JPH04116609A - Heat resistant optical fiber - Google Patents

Heat resistant optical fiber

Info

Publication number
JPH04116609A
JPH04116609A JP2237676A JP23767690A JPH04116609A JP H04116609 A JPH04116609 A JP H04116609A JP 2237676 A JP2237676 A JP 2237676A JP 23767690 A JP23767690 A JP 23767690A JP H04116609 A JPH04116609 A JP H04116609A
Authority
JP
Japan
Prior art keywords
optical fiber
organometallic
glass
polymer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2237676A
Other languages
Japanese (ja)
Other versions
JP2782935B2 (en
Inventor
Ryoichi Ito
伊東 亮一
Toshihide Tokunaga
徳永 利秀
Yoshinori Kurosawa
芳宣 黒沢
Takeshi Okubo
豪 大窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2237676A priority Critical patent/JP2782935B2/en
Publication of JPH04116609A publication Critical patent/JPH04116609A/en
Application granted granted Critical
Publication of JP2782935B2 publication Critical patent/JP2782935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To easily peel a coating material from a glass optical fiber and to facilitate connection or terminal processing work by interposing an organometal compound which adds the property of peeling at a boundary between a glass and the jacket material. CONSTITUTION:In this heat resistant optical fiber coated with the jacket material made of organometal polymer composition, the organometal compound which adds the property of peeling from the glass is interposed at the boundary between the glass constituting a fiber and the jacket material, so that the jacket material is easily removed. The organometal polymer has repeating units including at least one or more metals in a molecule and also has at least one or more three-dimensional structural unit as well as an organic group before curing. Thus, the jacket material is easily removed by the terminal processing of the optical fiber or connecting work thereof, and the workability is improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は耐熱性光ファイバに係り、特に耐熱被覆材とし
て被覆される有機金属ポリマ組成物の剥離性を改善した
ものに間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a heat-resistant optical fiber, and more particularly to a heat-resistant coating with improved peelability of an organometallic polymer composition coated thereon.

[従来の技術] 光ファイバは通信用ばかりでなくデータ処理や計測の分
野に使用されてきている。特にこの分野では、高温で使
用する耐熱光ファイバの要求が高まっており、これに対
処するため金属、セラミックス等を被覆した光ファイバ
が検討されている。
[Prior Art] Optical fibers have been used not only for communications but also in the fields of data processing and measurement. Particularly in this field, there is an increasing demand for heat-resistant optical fibers that can be used at high temperatures, and to meet this demand, optical fibers coated with metals, ceramics, etc. are being considered.

しかし金属を被覆した光ファイバは、一般に耐熱性にす
ぐれた金属を用いるとマイクロヘン(・損失を生じやす
く、逆にマイクロヘンド損失を防止する金属を用いると
耐熱性に乏し、いという傾向にある。
However, metal-coated optical fibers generally tend to suffer from microhend loss if a metal with excellent heat resistance is used, and conversely, if a metal that prevents microhend loss is used, the heat resistance tends to be poor. be.

一方、セラミックスは延性に乏しいため曲げに対して極
度に弱く、バーメツチクコーティングのように数100
〜1000人といった極薄膜の被覆として使われる程度
であった。このような二とから有機物の耐熱性を上回る
被覆材として有機金属ポリマが提案されている。これは
無機物を骨格として側鎖ここ有機物を付加したものであ
るため、無機物と有機物の中間の可撓性と耐熱性を保持
している。
On the other hand, ceramics are extremely weak against bending due to their poor ductility, and are
It was only used as an extremely thin film coating for ~1000 people. Due to these two reasons, organometallic polymers have been proposed as coating materials that exceed the heat resistance of organic materials. Since this material has an inorganic backbone and an organic material added to its side chain, it maintains flexibility and heat resistance that are between those of inorganic materials and organic materials.

またポリイミドのような有機ポリマと異なり、高温で熱
分解しても無機物が残存するという特徴を有する。
Also, unlike organic polymers such as polyimide, it has the characteristic that inorganic substances remain even if it is thermally decomposed at high temperatures.

[発明が解決しようとする課題] 上述した有機金属ポリマは、無機物を骨格とすることに
加えてポリマ末端に存在するOH基等かガラスと反応す
る可能性があるため、光ファイバとの接着性が非常に良
好である。この二とによって機械的強度等の信頼性は向
上している。
[Problems to be Solved by the Invention] The above-mentioned organometallic polymer has an inorganic backbone, and the OH groups present at the end of the polymer may react with glass, so it has poor adhesion with optical fibers. is very good. These two improvements improve mechanical strength and other reliability.

しかし・その反面、被覆を才の剥離か要求さnる端末処
理や接続作業ユニおいて次のような王都台が生し・でい
る。
However, on the other hand, the following problems arise in terminal processing and connection work units that require careful removal of the coating.

すなオツち、硬化した有機金属ポリマは耐薬品性に優れ
ているため、化学的ユニ被覆材を除去する二とが極めて
困難である。
In fact, because the cured organometallic polymer has excellent chemical resistance, it is extremely difficult to remove the chemical coating.

