JPH04116616A - Optical isolator device - Google Patents

Optical isolator device

Info

Publication number
JPH04116616A
JPH04116616A JP23774390A JP23774390A JPH04116616A JP H04116616 A JPH04116616 A JP H04116616A JP 23774390 A JP23774390 A JP 23774390A JP 23774390 A JP23774390 A JP 23774390A JP H04116616 A JPH04116616 A JP H04116616A
Authority
JP
Japan
Prior art keywords
polarization
lens
separation element
optical fiber
polarization separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23774390A
Other languages
Japanese (ja)
Other versions
JP2905847B2 (en
Inventor
Masatoshi Saruwatari
猿渡 正俊
Hidehiko Takara
秀彦 高良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23774390A priority Critical patent/JP2905847B2/en
Publication of JPH04116616A publication Critical patent/JPH04116616A/en
Application granted granted Critical
Publication of JP2905847B2 publication Critical patent/JP2905847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make the length of an expensive polarization separating element short and to obtain a compact and inexpensive optical fiber type optical isolator without depending on polarization by inserting the polarization separating element between an optical fiber and a lens. CONSTITUTION:This device is constituted by arranging the optical fiber for incidence f1, the 1st polarization separating element 31, the 1st lens for collimating L1, a Faraday rotating element R1, the 2nd lens for focusing L2, the 2nd polarization separating elements B2 and B3, and the optical fiber for receiving light f2 in this order. The light which passes through the 1st element B1 from the optical fiber f1 and is emitted is converted into an almost collimated beam by the 1st lens L1 and further the collimated beam which passes through the element R1 is converted focusing beam by the 2nd lens L2 so as to be coupled on the fiber f2 through the elements B2 and B3. Thus, thin polarization separating elements B1 - B3 are applied and the optical isolator without depending on the polarization, whose cost is made low and which is miniaturized, is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、光通信などに用いられる偏波依存性のない光
フアイバ形光アイソレータ装置に関するものである、 「従来の技術」 第3図は従来の偏波依存性のなし1光ファイバ形先アイ
゛ル−タの構成例てめる。1° l、「2は先ファイバ
 Ll、L2はコリメートまたは集束用のレンズ、R1
は710等結晶に飽和磁界を加えたファラデー回転素子
、B1.B2  B3はl軸性の複屈折結晶の平行平板
で構成される偏波分離素子である。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an optical fiber type optical isolator device with no polarization dependence used in optical communications etc. "Prior Art" FIG. An example of the configuration of a conventional polarization-independent one-optical fiber type router is shown below. 1° l, "2 is the tip fiber Ll, L2 is the collimating or focusing lens, R1
is a Faraday rotation element in which a saturation magnetic field is applied to a 710 crystal, B1. B2 and B3 are polarization separation elements composed of parallel flat plates of l-axis birefringent crystal.

この光アイソレータの動作を第4図(イ)、(ロ)を用
いて説明する。
The operation of this optical isolator will be explained using FIGS. 4(a) and 4(b).

まず、光を通過させる順方向について(イ)により説明
する。光ファイバflからの光はレンズLlによりコリ
メートビームに変換され、偏波分離素子B1により、そ
れぞれ偏波方向か直交する偏波成分X、(常光であり直
進する成分)、Y、(異常光であり平行移動する成分)
からなる2つの平行なコリメートビームに分離される。
First, the forward direction in which light passes will be explained using (a). The light from the optical fiber fl is converted into a collimated beam by the lens Ll, and the polarization separation element B1 separates the polarization components X, (ordinary light that travels in a straight line), Y (the extraordinary light that travels in a straight line), which are orthogonal to the polarization direction, respectively. (with parallel moving component)
The beam is separated into two parallel collimated beams.

この例では偏波分離素子B!の光学軸が図中の紙面内に
あるとした。この時、紙面に平行な成分(Yl)のみが
異常光となりその光軸か紙面内で平行に移動される。な
お、その分離幅dはB1の長さしと複屈折りとの積に比
例する (っまり、d =k BLとなる)。次に、偏
波成分×1と偏波成分Y1はファラデー素子R1を通過
口、それぞれ偏波方向か45゛回転(図では時計回り)
した後1合波側の[株]波分離素子B 2 、B 3に
入射する゛。偏波分離素子B2、B3の組合仕としては
いくつかの例か提案されているが、ここではその1例を
示す。
In this example, polarization separation element B! It is assumed that the optical axis of is within the plane of the paper in the figure. At this time, only the component (Yl) parallel to the plane of the paper becomes extraordinary light and its optical axis is moved parallel within the plane of the paper. Note that the separation width d is proportional to the product of the length of B1 and the birefringent fold (in other words, d = k BL). Next, the polarized wave component x1 and the polarized wave component Y1 pass through the Faraday element R1, and are rotated by 45° in the polarization direction (clockwise in the figure).
After that, it enters the [stock] wave separation elements B 2 and B 3 on the multiplexing side. Several examples have been proposed for the combination of polarization separation elements B2 and B3, and one example will be shown here.

