ツク制御し、空燃比を予め定められた稀薄側空燃
比とすべきときには上記酸素濃度検出器の出力電
流に基いて空燃比をフイードバツク制御するよう
にした内燃機関の空燃比制御装置。
1. An oxygen concentration detector capable of detecting the oxygen concentration in exhaust gas is installed in the engine exhaust passage, and the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders is feedback-controlled based on the output signal of the oxygen concentration detector. In the air-fuel ratio control device, a cathode and an anode are respectively formed on the outer peripheral surface and the inner peripheral surface of the oxygen ion conductive solid electrolyte, and a diffusion passing means through which oxygen molecules pass by diffusion is provided on the oxygen ion conductive solid electrolyte. An oxygen concentration detector provided around the outer circumferential surface of the oxygen ion conductive solid electrolyte so that oxygen molecules in the exhaust gas reach the outer circumferential surface of the oxygen ion conductive solid electrolyte through the diffusion passage means, the oxygen concentration detector being provided between the cathode and the anode. When a voltage is applied, it generates an output current proportional to the oxygen concentration in the exhaust gas, and when the voltage application is stopped, it acts as a concentration cell to indicate whether the air-fuel ratio is greater than the stoichiometric air-fuel ratio. An oxygen concentration detector that generates an output voltage is used, and a switching circuit is provided to apply the voltage or stop applying the voltage, and the air-fuel ratio should be set to the stoichiometric air-fuel ratio depending on the operating state of the engine, or the air-fuel ratio should be set in advance. The oxygen concentration detector is equipped with a storage means that stores information as to whether the air-fuel ratio should be set to a predetermined lean air-fuel ratio, and when the switching circuit is switched and controlled based on the stored information to bring the air-fuel ratio to the stoichiometric air-fuel ratio, the oxygen concentration detector An internal combustion engine in which the air-fuel ratio is feedback-controlled based on the output voltage, and when the air-fuel ratio should be set to a predetermined lean side air-fuel ratio, the air-fuel ratio is feedback-controlled based on the output current of the oxygen concentration detector. Air-fuel ratio control device.
JP15753481A 1981-10-05 1981-10-05 Air-fuel ratio control device in internal-combustion engine Granted JPS5859332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15753481A JPS5859332A (en) 1981-10-05 1981-10-05 Air-fuel ratio control device in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15753481A JPS5859332A (en) 1981-10-05 1981-10-05 Air-fuel ratio control device in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS5859332A JPS5859332A (en) 1983-04-08
JPH041181B2 true JPH041181B2 (en) 1992-01-10

Family

ID=15651773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15753481A Granted JPS5859332A (en) 1981-10-05 1981-10-05 Air-fuel ratio control device in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5859332A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3231122C2 (en) * 1982-08-21 1994-05-11 Bosch Gmbh Robert Control device for the mixture composition of an internal combustion engine
JPH065047B2 (en) * 1983-06-07 1994-01-19 日本電装株式会社 Air-fuel ratio controller
JPS6090937A (en) * 1983-10-22 1985-05-22 Nippon Denso Co Ltd Air-fuel ratio controlling apparatus
JPS60230537A (en) * 1984-05-01 1985-11-16 Nissan Motor Co Ltd Air-fuel ratio controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352825A (en) * 1976-10-25 1978-05-13 Toyota Motor Corp Fuel supply system for internal-combustion engine
JPS562548A (en) * 1979-06-22 1981-01-12 Nissan Motor Co Ltd Controller for air fuel ratio of internal combustion engine
JPS5612698A (en) * 1979-07-11 1981-02-07 Matsushita Electric Ind Co Ltd Echo attaching apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352825A (en) * 1976-10-25 1978-05-13 Toyota Motor Corp Fuel supply system for internal-combustion engine
JPS562548A (en) * 1979-06-22 1981-01-12 Nissan Motor Co Ltd Controller for air fuel ratio of internal combustion engine
JPS5612698A (en) * 1979-07-11 1981-02-07 Matsushita Electric Ind Co Ltd Echo attaching apparatus

Also Published As

Publication number Publication date
JPS5859332A (en) 1983-04-08

Similar Documents

Publication Publication Date Title
US4528961A (en) Method of and system for lean-controlling air-fuel ratio in electronically controlled engine
US4819602A (en) System of abnormality detection for oxygen concentration sensor
JPH0217705B2 (en)
JPH073403B2 (en) Abnormality detection method for oxygen concentration sensor
JPH079417B2 (en) Abnormality detection method for oxygen concentration sensor
JPH073405B2 (en) Abnormality detection method for oxygen concentration sensor
JPH0343459B2 (en)
US4723521A (en) Air/fuel ratio control system for an internal combustion engine
KR0145087B1 (en) Air-fuel ratio control apparatus for internal combustion engines
US4787966A (en) Oxygen concentration sensor for an internal combustion engine
JPH041181B2 (en)
US4763628A (en) Method of compensating output from oxygen concentration sensor of internal combustion engine
JPS58143108A (en) Air-fuel ratio control method for internal-combustion engine
JP4211232B2 (en) Exhaust gas sensor
JPH0325625B2 (en)
JP2879281B2 (en) Control device for oxygen sensor
JPH0415386B2 (en)
US4732127A (en) Air/fuel ratio control system for an internal combustion engine with a function for preventing the blackening phenomenon of oxygen concentration sensor
JP3549139B2 (en) Oxygen concentration detector
JP2826597B2 (en) Digital output type double element oxygen concentration sensor
JP2780710B2 (en) Air-fuel ratio control method for internal combustion engine
JP3216310B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2002310984A (en) DETECTOR FOR DETECTING CONCENTRATION OF NOx
JP2020197201A (en) Air-fuel ratio detection system
JPS63159637A (en) Air-fuel ratio control device for internal combustion engine