また一般に、有機金属ポリマの被覆が有機の被覆材より
硬いため機械的な方法によって除去しようとした場合、
光ファイバに損傷を与える可能性が大きい。
Additionally, metal-organic polymer coatings are generally harder than organic coatings, so if you try to remove them mechanically,
There is a high possibility of damaging the optical fiber.

さらに有機物のように燃焼、紫外線、オゾン等による分
解を試みても無機物が残存し、しかもカラスと強固に接
着してしまうという欠点がある。
Furthermore, even if attempts are made to decompose organic materials through combustion, ultraviolet rays, ozone, etc., inorganic materials remain and, moreover, they have the disadvantage of firmly adhering to the crow.

そこで、このような欠点を解消するために離型剤を用い
ることか考えられる。しかし、通常離型剤として用いら
れるふっ素を含む樹脂や油、ステアリン酸等の脂肪酸や
金属石鹸、炭化水素油やワックス等は、ふっ素脂肪やふ
っ素泊のように初期の段階で剥離の効くものもあるが、
高温で使用した場合、ぶつ化水素のような侵食性のガス
が発生して光ファイバの強度蕃著しく低下させるという
欠点がある。
Therefore, it may be possible to use a mold release agent to eliminate such drawbacks. However, fluorine-containing resins and oils, fatty acids such as stearic acid, metal soaps, hydrocarbon oils, waxes, etc. that are usually used as mold release agents, such as fluorine-containing fats and fluorine-containing foams, may be effective in releasing the mold at an early stage. Yes, but
When used at high temperatures, corrosive gases such as hydrogen fluoride are generated, which significantly reduces the strength of the optical fiber.

また、上記以外の他の離型剤では、硬化過程あるいは高
温使用時に離型剤が急激に熱分解して有害な水素を生成
して伝送損失の増大をもたらしたり、場合によっては被
覆材に気泡を形成することによって光ファイバの機械的
強度が低下したりする可能性がある。
In addition, with other mold release agents other than those listed above, the mold release agent may rapidly thermally decompose during the curing process or when used at high temperatures, producing harmful hydrogen and increasing transmission loss, and in some cases may cause bubbles to form in the coating material. , the mechanical strength of the optical fiber may be reduced.

したがって、剥離性の付与された有機金属ポリマを提供
できれば、光ファイバの端末処理や接続作業において当
該部の被覆材を容易に除去することが可能となり、工業
上の寄与は極めて大きいものと考える。
Therefore, if we can provide an organometallic polymer with releasability, it will be possible to easily remove the covering material at the relevant part during optical fiber terminal processing and connection work, and we believe that this will make an extremely large contribution to industry.

本発明の目的は、前記した従来技術の欠点を解消し、カ
ラスとの剥離性が良好な耐熱性光ファイバを提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a heat-resistant optical fiber that has good peelability from glass.

[課題を解決するための手段] 本発明の耐熱性光ファイバは、有機金属ポリマ組成物か
らなる被覆材を被覆し・た耐熱性光ファイバに適用さz
する。このような光ファイバにおいて、ファイバを構成
する方ラスと上記被覆材との界面ここ、ガラスとの剥離
性を付与する有機金属化合物を介在させ、それによって
被覆材を除去しやすくしたものである。
[Means for Solving the Problems] The heat-resistant optical fiber of the present invention is applied to a heat-resistant optical fiber coated with a coating material made of an organometallic polymer composition.
do. In such an optical fiber, an organometallic compound that imparts releasability from the glass is interposed at the interface between the fiber constituting lath and the coating material, thereby making it easier to remove the coating material.

ここで有機金属ポリマとは分子中に少なくとも1個以上
の金属を含む繰り返し単位を有し、かつ硬化前に少なく
とも1個以上の三次元構造単位を有するもので、かつ有
機基をあわせもつものである。
Here, an organometallic polymer is one that has repeating units containing at least one metal in its molecules, has at least one three-dimensional structural unit before curing, and also has an organic group. be.

これに該当するものとしては、ポリチタノカルボシラン
、ポリオルガノシルセスキオキサン、ポリボロシロキサ
ン、ポリシラン、アルミニウム・ホスホン酸ポリマ、カ
ルボランポリマ、シラザンポリマ等がある。
Examples of such materials include polytitanocarbosilane, polyorganosilsesquioxane, polyborosiloxane, polysilane, aluminum/phosphonic acid polymer, carborane polymer, and silazane polymer.

しかし商業的に入手できるものはごく少数であり、ポリ
チタノカルボシラン、ポリオルガノシルセスキオキサン
、ポリボロシロキサン、ポリシラン、カルボランポリマ
等に限られる。もっとも上記に定義した有機金属ポリマ
の範鴫コこはいるものであればこれらに限定されるもの
ではない。
However, only a few are commercially available, and are limited to polytitanocarbosilanes, polyorganosilsesquioxanes, polyborosiloxanes, polysilanes, carborane polymers, and the like. However, the range of organometallic polymers defined above is not limited to these.