偏波分離素子B2.B3の厚さは偏波分離素子B1の1
/、ffとする。まず、偏波分離素子B2については光
学軸を含む面を45゛偏波の回転した成分Y1の偏波方
向に合わせる。即ち、偏波分離素子B2の光学軸は偏波
分離素子Blのそれに対して光の進む光軸の回りに時計
方向に45°回転させている。これにより、Ylは、偏
波分離素子B2に対しても異常光となり、この偏波分離
素子B2を通過後は図のように直角2等辺三角形の短辺
(長辺を偏波分離素子Blによる移動方向とする)に沿
って先の分離幅dのI/VTだけ移動して直角の頂点の
位置に達する。一方、偏波分離素子B3については光学
軸の面を偏波分離素子B2に対して±90°回転さけて
偏波分離素子B2で直進した成分X、の偏波方向に合わ
Uろ、今111ffは×1か異常光となるので、偏波分
離素子B3通向後は図のようにXlのみか移動して成分
Y、の位置と合致する。即ち、偏波分離素子B 2 、
B 3の組合せにより2つの偏波成分X 、、Y 、は
位置、方向とし完全に一致して一つのコリメートビーム
となる。このヒームは集光用のレンズL2により光ファ
イバr2に結合される。以上の動作原理により順方向は
全く偏波依存性がなく、原理的な通過損失もないことか
分かる。
Polarization separation element B2. The thickness of B3 is 1 of the polarization separation element B1.
/, ff. First, the plane including the optical axis of the polarization separation element B2 is aligned with the polarization direction of the component Y1, which is a rotated 45° polarization. That is, the optical axis of the polarization separation element B2 is rotated by 45° clockwise around the optical axis along which light travels relative to that of the polarization separation element Bl. As a result, Yl also becomes extraordinary light for polarization separation element B2, and after passing through this polarization separation element B2, the short side of the right isosceles triangle (the long side is separated by polarization separation element Bl) as shown in the figure. It moves by I/VT of the previous separation width d along the direction of movement) to reach the position of the perpendicular vertex. On the other hand, for polarization separation element B3, rotate the plane of the optical axis by ±90 degrees with respect to polarization separation element B2, and align it with the polarization direction of component X, which has gone straight through polarization separation element B2. Since it becomes ×1 or extraordinary light, after polarization separation element B3 is directed, only Xl moves as shown in the figure and matches the position of component Y. That is, polarization separation element B 2 ,
By combining B 3 , the two polarized components X , , Y , completely match in position and direction and form one collimated beam. This beam is coupled to an optical fiber r2 by a condensing lens L2. Based on the above operating principle, it can be seen that there is no polarization dependence at all in the forward direction, and there is no fundamental transmission loss.

次に、逆方向の特性について(ロ)により説明する。光
ファイバr2を通して戻る光はレンズL2によりコリメ
ートされて偏波分離素子B 3 、B 2を通過する。
Next, the characteristics in the reverse direction will be explained in (b). The light returning through the optical fiber r2 is collimated by the lens L2 and passes through the polarization separation elements B 3 and B 2 .

通過した光は上記説明から理解できるように、順方向成
分X、、Y、と全く同じ偏波方向および光軸の位置を有
する偏波成分Xx、Ytに分離される。次に、X t 
、 Y tがファラデー素子R1を通過すると、回転方
向は光の入射方向に依存しないというファラデー回転の
特性より、偏波方向は更に時計方向に45°回転してそ
れぞれXYlの偏波方向と直交する。即ち、逆方向成分
か偏波分離素子Blに入射する時点ては、順方向で常光
成分の×1の位置(直進の位置)に異常光が入射し、異
常光成分のY、の位置(移動した所)には常光か入射す
ることになる。従ってX 、 、 Y 。
As can be understood from the above description, the passed light is separated into polarization components Xx and Yt having exactly the same polarization direction and optical axis position as the forward direction components X, , Y. Next, X t
, Yt passes through the Faraday element R1, due to the characteristic of Faraday rotation that the rotation direction does not depend on the incident direction of light, the polarization direction is further rotated by 45 degrees clockwise and becomes orthogonal to the polarization direction of XYl, respectively. . That is, at the time when the backward component enters the polarization separation element Bl, the extraordinary light is incident at the x1 position (straight forward position) of the ordinary light component in the forward direction, and the position Y (movement) of the extraordinary light component is (where it is), ordinary light will be incident. Therefore, X, , Y.

が偏波分離素子B1を通過すると、図に示すように、順
方向の光軸からそれぞれ上下にdだけシフトした位置に
戻ることになる。光軸からの軸ずれのあるコリメートビ
ームはレンズし1で光ファイバflのコアに対応する一
点に集束されるが、レンズの焦点距離をf、軸ずれ量を
dとすると、θ=ldの角度ずれが生じ、θが十分大き
ければ光ファイバとの結合で大きな損失となる。即ち、
順方向は損失が低く、逆方向は損失が大きな偏波依存性
のない光フアイバ形光アイソレータを構成できる。
When the light passes through the polarization separation element B1, the light returns to the position shifted up and down by d from the optical axis in the forward direction, as shown in the figure. A collimated beam with an axis deviation from the optical axis is focused by a lens 1 to a single point corresponding to the core of the optical fiber fl, but if the focal length of the lens is f and the amount of axis deviation is d, then the angle θ = ld. A shift occurs, and if θ is sufficiently large, there will be a large loss due to coupling with the optical fiber. That is,
It is possible to construct an optical fiber type optical isolator that has low loss in the forward direction and large loss in the reverse direction and has no polarization dependence.

この他の構成例として、同一厚さの偏波分離素子Bl、
B3と、偏波分離素子B2として偏波方向を±45°回
転できるl/2波長板もしくは旋光子を用いて乙よい。
As another configuration example, a polarization separation element Bl of the same thickness,
It is preferable to use a 1/2 wavelength plate or an optical rotator capable of rotating the polarization direction by ±45° as B3 and the polarization separation element B2.

この場合、偏波分離素子B1.B3の光学軸と光軸とを
含む而(ヨ一致または180°回転さUて配置されでい
ろことか上記例とは異なる。
In this case, polarization separation element B1. It differs from the above example in that it includes the optical axis of B3 and the optical axis (they are arranged coincident with each other or rotated by 180°).

「発明か解決しようとする課題− ここで、F記の光アイソレータの構成で十分なアイソレ
ーションを得るための条件とその問題点について説明す
る。戻り光のアイソレーションはファラデー回転素子R
1の性能を除外すると、偏波分離素子Blの長さして定
まる軸ずれ量dとコリメートされ1こビームの半径We
との比に依存する。戻り光のファイバへの結合を60d
B以下に抑えるには、d/Wcの値は理論的には約4以
上が必要になる。通常、回折による広がりの小さなコリ
メートビームのビーム半径Wcは250μm以上が必要
であるので、分離幅としてd≧1mmか必要条件になる
。ところで、複屈折りが大きくdが大きく取れるルチル
や方解石結晶を用いてもd 千0.1L  (L=結晶
の長さ)である。これにより、従来の第3図の構成では
偏波分離素子としテl Cl長以上の高価なルチルまた
は方解石結晶か複数個必要になることか分かる。
"Problem to be solved by the invention" Here, we will explain the conditions and problems for obtaining sufficient isolation with the configuration of the optical isolator described in F.
Excluding the performance of 1, the axis deviation amount d determined by the length of the polarization separation element Bl and the radius of the collimated beam We
It depends on the ratio. 60d coupling of return light to fiber
In order to keep the value below B, the value of d/Wc should theoretically be about 4 or more. Normally, the beam radius Wc of a collimated beam with a small spread due to diffraction is required to be 250 μm or more, so the separation width must be d≧1 mm. By the way, even if rutile or calcite crystals, which have large birefringence and can obtain a large d, are used, d is 0.1 L (L=length of the crystal). From this, it can be seen that the conventional configuration shown in FIG. 3 requires a plurality of expensive rutile or calcite crystals with a length longer than TelCl as a polarization separation element.

以上のことから、従来の先アイソレータでは高価でかつ
大きな複屈折結晶か不可欠なため、光アイソレータか極
めて高価になるとともに、偏波分離素子B1.B2.B
3を合わせると2.4cm以上の長さか必要なため小型
化も困難であるという欠点があった。
From the above, the conventional tip isolator requires an expensive and large birefringent crystal, which makes the optical isolator extremely expensive, and the polarization separation element B1. B2. B
The disadvantage is that it is difficult to downsize because the total length of 3 is required to be 2.4 cm or more.

本発明は、薄い偏波分離素子の適用が可能であって、低
価格化と同時に小型化が可能な偏波依存性のない光アイ
ソレータを提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical isolator that is free from polarization dependence and allows the application of a thin polarization separation element, which can be reduced in price and size.

「課題を解決するための手段」 上記目的を達成するため、請求項1の発明は、入射用光
ファイバと、直交する偏波を平行にずらす平板状の第1
の偏波分離素子と、コリメート用の第1のレンズと、偏
波方向を45°回転させるファラデー回転素子と、集束
用の第2のレンズと、平行にずれた2つの偏波を合わせ
る平板状の第2の偏波分離素子と、受光用光ファイバと
をこの順序に配列してなり、F記入射用先ファイバから
上記第1の偏波分離素子を通過さ0て出射し7−光を上
記第1のレンズにより概ねコリメートビーム、に変換し
、さらに上記ファラデー回転素子を通過した上記コリメ
ートビームを上記第2のレンズにより集束ビームに変換
して第2の偏波分離素子介して受光用ファイバに結合さ
せるようにした乙のである。
"Means for Solving the Problem" In order to achieve the above object, the invention of claim 1 provides an input optical fiber and a flat first optical fiber that shifts orthogonal polarized waves in parallel.
a polarization separation element, a first lens for collimating, a Faraday rotation element that rotates the polarization direction by 45 degrees, a second lens for focusing, and a flat plate-shaped device that combines two polarized waves shifted in parallel. A second polarized wave splitting element and a light receiving optical fiber are arranged in this order, and the light is emitted from the F input destination fiber through the first polarized wave splitting element. The first lens converts the collimated beam into a generally collimated beam, and the second lens converts the collimated beam that has passed through the Faraday rotation element into a focused beam, which is then sent to a light-receiving fiber via a second polarization separation element. This is the one I made to combine it with .