第3図〜第7図に代表的な有機金属ポリマの化学構造を
示す。なお、第3図に示すポリチタノカルボシラン二よ
、(、八)か大部分てあり、(B)、(C)が少量存在
する。
The chemical structures of typical organometallic polymers are shown in FIGS. 3 to 7. In addition, the polytitanocarbosilanes 2 and 8 shown in FIG. 3 are mostly present, and (B) and (C) are present in small amounts.

一方、剥離性を付与する物質として、上述した有機金属
ポリマとある程度の相溶性を有するものでガラスと反応
し、にくいものが望ましい。また初期段階で剥離を生し
ても、高温で使用している段階では熱分解して剥離性の
効力を失うものであってもよい。ただし熱分解生成物か
残存することによって光ファイバの特性に悪影響をおよ
;よすものであってはいけない。このような観点から剥
離性を付与する物質自体も有機金属化合物であることが
望ましい。この条件に適合する有機金属化合物としては
分子中にアルキル基やフェニル基のように比較的反応し
にくい基を有するものが好ましい。
On the other hand, as a substance imparting releasability, it is desirable to use a substance that has a certain degree of compatibility with the above-mentioned organometallic polymer and does not easily react with glass. Further, even if peeling occurs in the initial stage, the peeling effect may be lost due to thermal decomposition during use at high temperatures. However, the remaining thermal decomposition products must not adversely affect the properties of the optical fiber. From this point of view, it is desirable that the substance that imparts releasability itself is an organometallic compound. As organometallic compounds that meet this condition, those having a relatively unreactive group such as an alkyl group or a phenyl group in the molecule are preferable.

その中で少なくとも1個のアルキル基を含むものが有用
であることがわかった。
Among them, those containing at least one alkyl group have been found to be useful.

例えばポリジメチルシロキサシ、ポリフェニルメチルシ
ロキサン、ポリオクチルメチルシロキサン、ポリオフダ
ブシルメチルシロキサン等のアルキル基を含有するポリ
シロキサシ、テトラ−n−ブトキシシラン、テトラキス
(2−エチルブトキシ)シラン、テトラキス(2−エチ
ルヘキソキS)シラン、ヘキサキス(2−エチルブトキ
シ)ジンロキサン、メチルトリス(トリーS−ブトキシ
シロキサニル)シラン等のポリアルコキシシロキサン、
メチルトリデシルシラン、メチルトリオクチルシラン等
のアルキル基を有するシラン、テトラステアリルオキシ
チタン等のようなポリアルキロキシチタン、トリーn−
ブトキシチタンモノステアレート重合体等のようなポリ
アルコキシチタンポリマが該当する。
For example, polysiloxanes containing alkyl groups such as polydimethylsiloxane, polyphenylmethylsiloxane, polyoctylmethylsiloxane, polyofdabcylmethylsiloxane, tetra-n-butoxysilane, tetrakis(2-ethylbutoxy)silane, tetrakis(2-ethylbutoxy)silane, - polyalkoxysiloxanes such as ethylhexoxyS) silane, hexakis(2-ethylbutoxy)dineloxane, and methyltris(triS-butoxysiloxanyl)silane;
Silanes having alkyl groups such as methyltridecylsilane and methyltrioctylsilane, polyalkyloxytitaniums such as tetrastearyloxytitanium, tri-n-
Polyalkoxytitanium polymers such as butoxytitanium monostearate polymers are suitable.

ここに列挙したものは、あくまても例示てあって上記の
要件を満たすものであればこれらに限定されるものでは
ない。
The items listed here are merely examples and are not limited to these as long as they meet the above requirements.

なお、同しような基が存在してもステアリル基を有する
ステアリン酸と、有機金属化合物であるテトラステアリ
ルオキシチタンとては分解機構が全く異なっており、有
機金属化合物の方が著し・く分解しにくく、少なくとも
硬化プロセスにおける分解はほとんどみられなかった。
Even if similar groups exist, the decomposition mechanisms of stearic acid, which has a stearyl group, and tetrastearyloxytitanium, which is an organometallic compound, are completely different, and the organometallic compound decomposes more rapidly. At the very least, almost no decomposition was observed during the curing process.

また高温で加熱しても分解は極めて緩慢であるので被覆
に発泡を生ずるようなことはなかった。
Furthermore, even when heated at high temperatures, the decomposition was extremely slow and no foaming occurred in the coating.

なお、こちらの剥離性を付与する有機金属化合物は、有
機金属ポリマとカラスとの間ここ設げて効果を発揮する
が、有機金属ポリマ中に添加する二とによっても効果を
発揮する。後者の場合、添加量はポリマの種類と有機金
属化合物の種類によって異なってくるが、0.05〜5
.0重量部程度添加することか好ましい。量か少なすぎ
ると剥離効果が乏しいのに対して、量が多すぎても効果
が飽和して剥離性は変わらなくなるほか、強度や耐熱性
等光フアイバ性能にも悪影響を生じてくるからである。
The organometallic compound that imparts this releasability is effective when placed between the organometallic polymer and the glass, but it is also effective when added to the organometallic polymer. In the latter case, the amount added varies depending on the type of polymer and the type of organometallic compound, but is 0.05 to 5.
.. It is preferable to add about 0 parts by weight. If the amount is too small, the peeling effect will be poor, whereas if the amount is too large, the effect will be saturated and the peelability will not change, and it will also have a negative effect on the optical fiber performance such as strength and heat resistance. .