また、請求項2の発明は、上記第2の偏波分離素子とし
て、偏波による光軸のずれ量が第1の偏波分離素子のず
れ量のI/ffとなる2つの分離素子を各々のずれ方向
が直交するように組み合わせて構成したり、または、偏
波方向を45°口転させる波長板もしくは旋光子と、偏
波による光軸のずれ量が第1の偏波分離素子と等しい分
離素子とを組み合わせて構成したものである。
Further, the invention of claim 2 provides, as the second polarization separation element, two separation elements each having a deviation amount of the optical axis due to the polarization equal to I/ff of the deviation amount of the first polarization separation element. or a wavelength plate or optical rotator that rotates the polarization direction by 45 degrees, and the amount of deviation of the optical axis due to polarization is equal to that of the first polarization separation element. It is constructed by combining a separation element.

また、請求項3の発明は、請求項1または2に記載の先
アイソレータにおいて、入射用光ファイバをほぼ第!の
レンズの物空間焦点面の位置に配置し、第1のレンズと
第2のレンズの主面間の間隔をほぼ両との焦点距離の和
の位置に配置し、かっ出q=を用光ファイバをほぼ第2
のレンズの像空間用点面の位置に配置するようにしたC
)のである。
Further, the invention according to claim 3 provides the first isolator according to claim 1 or 2, in which the input optical fiber is arranged at approximately the third point! The distance between the principal surfaces of the first lens and the second lens is approximately equal to the sum of their focal lengths, and the projection q= approximately the second fiber
C is placed at the position of the image space point plane of the lens.
).

「作用 J 本発明の先アイソレータては、先ファイバとレンズの間
に第1の偏波分離素子を挿入した構成とした乙のである
。そして、光ファイバを出射したビームは、まず第1の
偏波分離素子によって常光成分と異常光成分とが平行に
ずれた二つのビームに分離され、第1のレンズでコリメ
ートされて偏波間の位置ずれが角度ずれに変換された後
、ファラデー回転素子R1により各成分の偏波方向がそ
れぞれ45°回転し、更に、コリメートビームは第2の
レンズにより受光用光ファイバに集束するビームに変換
されるが、その時、両偏波間の角度ずれは再び位置ずれ
に変換され、それら集束ビームは第2の偏波分離素子に
より位置ずれを受けて、角度、位置ずれの無い一つのビ
ームになり、従って、両偏波とも受光用光ファイバに結
合される。
``Function J'' The first isolator of the present invention has a structure in which a first polarization separation element is inserted between the first fiber and the lens.The beam emitted from the optical fiber is first polarized by the first polarization. The ordinary light component and the extraordinary light component are separated into two parallel beams by the wave separation element, collimated by the first lens, and the positional deviation between the polarized waves is converted into an angular deviation, and then the Faraday rotation element R1 The polarization direction of each component is rotated by 45 degrees, and the collimated beam is further converted by the second lens into a beam that is focused on the receiving optical fiber, but at this time, the angular deviation between the two polarized waves becomes a positional deviation again. After conversion, these focused beams are subjected to a positional shift by a second polarization separation element to become a single beam with no angle or positional shift, and therefore both polarized waves are coupled to a receiving optical fiber.

また、第2の偏波分離素子として、偏波による光軸のず
れ噴が第1の偏波分離素子のずれ量の1/nとなる2つ
の分離素子を各々のずれ方向か直交するように組み合わ
口゛で構成したり、まj:は、偏波方向を45°回転さ
d・る波長板(、シ<は旋光子と、偏波による光軸のす
れ看か第1の偏波分離素子と等しい分離素子とを組み合
わせることにより、2つの偏波成分は位置、方向とも完
全に一致して一つのコリメートビームとなり、そのビー
ムが第2のレンズにより受光用光ファイバに結合される
In addition, as a second polarization separation element, two separation elements are arranged so that the deviation of the optical axis due to polarization is 1/n of the deviation amount of the first polarization separation element, and the deviation direction of each is orthogonal. It can be constructed with a combination of a wavelength plate (d), which rotates the polarization direction by 45 degrees, and a first polarization splitter, which rotates the polarization direction by 45 degrees. By combining the element with an equal separation element, the two polarized components completely match in both position and direction, forming one collimated beam, and the beam is coupled to the light-receiving optical fiber by the second lens.

さらに、入射用光ファイバをほぼ第1のレンズの物空間
焦点面の位置に配置し、第1のレンズと第2のレンズの
主面間の間隔をほぼ両者の焦点距離の和の位置に配置し
、かつ出射用光ファイバをほぼ第2のレンズの像空間焦
点面の位置に配置することにより、二つの偏波がそれら
二つのレンズで位置−角度変換、角度−位置変換を受け
るときに発生する光ファイバの位置での角度ずれが解消
する。
Further, the input optical fiber is arranged approximately at the position of the object space focal plane of the first lens, and the distance between the principal surfaces of the first lens and the second lens is arranged at a position approximately equal to the sum of the focal lengths of both lenses. By arranging the output optical fiber approximately at the image space focal plane of the second lens, the two polarized waves are generated when the two lenses undergo position-angle transformation and angle-position transformation. This eliminates the angular deviation at the position of the optical fiber.