[作用コ ガラスと被覆材との界面に被覆材に剥離性を付与する有
機金属化合物を介在させる方法としては、有機金属ポリ
マ組成物中に剥離性を付与する有機金属化合物を添加す
るようにし・でも、予め剥離性を付与する有機金属化合
物を光ファイバに塗布し・てから有機金属ポリマ組成物
を被覆するようにしてもよい。剥離性を付与する有機金
属化合物がガラスと被覆材との界面に存在すると剥離力
が弱くなるのは、ガラスと被覆材の接着、主として静電
的な結合、水素結合、ファンデルワールス力が阻害され
るからであると考えらちる。
[A method for interposing an organometallic compound that imparts releasability to the coating material at the interface between the working glass and the coating material is to add an organometallic compound that imparts releasability to the organometallic polymer composition. Alternatively, an organometallic compound that imparts releasability may be applied to the optical fiber in advance, and then the organometallic polymer composition may be coated. When an organometallic compound that imparts peelability is present at the interface between the glass and the coating material, the peeling force becomes weaker because the adhesion between the glass and the coating material, mainly electrostatic bonds, hydrogen bonds, and van der Waals forces, are inhibited. I think this is because it is done.

まず、本発明の耐熱性光ファイバは、剥離性を付与する
有機金属化合物が添加されている有機金属ポリマからな
る組成物を通常の塗装ダイスを用いて光ファイバの外周
に被覆し、加熱炉を通過させて組成物を硬化させること
によって得られる。
First, the heat-resistant optical fiber of the present invention is produced by coating the outer periphery of an optical fiber with a composition made of an organometallic polymer to which an organometallic compound that imparts peelability is added, using an ordinary coating die, and then heating the fiber in a heating furnace. It is obtained by curing the composition by passing it through.

第1図はこのような耐熱性光ファイバを得るための光フ
アイバ線引ラインを示す。
FIG. 1 shows an optical fiber drawing line for obtaining such a heat-resistant optical fiber.

プリフォーム1を線引炉3て加熱して溶融状態にするこ
とにより光ファイバ2を作る。光ファイバ2は塗装ダイ
ス4を通り、ここで剥離性を付与する有機金属化合物の
添加された有機金属ポリマ13が被覆される。有機金属
ポリマ13の被覆された光ファイバは加熱炉5に導かれ
、ここで被覆された被覆材が加熱により硬化して光ファ
イバに固着される。なお、UV(紫外線)を照射して固
着させてもよい。
An optical fiber 2 is produced by heating the preform 1 in a drawing furnace 3 to bring it into a molten state. The optical fiber 2 passes through a coating die 4, where it is coated with an organometallic polymer 13 doped with an organometallic compound that imparts releasability. The optical fiber coated with the organometallic polymer 13 is led to a heating furnace 5, where the coating material is cured by heating and fixed to the optical fiber. Note that it may be fixed by irradiating UV (ultraviolet light).

固着後の光フアイバ素線7はキャプスタン6により重力
方向から水平方向に進路を切り換えられてボビン(図示
省略)に−気に巻き取られる。
After being fixed, the optical fiber wire 7 is switched from the direction of gravity to the horizontal direction by the capstan 6, and is wound around a bobbin (not shown).

次に本発明の耐熱性光ファイバは、あらかじめ剥離性を
付与する有機金属化合物を溶剤等で希釈して光ファイバ
に予備塗装してから、有機金属ポリマ組成物を塗装し、
同様な方法で加熱硬化することによっても得られ。
Next, the heat-resistant optical fiber of the present invention is prepared by pre-coating the optical fiber with an organometallic compound that imparts peelability by diluting it with a solvent or the like, and then coating the organometallic polymer composition.
It can also be obtained by heating and curing in a similar manner.

第2図はそのような耐熱性光ファイバを得るための光フ
アイバ線引ラインの変形例を示す。第1図と異なる点は
、有機金属ポリマを被覆する前に光ファイバ2が予ti
i塗装ダイス8を通り、ここで剥離性を有する有機金属
化合物14が塗布され、この有機金属化合物14の被覆
された光ファイバが予備加熱炉9に導かれて固化され、
引続き行なわれる被覆の有機金属ポリマ15中ごこは剥
離性を有する有機金属化合物が除かれてし)る点である
FIG. 2 shows a modified example of an optical fiber drawing line for obtaining such a heat-resistant optical fiber. The difference from FIG. 1 is that the optical fiber 2 is pre-tied before being coated with the organometallic polymer.
It passes through a coating die 8, where an organic metal compound 14 having peelability is applied, and the optical fiber coated with this organic metal compound 14 is led to a preheating furnace 9 and solidified.
The organometallic compound having release properties is removed from the organometallic polymer 15 in the subsequent coating.

このように本発明では、カラスと被覆材との界面に被覆
材に剥離性を付与する有機金属化合物を介在させている
。従って、たとえ有機金属ボ1ツマが耐薬品性に優れて
いて、こnを化学的−二直接除去することが困難であっ
ても、界面2二介在し・た有機金属化合物の作用により
有機金属ボ1.+7を間接的に除去することが可能にな
る。
As described above, in the present invention, an organometallic compound that imparts releasability to the coating material is interposed at the interface between the glass and the coating material. Therefore, even if the organometallic material has excellent chemical resistance and it is difficult to chemically remove it directly, the action of the organometallic compound at the interface will cause the organometallic Bo1. It becomes possible to indirectly remove +7.

また、介在させた有機金属化合物が有機の被覆材より軟
らかいため機械的な方法乙こよって除去しようとした場
合でも、光ファイノ<ζこ損傷を与えることがない。
Further, since the interposed organometallic compound is softer than the organic coating material, even if an attempt is made to remove it by mechanical methods, no damage will be caused to the optical fiber.

さらに、有機金属化合物は燃焼、紫外線、オ゛シン等に
よる分解を試みたり、高温で長時間使用すると熱分解を
起こし無機物に変わる。し力)し、熱履歴条件によって
異なる分解生成物を生じる有機の場合と異なり、有機金
属化合物では緩慢りこ炭素化するか、もしくは揮散する
ので皮膜中に発?包等が生じることがない。このため、
ファイノ(性カ旨乞こは悪影響をおよぼさず、またガラ
スと強固に接着してしまうというということもない。
Furthermore, if organometallic compounds are tried to decompose by combustion, ultraviolet light, osin, etc., or if they are used at high temperatures for a long time, they will undergo thermal decomposition and turn into inorganic substances. Unlike organic compounds, which produce different decomposition products depending on the thermal history conditions, organometallic compounds slowly carbonize or volatilize, resulting in the formation of decomposition products in the film. There will be no occurrence of bulges, etc. For this reason,
Fino has no negative effects and does not adhere strongly to the glass.

また、高温で使用しても、離型剤のように侵食性のガス
が発生したり、光ファイバの強度を損ったりするという
こともない。
Further, even when used at high temperatures, corrosive gases are not generated unlike mold release agents, and the strength of the optical fiber is not impaired.

したがって、光ファイバの端末処理や接続作業において
当該部の被覆材を容易に除去することが可能となり、工
業上の寄与が極めて大きいものとなる。
Therefore, it becomes possible to easily remove the covering material at the relevant portion during optical fiber terminal processing and connection work, making an extremely large contribution to industry.

なお、有機金属ポリマ組成物中には必要ユニ応じて充填
剤、着色剤、補強性繊維等を含ませていても一向に差し
支えない。
The organometallic polymer composition may contain fillers, colorants, reinforcing fibers, etc. as necessary.

また、これらの有機金属ポリマ組成物は加熱によって溶
融させてから塗装することもてきるが、有機溶剤に溶解
させた塗料として適用することもできる。
Further, these organometallic polymer compositions can be applied after being melted by heating, but they can also be applied as a paint dissolved in an organic solvent.

さらに、有機金属ポリマ組成物を被覆する前に、ファイ
バの強度および伝送特性の長期信頼性を向上させるのた
めのカーボン被覆を施しても良い。
Additionally, a carbon coating may be applied prior to coating with the organometallic polymer composition to improve the strength and long-term reliability of the transmission properties of the fiber.

[実施例コ 以下、本発明の詳細な説明する。[Example code] The present invention will be explained in detail below.

実施例1 ポリチタノカルボシラン100重量部に、煙霧質シリカ
20重量部、テトラステアロキシチタン1.0重量部添
加した組成物をキシレン、メチルセルソルブ混合溶剤で
希釈し・た。通常のシングルモード石英系プリフォーム
を約2000℃の線引炉によって外径125μmになる
ように線引し・、塗装ダイスを用いて上記塗料を厚さ1
0μmになるように被覆し、400℃の加熱炉を通過さ
せて硬化させてからボビンに巻取)た。
Example 1 A composition prepared by adding 20 parts by weight of fumed silica and 1.0 parts by weight of tetrastearoxytitanium to 100 parts by weight of polytitanocarbosilane was diluted with a mixed solvent of xylene and methylcellosolve. A normal single-mode quartz preform is drawn to an outer diameter of 125 μm in a drawing furnace at approximately 2000°C, and the above paint is applied to a thickness of 1 mm using a painting die.
It was coated to a thickness of 0 μm, passed through a heating furnace at 400° C. to harden it, and then wound onto a bobbin).

硬化は十分てあり、密着性も良好であった。また、ガラ
スファイバと被覆材間の接着性は特別な工具を用いなく
ても剥離できる程度であった。なお伝送損失は通常のシ
ングルモード光ファイバとほぼ同等であり、400℃、
100h後の伝送損失増加も0.05dB/kmとわず
かであった。
The curing was sufficient and the adhesion was also good. Moreover, the adhesiveness between the glass fiber and the coating material was such that it could be peeled off without using a special tool. The transmission loss is almost the same as that of ordinary single mode optical fiber, and at 400℃,
The increase in transmission loss after 100 hours was also as small as 0.05 dB/km.