[実施例、1 以下に本発明の詳細な説明する。第1図は本発明の一実
施例を示す構成図、第2図はその動作を説明するための
図である。
[Example 1] The present invention will be described in detail below. FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram for explaining its operation.

第1図に示されるように、本実施例の光アイソレータは
、入射用光ファイバ「Iと、直交する偏波を平行にずら
す平板状の第1の偏波針M稟千Blと、コリメート用の
第1のレンズL!と、偏波方向を45°回転させるファ
ラデー回転素子R1と、集束用の第2のレンズL2と、
平行にずれた2つの偏波を合わせる平板状の第2の偏波
分離素子と、受光用光ファイバr2とがその順序に配列
された構成とされている。なお、上記第2の偏波分離素
子としては、偏波による光軸のずれ量が第1の偏波分離
素子Blのずれ量のl/JTとなる2つの分離素子B 
2 、B 3が各々のずれ方向が直交するように組み合
わせられた構成とされているが、偏波方向を45°回転
させる波長板もしくは旋光子と、偏波による光軸のずれ
量が第1の偏波分離素子Blと等しい分離素子とを組み
合わせるように構成しても良い。
As shown in FIG. 1, the optical isolator of this embodiment consists of an input optical fiber "I", a flat plate-shaped first polarization needle "M" which shifts orthogonal polarized waves in parallel, and a collimating optical fiber "I". A first lens L!, a Faraday rotation element R1 that rotates the polarization direction by 45 degrees, and a second lens L2 for focusing.
A second polarization separation element having a flat plate shape that combines two polarized waves shifted in parallel with each other and a light receiving optical fiber r2 are arranged in that order. The second polarization separation element includes two separation elements B in which the amount of deviation of the optical axis due to polarization is l/JT of the amount of deviation of the first polarization separation element Bl.
2 and B3 are combined so that their respective deviation directions are perpendicular to each other, but the wavelength plate or optical rotator that rotates the polarization direction by 45 degrees and the optical axis deviation amount due to polarization are the first. The polarization separation element Bl may be combined with an equal separation element.

上記構成の先アイソレータの動作を第2図(イ)(ロ)
により説明する。
Figure 2 (a) and (b) show the operation of the isolator with the above configuration.
This is explained by:

まず、順方向の動作について(イ)により説明する。先
ファイバ「lを出射したビームは、第3図で説明した従
来の方法と同様の動作原理により、偏波分離素子Blて
常光成分X1、異常光成分Y1が平行にdだけずれたビ
ームに分離される。(すし、その分離幅は小さく、かつ
、光ファイバからの出射光は回折により大きく広がるの
で(その状態は図示せず)、偏波分離素子B1を通過し
てもXおよびY、の成分は空間的に分離されたビームと
はならない。従って、レンズLlでコリメートされた光
のビームはほぼ1つのビームに見える。但し、直交する
偏波間の位置ずれdは、コリメート後は位置ずれdとレ
ンズの焦点距Mfの比で決まる角度ずれθに変換される
。次に、ファラデー回転素子R1により、X3、Y、成
分はそれぞれ偏波方向が45°回転する。更に、レンズ
L2により、コリメートビームは先ファイバへ集束する
ビームに変換される (図示せず)。この時、両偏波間
の角度ずれθはmび位置ずれdに変換される。これら集
束ビームは偏波分離素子B2.B3により従来の場合と
同様の位置ずれを受け、角度、位置ずれの無い一つのビ
ームになる。従って、両偏波とも光ファイバ「2に結合
される。ここで、レンズL1とレンズL2の焦点距M 
r 1. r !を等しく1.でおくと、同一のモード
フィールド径を有する入射側と出射側光ファイバの低損
失結合が実現できる。
First, the forward direction operation will be explained using (a). Using the same operating principle as the conventional method explained in Fig. 3, the beam emitted from the end fiber is separated by the polarization splitter Bl into a beam in which the ordinary light component X1 and the extraordinary light component Y1 are shifted in parallel by d. (However, since the separation width is small and the light emitted from the optical fiber is greatly spread by diffraction (this state is not shown), even if it passes through the polarization separation element B1, the X and Y The components are not spatially separated beams.Therefore, the beam of light collimated by lens Ll appears as almost one beam.However, the positional deviation d between orthogonal polarized waves is equal to the positional deviation d after collimation. The polarization direction of each of the X3 and Y components is rotated by 45 degrees by the Faraday rotation element R1.Furthermore, the collimation is performed by the lens L2. The beam is converted into a beam that is focused on the destination fiber (not shown). At this time, the angular deviation θ between both polarizations is converted into m and positional deviation d. These focused beams are separated by polarization separation elements B2 and B3. The beam undergoes the same positional shift as in the conventional case, and becomes a single beam with no angle or positional shift. Therefore, both polarized waves are coupled to the optical fiber "2." Here, the focal lengths of lenses L1 and L2 are M
r1. r! Equally 1. By setting it as , it is possible to achieve low-loss coupling between the input side and output side optical fibers having the same mode field diameter.

以上の動作説明では、二つの偏波がレンズLl、レンズ
L2で位置−角度変換、角度−位置変換を受ける時に発
生する光ファイバの位置での角度ずれの発生を無視した
。しかし、これはレンズLlとレンズL2の間隔を二つ
の焦点距離の和に等しくする共焦点系を採用すると完全
に零にできる。
In the above explanation of the operation, the occurrence of angular deviation at the position of the optical fiber, which occurs when two polarized waves undergo position-angle conversion and angle-position conversion at the lens Ll and the lens L2, has been ignored. However, this can be completely reduced to zero by adopting a confocal system in which the distance between the lenses Ll and L2 is equal to the sum of the two focal lengths.

第2図はその特例である。Figure 2 is a special case.

ここで、上記共焦点系からのずれの影響について考察す
る。間隔りの共焦点系からずれをΔ、レンズL1.L2
の焦点距離をfとすると、二つの偏波間の光ファイバに
入射される点における角度ずれΔθは次式で与えられる
Here, the influence of deviation from the above confocal system will be considered. The deviation from the confocal system of the interval is Δ, and the lens L1. L2
When the focal length of is f, the angular shift Δθ between the two polarized waves at the point where they are incident on the optical fiber is given by the following equation.

ΔOγ (d/l’)(Δ/「)         ・
  (])已し、〔1は偏波分離素子B]て生りる1ケ
置すれ槓である。これにより、角度すれΔθはΔに比例
して大きくなるか、dを小さくする二とて結合損失の増
加を低減することかできる。例えば、△θに対中ろ結合
効率η (Δθ)は次式で与えられる。
ΔOγ (d/l') (Δ/") ・
(]) Then, [1 is the polarization separation element B]. As a result, the angular deviation Δθ can be increased in proportion to Δ, or the increase in coupling loss can be reduced by decreasing d. For example, the coupling efficiency η (Δθ) for Δθ is given by the following equation.

η(Δθ) = expニー  (π・ω・Δθ/λ)
″)= eXpp−(π+ (IJ ・d ・Δ/r2
λ)2)・・・・・(2) ここで、ωは先ファイバのモードフィールド半径(−5
μm)である。そして、レンズの焦点距離をf=2+n
n+、分離幅をd=50μm、波長λ−1,55umと
すると、結合効率ηはΔの関数となり、以下の式で表さ
れる。
η(Δθ) = exp knee (π・ω・Δθ/λ)
″)= eXpp−(π+ (IJ ・d ・Δ/r2
λ)2)・・・(2) Here, ω is the mode field radius (−5
μm). Then, the focal length of the lens is f=2+n
When n+, separation width d=50 μm, and wavelength λ−1, 55 μm, the coupling efficiency η becomes a function of Δ and is expressed by the following equation.

η (Δ) =exp((Q、127XΔ (I!m)
 ) ’)・・・・・ (3) この場合、Δ=2mmまたは1mmとしても、それぞれ
0.279dB、0.07dBの損失と小さくなり、共
惧点系からのずれに対して角度誤差による損失を十分低
減できる。
η (Δ) = exp((Q, 127XΔ (I!m)
)')... (3) In this case, even if Δ=2mm or 1mm, the loss is small at 0.279dB and 0.07dB, respectively, and the loss due to angular error due to deviation from the common point system can be sufficiently reduced.

即し、従来は光ファイバからの出射ビームをし7ズてコ
リメートする前に偏波分離素子で位置ずれを加えろと、
コリメートされた2つのビームが互いに平行にならない
ため、両偏波の結合効率に差か生しると信しられていた
が、共焦点系を採用することてこの差異はなくせるもの
である。また、分離幅dを小さくすることで、共焦点か
らのずれを比較的大きくできることか分かる。
Therefore, conventionally, before the beam emitted from the optical fiber is shifted and collimated, a polarization separation element is used to add a positional shift.
It was believed that because the two collimated beams are not parallel to each other, there would be a difference in the coupling efficiency between the two polarized waves, but by adopting a confocal system, this difference can be eliminated. It can also be seen that by reducing the separation width d, the deviation from the confocal position can be made relatively large.

次に、逆方向の動作特性について(ロ)により説明する
。この場合も偏波分離素子の動作は第4図に示した従来
系と同じである。しかし、偏波分離素子がレンズと先フ
ァイバの間に挿入されているため、逆方向の二つの偏波
が光ファイバに集束される様子が異なる。即ち、逆方向
のXt、Yv偏波は、位置ずれdを受けた後レンズL2
でコリメートされると、角度ずれθに変換され、レンズ
L!で集束されると再び位置ずれdに戻されて偏波分離
素子Blに入射する。この時、常光、異常光の関係が入
れ替わっているので、光ファイバに集束される位置では
、X t 、 Y tは順方向の光軸からそイ1ぞれ上
下にdだけソフトする。また、多1G焦点系に近ければ
、:’Ct、Yzとら角度すイコ(よ発生しない。
Next, the operation characteristics in the reverse direction will be explained in (b). In this case as well, the operation of the polarization separation element is the same as in the conventional system shown in FIG. However, since the polarization separation element is inserted between the lens and the end fiber, the manner in which the two polarized waves in opposite directions are focused onto the optical fiber is different. That is, the Xt and Yv polarized waves in the opposite directions are transmitted through the lens L2 after receiving the positional shift d.
When collimated by , it is converted into an angular deviation θ, and the lens L! When it is focused at , it is returned to the positional shift d and enters the polarization separation element Bl. At this time, the relationship between the ordinary light and the extraordinary light is reversed, so at the position where the light is focused on the optical fiber, X t and Y t are softened by d in the vertical direction from the optical axis in the forward direction. Also, if it is close to a multi-1G focal system, the angle between Ct and Yz will not occur.