また引張り強さも平均4kgfと通常のプラスチック被
覆光ファイバより若干劣っていたが、剥離性を付与しな
い場合とほぼ同程度であった。
Furthermore, the tensile strength was 4 kgf on average, which was slightly inferior to that of ordinary plastic-coated optical fibers, but was approximately the same as that of the case where no peelability was imparted.

実施例2 実施例1のポリチラノカルボシラン組成物の代わりにポ
リメチルシルセスキオキサン100重量部に、ジルコニ
ア70重量部、トリー〇−ブトキシチタンモノステアレ
ートボリマ2重量部を添加した組成物をキシレン、メチ
ルセルソルブ混合溶剤で希釈した。実施例1と同様の方
法で試料を製造した。
Example 2 A composition in which 70 parts by weight of zirconia and 2 parts by weight of tri-butoxytitanium monostearate bolima were added to 100 parts by weight of polymethylsilsesquioxane instead of the polytyranocarbosilane composition of Example 1. was diluted with a mixed solvent of xylene and methylcellosolve. A sample was produced in the same manner as in Example 1.

剥離力は実施例1と大差なく、ファイバ特性もほぼ同等
であった。
The peeling force was not much different from Example 1, and the fiber properties were also almost the same.

実施例3 実施例1のポリチタノカルボシラン組成物の代わりに、
ポリボロシロキサン100重量部に、炭化ケイ素50重
量部、ポリメチルシリコーン油1重量部を添加した組成
物をキシレン、メチルセルソルブ混合溶剤で希釈した。
Example 3 Instead of the polytitanocarbosilane composition of Example 1,
A composition prepared by adding 50 parts by weight of silicon carbide and 1 part by weight of polymethyl silicone oil to 100 parts by weight of polyborosiloxane was diluted with a mixed solvent of xylene and methylcellosolve.

実施例1と同様の方法で試料を製造した。剥離力は実施
例1と大差なく、ファイバ特性もほぼ同等であった。
A sample was produced in the same manner as in Example 1. The peeling force was not much different from Example 1, and the fiber properties were also almost the same.

実施例4 実施例1の組成物からテトラステアロキシチタンを除去
した組成物をキシレン、メチルセルソルブ混合溶剤で希
釈し・た。実施例1と同じプリフォームを線引炉によっ
て外径125μmになるように線引し、テトラステアロ
キシチタンのキシレン溶液で予備塗装した後、直ちに上
記組成物を厚さ10μmになるように被覆して加熱炉を
通過させて硬化させて巻き取った。
Example 4 A composition obtained by removing tetrastearoxytitanium from the composition of Example 1 was diluted with a mixed solvent of xylene and methylcellosolve. The same preform as in Example 1 was drawn in a drawing furnace to an outer diameter of 125 μm, pre-coated with a xylene solution of tetrastearoxytitanium, and immediately coated with the above composition to a thickness of 10 μm. The film was passed through a heating furnace to harden and then rolled up.

剥離力は実施例1と大差なく、ファイバ特性もほぼ同等
であった。
The peeling force was not much different from Example 1, and the fiber properties were also almost the same.

実施例5 実施例2のポリフェニルシルセスキオキサン100重量
部に、溶融石英50重量部、メチルトリデシルシラン0
.05重量部を添加した組成物をキシレン、メチルセル
ソルブ混合溶剤で希釈した。
Example 5 50 parts by weight of fused quartz and 0 parts by weight of methyltridecylsilane were added to 100 parts by weight of the polyphenylsilsesquioxane of Example 2.
.. The composition to which 05 parts by weight was added was diluted with a mixed solvent of xylene and methylcellosolve.

実施例1と同様の方法で試料を製造した。剥離力は実施
例2より若干大きかったもののガラスと被覆材の界面で
剥離した。
A sample was produced in the same manner as in Example 1. Although the peeling force was slightly greater than that of Example 2, peeling occurred at the interface between the glass and the coating material.

実施例6 実施例5のメチルトリデシルシラン5重量部を添加した
以外は実施例5と同しである。実施例1と同様の方法で
試料を製造した。剥離力は実施例2と大差なかった。光
ファイバの引張り強さは平均3.Okgfと若干低かっ
たものの実用上十分な性能を示した。
Example 6 The same as Example 5 except that 5 parts by weight of methyltridecylsilane of Example 5 was added. A sample was produced in the same manner as in Example 1. The peeling force was not much different from Example 2. The average tensile strength of optical fiber is 3. Although the performance was slightly low (Okgf), it showed sufficient performance for practical use.

比較例1 実施例1からテトラステアロキシチタンを除去したこと
を除いて、実施例1と同しである。ファイバ性能等は実
施例1と大差なかったか、ファイバと被覆材間は接着し
ており、剥離不能であった。
Comparative Example 1 Same as Example 1 except that tetrastearoxytitanium was removed from Example 1. The fiber performance etc. were not much different from Example 1, or the fiber and the coating material were adhered and could not be separated.

比較例2,3 実施例2,3についても同様に剥離性を付与する物質を
除去した結果、それぞれ比較例1ど同様な結果が得られ
た。
Comparative Examples 2 and 3 In Examples 2 and 3, the substance that imparts releasability was similarly removed, and results similar to those of Comparative Example 1 were obtained, respectively.

比較例4 実施例5のメチルトリデシルシラン0.04重量部添加
した以外は実施例5と同じである。ファイバ性能等は実
施例1と大差なかったが、ファイバと被覆材間は接着し
ており、剥離面は凝集破壊を示した。
Comparative Example 4 The same as Example 5 except that 0.04 part by weight of methyltridecylsilane of Example 5 was added. Although the fiber performance etc. were not much different from Example 1, there was adhesion between the fiber and the coating material, and the peeled surface showed cohesive failure.

比較例5 実施例6のメチルトリデシルシラン6重重部添加した以
外は実施例6と同じである。ファイバ強度は平均3kg
f以下とかなりの低下を示した。
Comparative Example 5 The same as Example 6 except that 6 parts of methyltridecylsilane of Example 6 was added. Average fiber strength is 3kg
It showed a considerable decrease to less than f.

[発明の効果コ 以上述べたように本発明によれば次のような優れた効果
を発揮する。
[Effects of the Invention] As described above, the present invention provides the following excellent effects.

(1)請求項1に記載の耐熱性光ファイバによれば、ガ
ラスと被覆材との界面に剥離性を付与する有機金属化合
物を介在させたので、ガラス光ファイバから被覆材を容
易に剥離することが可能になり、接続や端末処理作業が
容易になる。
(1) According to the heat-resistant optical fiber according to claim 1, since an organometallic compound that imparts peelability is interposed at the interface between the glass and the coating material, the coating material can be easily peeled off from the glass optical fiber. This makes connection and terminal processing easier.

(2)請求項2に記載の耐熱性光ファイバによれば、有
機金属ポリマとして商業的に入手できるものを用いるの
で、実用化が容易である。
(2) According to the heat-resistant optical fiber according to the second aspect, since a commercially available organic metal polymer is used, it is easy to put it into practical use.

(3)請求項3に記載の耐熱性光ファイバによれば、剥
離性を付与する有機金属化合物として少なくとも1個の
アルキル基を含むものを用いるので、光ファイバの特性
に悪影響を及ぼすことなく、被覆材の剥離性を良好なも
のとすることができる。
(3) According to the heat-resistant optical fiber according to claim 3, since an organometallic compound containing at least one alkyl group is used as the organometallic compound that imparts peelability, the properties of the optical fiber are not adversely affected. The releasability of the coating material can be improved.

(4)請求項4に記載の耐熱性光ファイバによれば、剥
離性を付与する有機金属化合物の添加量が0゜05〜5
.0重量部であるので、光フアイバ性能を損うことなく
、剥離効果を高めることができる・
(4) According to the heat-resistant optical fiber according to claim 4, the amount of the organometallic compound that imparts peelability is 0.05 to 5.
.. Since the amount is 0 parts by weight, the peeling effect can be enhanced without impairing the optical fiber performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の耐熱性光ファイバを製造するための光
ファイバ線引炉の概略図、第2図は同じく本発明の変形
例を示す光ファイバ線引炉の1!略図、第3図は本発明
に係る有機金属ポリマの例示であるポリチタノカルボシ
ランの化学構造図、第4図は同じくポリオルガノシルセ
スキオキサンの化学構造図、第5図は同じくポリボロシ
ロキサンの化学構造図、第6図は同じくカルボランポリ
マの化学構造図、第7国は同じくシラザンポリマの化学
構造図である。 本実施例の線引う什 第1図 −f−3i −CHのm− 第3図 変形例の線引ライン 第2図 本°リオルカ゛lンルセスキオN+ンの構造第4図 第5図
FIG. 1 is a schematic diagram of an optical fiber drawing furnace for manufacturing the heat-resistant optical fiber of the present invention, and FIG. Schematic diagram, FIG. 3 is a chemical structure diagram of polytitanocarbosilane, which is an example of the organometallic polymer according to the present invention, FIG. 4 is a chemical structure diagram of polyorganosilsesquioxane, and FIG. The chemical structure diagram of siloxane, Figure 6 is also the chemical structure diagram of carborane polymer, and the seventh country is also the chemical structure diagram of silazane polymer. Figure 1: Drawing lines of this embodiment -f-3i -CH m- Figure 3: Drawing lines of a modified example Figure 2: Structure of main cylinder resesquion N+ Figure 4: Figure 5

Claims (1)

【特許請求の範囲】 1、有機金属ポリマ組成物からなる被覆材を被覆した耐
熱性光ファイバにおいて、 光ファイバを構成するガラスと上記被覆材との界面に、
ガラスとの剥離性を付与する有機金属化合物を介在させ
たことを特徴とする耐熱性光ファイバ。 2、上記有機金属ポリマがポリチタノカルボシラン、ポ
リオルガノシルセスキオキサン、ポリボロシロキサン、
ポリシラン、カルボランポリマのいずれかであることを
特徴とする請求項1に記載の耐熱性光ファイバ。 3、上記有機金属化合物がポリアルキルシロキサン、ポ
リアルコキシシロキサン、アルキル基を有するシラン、
ポリアルキロキシチタン、ポリアルコキシチタンポリマ
のいずれかであることを特徴とする請求項1または2に
記載の耐熱性光ファイバ。 4、上記有機金属化合物を有機金属ポリマ組成物に添加
することにより上記ガラスと被覆材との界面に上記有機
金属化合物を介在させるとともに、この有機金属化合物
の有機金属ポリマ組成物への添加量が0.05〜5.0
重量部であることを特徴とする請求項1ないし3のいず
れかに記載の耐熱性光ファイバ。
[Claims] 1. In a heat-resistant optical fiber coated with a coating material made of an organometallic polymer composition, at the interface between the glass constituting the optical fiber and the coating material,
A heat-resistant optical fiber characterized by interposing an organic metal compound that imparts releasability to glass. 2. The organometallic polymer is polytitanocarbosilane, polyorganosilsesquioxane, polyborosiloxane,
The heat-resistant optical fiber according to claim 1, characterized in that it is made of either polysilane or carborane polymer. 3. The organometallic compound is polyalkylsiloxane, polyalkoxysiloxane, silane having an alkyl group,
The heat-resistant optical fiber according to claim 1 or 2, characterized in that it is made of polyalkyloxytitanium or polyalkoxytitanium polymer. 4. By adding the organometallic compound to the organometallic polymer composition, the organometallic compound is interposed at the interface between the glass and the coating material, and the amount of the organometallic compound added to the organometallic polymer composition is controlled. 0.05-5.0
The heat-resistant optical fiber according to any one of claims 1 to 3, which is a weight part.
JP2237676A 1990-09-07 1990-09-07 Heat resistant optical fiber Expired - Lifetime JP2782935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2237676A JP2782935B2 (en) 1990-09-07 1990-09-07 Heat resistant optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2237676A JP2782935B2 (en) 1990-09-07 1990-09-07 Heat resistant optical fiber

Publications (2)

Publication Number Publication Date
JPH04116609A true JPH04116609A (en) 1992-04-17
JP2782935B2 JP2782935B2 (en) 1998-08-06

Family

ID=17018859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2237676A Expired - Lifetime JP2782935B2 (en) 1990-09-07 1990-09-07 Heat resistant optical fiber

Country Status (1)

Country Link
JP (1) JP2782935B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262115A (en) * 1984-06-08 1985-12-25 Sumitomo Electric Ind Ltd Fiber for optical transmission
JPS61201716A (en) * 1985-03-04 1986-09-06 Nippon Steel Corp Molten steel treating agent
JPH0248435A (en) * 1988-08-05 1990-02-19 Sumitomo Electric Ind Ltd Production of optical fiber
JPH02167707A (en) * 1988-09-05 1990-06-28 Ube Ind Ltd Method and device for molding resin with core utilized therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262115A (en) * 1984-06-08 1985-12-25 Sumitomo Electric Ind Ltd Fiber for optical transmission
JPS61201716A (en) * 1985-03-04 1986-09-06 Nippon Steel Corp Molten steel treating agent
JPH0248435A (en) * 1988-08-05 1990-02-19 Sumitomo Electric Ind Ltd Production of optical fiber
JPH02167707A (en) * 1988-09-05 1990-06-28 Ube Ind Ltd Method and device for molding resin with core utilized therefor

Also Published As

Publication number Publication date
JP2782935B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
EP0025800B1 (en) Coating material for optical communication glass fiber
JP5611641B2 (en) Addition-crosslinking silicone composition with Pt catalyst self-adhering at room temperature
KR100879991B1 (en) Thermally Stable, Moisture Curable Polysilazanes And Polysiloxazanes
JP4570781B2 (en) Curable silicone soil release coating and articles
JPS6257585B2 (en)
GB2032300A (en) Process for reducing the surface tack of an organopolysiloxane gel or grease adheringly disposed on a substrate
US4681714A (en) Multiple release mold coating
EP2938584B1 (en) Coatings for enhancing glass strength
JPH01236282A (en) Primer composition
JPH0138424B2 (en)
JPH04116609A (en) Heat resistant optical fiber
JPH0649599B2 (en) Heat-stable chemically treated glass fiber
JP2866435B2 (en) Method for producing silicon carbide coating film
JPH0539461A (en) Primer composition, preparation of the composition and joining of a plural number of objects using the composition
JPS6030713B2 (en) Coating composition and coating method
JPH04231354A (en) Method and means for imparting functionality to article and article so manufactured
US20050135763A1 (en) Optical fiber with a mechanically strippable coating and methods of making the same
JP2715624B2 (en) Optical fiber for measurement
EP0635554B1 (en) Hydrogen silsesquioxane optical fiber coatings
EP0844986B1 (en) Coated optical devices and methods of making the same
JPH0139706B2 (en)
KR20110108112A (en) The composite of water-based coating agent for surface treatment and manufacturing method of water-based coating agent
JPS6333474A (en) Primrer composition
EP1408019A2 (en) Method for producing silicon oxycarbide fibers
JPH0970641A (en) Parting material for green sand molding