これに対して、従来の場合には、光ファイバに入射する
点ては位置すれはなく、角変ずれのみを初用してアイソ
レーションを得でいる。
On the other hand, in the conventional case, there is no positional shift at the point where the light enters the optical fiber, and isolation is obtained by using only the angular shift.

次に、必要な位置ずれldについて言及する。Next, the necessary positional deviation ld will be mentioned.

光ファイバのモードフィールド早産をωとすると、位置
ずれIdに対する結合効率ηは次式で与えられろ。
Letting the mode field premature birth of the optical fiber be ω, the coupling efficiency η with respect to the positional deviation Id is given by the following equation.

y7  (d ) =  exp(−(d /ω)”3
  −  (4)これより、位置ずれ量dとモードフィ
ールド半径ωの比をd/ω≧4とすると、理論的には6
9dB以上のアイソレーションか得られる。また、安全
係数を見込んでこの比を5以上と仮定しても、ωか5μ
mと小さいため、偏波分離素子の分離幅dは25μmと
極めて小さな値でも十分になる。
y7 (d) = exp(-(d/ω)”3
- (4) From this, if the ratio of the positional deviation amount d and the mode field radius ω is d/ω≧4, theoretically 6
Isolation of 9dB or more can be obtained. Also, even if we assume that this ratio is 5 or more considering the safety factor, ω or 5μ
Since the polarization separation width d is as small as m, an extremely small value of 25 μm is sufficient for the separation width d of the polarization separation element.

これにより、分離素子の厚さは250μl程麿と極めて
薄くすることが可能になる。これに対して、従来におい
てはωの大きなコリメートビームの中にプリズムを挿入
していたため、本質的に分離幅の大きな結品が必要であ
ったのである。
As a result, the thickness of the separation element can be made extremely thin, approximately 250 μl. In contrast, in the past, a prism was inserted into a collimated beam with a large ω, which essentially required a beam with a large separation width.

「発明の効果」 以上で詳細に説明したように、本発明によれば、偏波分
離素子を先ファイバとレンズの間に挿入する構成とした
ので、高価な偏波分離素子の長さを著しく小さくでき、
したがって、従来のものに比して十分にコンパクトであ
るとともに著しく安価な偏波無依存形の光ファイバ形光
アイソレータを実現できる、という優れた効果を奏する
"Effects of the Invention" As explained in detail above, according to the present invention, the polarization separation element is inserted between the tip fiber and the lens, so the length of the expensive polarization separation element can be significantly reduced. Can be made small,
Therefore, it is possible to realize a polarization-independent optical fiber optical isolator that is sufficiently compact and significantly cheaper than the conventional one, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、第2図(イ)。 (ロ)はその動作を説明するための図、第3図は従来の
光アイソレータの構成図、第4図(イ)、(ロ)はその
動作を説明するための図である。
FIG. 1 is a configuration diagram of an embodiment of the present invention, and FIG. 2 (A). (B) is a diagram for explaining its operation, FIG. 3 is a block diagram of a conventional optical isolator, and FIGS. 4 (A) and (B) are diagrams for explaining its operation.

Claims (3)

【特許請求の範囲】[Claims] (1)入射用光ファイバと、直交する偏波を平行にずら
す平板状の第1の偏波分離素子と、コリメート用の第1
のレンズと、偏波方向を45°回転させるファラデー回
転素子と、集束用の第2のレンズと、平行にずれた2つ
の偏波を合わせる平板状の第2の偏波分離素子と、受光
用光ファイバとをこの順序に配列してなり、上記入射用
光ファイバから上記第1の偏波分離素子を通過して出射
した光を上記第1のレンズにより概ねコリメートビーム
に変換し、上記ファラデー回転素子を通過した上記コリ
メートビームを上記第2のレンズにより集束ビームに変
換し、第2の偏波分離素子を通過させて受光用ファイバ
に結合させることを特徴とする光アイソレータ装置。
(1) An input optical fiber, a flat plate-shaped first polarization separation element that shifts orthogonal polarized waves in parallel, and a first collimating optical fiber.
a Faraday rotation element that rotates the direction of polarization by 45 degrees, a second lens for focusing, a second polarization separation element in the form of a plate that combines two polarized waves shifted in parallel, and a second polarization separation element for light reception. and the optical fibers are arranged in this order, and the light emitted from the input optical fiber after passing through the first polarization separation element is roughly converted into a collimated beam by the first lens, and the light is converted into a collimated beam by the above Faraday rotation. An optical isolator device characterized in that the collimated beam that has passed through the element is converted into a focused beam by the second lens, which is passed through a second polarization separation element and coupled to a light-receiving fiber.
(2)上記第2の偏波分離素子として、偏波による光軸
のずれ量が第1の偏波分離素子のずれ量の1/√2とな
る2つの分離素子を各々のずれ方向が直交するように組
み合わせること、または、偏波方向を45°回転させる
波長板もしくは旋光子と、偏波による光軸のずれ量が第
1の偏波分離素子と等しい分離素子とを組み合わせるこ
とを特徴とする請求項1に記載の光アイソレータ装置。
(2) As the second polarization separation element, two separation elements whose deviation directions of the optical axes due to polarization are 1/√2 of the deviation of the first polarization separation element are orthogonal to each other. or a combination of a wavelength plate or optical rotator that rotates the polarization direction by 45 degrees and a separation element whose optical axis shift amount due to polarization is equal to that of the first polarization separation element. The optical isolator device according to claim 1.
(3)入射用光ファイバをほぼ第1のレンズの物空間焦
点面の位置に配置し、第1のレンズと第2のレンズの主
面間の間隔をほぼ両者の焦点距離の和の位置に配置し、
かつ出射用光ファイバをほぼ第2のレンズの像空間焦点
面の位置に配置することを特徴とする請求項1または2
に記載の光アイソレータ装置。
(3) Arrange the input optical fiber at approximately the position of the object space focal plane of the first lens, and set the distance between the principal surfaces of the first lens and the second lens to approximately the sum of their focal lengths. place,
Claim 1 or 2, wherein the output optical fiber is disposed approximately at the focal plane of the image space of the second lens.
The optical isolator device described in .
JP23774390A 1990-09-07 1990-09-07 Optical isolator device Expired - Fee Related JP2905847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23774390A JP2905847B2 (en) 1990-09-07 1990-09-07 Optical isolator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23774390A JP2905847B2 (en) 1990-09-07 1990-09-07 Optical isolator device

Publications (2)

Publication Number Publication Date
JPH04116616A true JPH04116616A (en) 1992-04-17
JP2905847B2 JP2905847B2 (en) 1999-06-14

Family

ID=17019815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23774390A Expired - Fee Related JP2905847B2 (en) 1990-09-07 1990-09-07 Optical isolator device

Country Status (1)

Country Link
JP (1) JP2905847B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860731A1 (en) * 1997-02-25 1998-08-26 Hewlett-Packard Company Compact, low crosstalk, three-port optical circulator
EP0945750A2 (en) * 1998-03-23 1999-09-29 Jds Fitel Inc. Polarizing beam splitter/combiner
US6014475A (en) * 1995-12-14 2000-01-11 Australian Technology Park Photonic Technologies Pty. Ltd. Fiber optic circulator
JP2007199112A (en) * 2006-01-23 2007-08-09 Fdk Corp Reflection type optical attenuator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014475A (en) * 1995-12-14 2000-01-11 Australian Technology Park Photonic Technologies Pty. Ltd. Fiber optic circulator
EP0860731A1 (en) * 1997-02-25 1998-08-26 Hewlett-Packard Company Compact, low crosstalk, three-port optical circulator
US6026202A (en) * 1997-02-25 2000-02-15 Hewlett-Packard Company Compact, low crosstalk, three-port optical circulator
EP0945750A2 (en) * 1998-03-23 1999-09-29 Jds Fitel Inc. Polarizing beam splitter/combiner
EP0945750A3 (en) * 1998-03-23 2001-02-07 Jds Fitel Inc. Polarizing beam splitter/combiner
JP2007199112A (en) * 2006-01-23 2007-08-09 Fdk Corp Reflection type optical attenuator

Also Published As

Publication number Publication date
JP2905847B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
JP2983553B2 (en) Optical non-reciprocal device
JP3316543B2 (en) Optical circulator
JP2774467B2 (en) Polarization independent optical isolator
EP1176451A2 (en) Isolated polarization beam splitter and combiner
US7081996B2 (en) Isolated polarization beam splitter and combiner
US6040942A (en) Polarization separator/combiner
JPH05224153A (en) Optical isolator
US20010048782A1 (en) In-line fiber optic polarization combiner/divider
EP0552783B1 (en) Optical isolator device
US6711311B2 (en) Polarization beam splitter or combiner
CA2344021C (en) Polarization beam splitter or combiner
JPH1062720A (en) Optical coupling module
US6545805B2 (en) Polarization-dependent retroreflection mirror device
US6246518B1 (en) Reflection type optical isolator
JPH04116616A (en) Optical isolator device
JP3368209B2 (en) Reflective optical circulator
US20020191284A1 (en) Optical circulator
JPH1172747A (en) Optical circulator
CA2328564C (en) Multi-stage optical isolator
JP2002296544A (en) 3-port miniaturized optical circulator
CN215264114U (en) Reflective optical circulator
US20020110305A1 (en) Reflective optical circulator
CN215264115U (en) Reflective optical circulator
JPH0634915A (en) Optical isolator, light amplifier provided with the optical isolator, and duplex optical transmission system provided with the optical amplifier
US6624938B1 (en) Optical circulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees