JPH04116393A - Soaking device - Google Patents

Soaking device

Info

Publication number
JPH04116393A
JPH04116393A JP23337190A JP23337190A JPH04116393A JP H04116393 A JPH04116393 A JP H04116393A JP 23337190 A JP23337190 A JP 23337190A JP 23337190 A JP23337190 A JP 23337190A JP H04116393 A JPH04116393 A JP H04116393A
Authority
JP
Japan
Prior art keywords
fluid
heat
bed
flow passage
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23337190A
Other languages
Japanese (ja)
Other versions
JP2647542B2 (en
Inventor
Keiji Mizuta
桂司 水田
Shigeru Takahara
茂 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23337190A priority Critical patent/JP2647542B2/en
Publication of JPH04116393A publication Critical patent/JPH04116393A/en
Application granted granted Critical
Publication of JP2647542B2 publication Critical patent/JP2647542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent any deformation caused by a temperature difference by a method wherein a fluid passage formed within a member deformed by an external heat or an inner heat is provided with a vibration generating member vibrating fluid in a direction of flow passage and its driving source. CONSTITUTION:Within a bed 3 of a lathe 10 is formed an annular flow passage 4. The bed 3 acting as a member deformable by heat absorbs the heat transmitted from a head stock 1 mounted on the upper part. In turn, fluid 5 is sealingly enclosed within the flow passage 4. A piston rod 6a extends from the driving source out of the bed 3. Its extremity end is provided with a piston 6 acting as a vibration generating member. The piston 6 is repeatedly slid within the flow passage 4 by the driving source rightward or leftward. Along with this operation, flow of fluid 5 in a clockwise direction or a counterclockwise direction is repetitively generated within the annular flow passage 4, so that the temperature distribution in the bed 3 is made uniform and a machining accuracy of the lathe 10 is improved.

Description

【発明の詳細な説明】 〈産業−Lの利用分野〉 本発明は、温度変化が生じた場合でも機器の寸法精度を
高く維持し得る均熱装置に関し、工作機械、光学機器、
電子部品製造装置等に適用可能なもの−Cある。
[Detailed Description of the Invention] <Field of Application of Industry-L> The present invention relates to a heat soaking device that can maintain high dimensional accuracy of equipment even when temperature changes occur, and is applicable to machine tools, optical equipment,
There is a type-C that can be applied to electronic component manufacturing equipment, etc.

〈従来の技術〉 精密機械装置等は、通常金属製であることから、外部熱
源や自発熱による熱によす’lWr度むらを生し、装置
の一部が熱膨張を引き起こして、装置における部材間の
相対位置関係に変位をきたすことがある。この場合、こ
れら装置によ−)て行われる加工等における精度が低下
することが考えられる。
<Conventional technology> Precision machinery and equipment are usually made of metal, so heat from an external heat source or self-generated heat causes uneven temperature, which causes thermal expansion in a part of the equipment, causing damage to the equipment. Displacement may occur in the relative positional relationship between members. In this case, it is conceivable that the accuracy of processing performed by these devices may be reduced.

第3図は従来の精密機械装置の一例である旋盤10を示
ずものである。
FIG. 3 does not show a lathe 10, which is an example of a conventional precision mechanical device.

この例に示すように、ヘッドストック1の内部のベアリ
レグの発熱でヘッドストック1が約5℃湿度上昇した場
合、ベツド3が点線のように変形し、・\ラドストック
1の主軸に取付けられるワークと加工具2との相対位置
δ(主軸の変位量)が数十μm変位してしまい、仕上が
る精密部品の加−L精度として問題になる。また、約5
℃の温度に昇は通常値であるので、これに対する対策と
しては、以下に述へる■〜■等の方法て熱変形の抑制や
その原因となる温度むらの低減を行なっている。
As shown in this example, when the humidity of the headstock 1 increases by approximately 5°C due to heat generated by the bare legs inside the headstock 1, the bed 3 deforms as shown by the dotted line, and the workpiece attached to the main shaft of the radstock 1 The relative position δ (displacement amount of the spindle) between the tool 2 and the processing tool 2 is displaced by several tens of micrometers, which poses a problem in terms of machining accuracy of the precision parts to be finished. Also, about 5
Since the temperature rise in degrees Celsius is a normal value, as a countermeasure against this, methods such as (1) to (4) described below are used to suppress thermal deformation and reduce temperature unevenness that causes it.

■ 発熱部が温度上昇しても加工寸法は変わらない構造
とする。即ち、変位させた(ない個所において、その変
位方向に直交する面の両側の構造を互いに対称とする熱
対称設計にする。
■ The structure is such that the processing dimensions do not change even if the temperature of the heat generating part increases. That is, at a displaced location, a thermally symmetrical design is adopted in which the structures on both sides of the plane orthogonal to the displacement direction are symmetrical to each other.

■ 温度による変化の生しないように部材を重厚長大化
し剛性を」二げる。
■ Increasing rigidity by making the parts thicker and longer so that they do not change due to temperature.

■ 装置以外の外部から液体を供給し、その発熱による
気化熱の放出により発熱部を冷却する。
■ A liquid is supplied from outside the device, and the heat of vaporization generated by the liquid is released to cool the heat generating part.

■ 温度補償用のヒーターを設置すると共にペルチェ冷
却装置を設置する。
■ Install a temperature compensation heater and a Peltier cooling device.

■ 冷却用の送風を行い冷却する。■ Cool by blowing air for cooling.

〈発明が解決しようとする課題〉 しかし−に記■から■までの例にはそれぞれ以下に示す
ような問題点がある。
<Problems to be Solved by the Invention> However, the examples ① to ② listed in -, each have the following problems.

■の場合、一方向だけからの変位を想定して執られた対
策であるため、熱源が複数か所ある場合に対策が困難と
なる。■の場合、機械装置の軽量化、コンパクト化及び
コスト低減化に逆行するものであると共に、変形の低減
効果が小さい。■の場合、動力が別途必要なため、全体
のランニングココストが高くなると共に、冷媒の供給・
排出装置及び冷媒のシール装置等が必要となってきて機
械的にvi、H化及びコスト高どなる。■の場合、総合
的に温度分布の制御をする温度分布の制御装置が必要と
なり、装置が腹雑化及びコスト高となると共にペルチェ
冷却装置の使用によりランニングコス)−が高くなる。
In the case of (2), since the measures were taken assuming displacement from only one direction, it becomes difficult to take measures when there are multiple heat sources. In the case (2), this goes against the desire to reduce the weight, size, and cost of mechanical devices, and the effect of reducing deformation is small. In the case of ■, power is required separately, which increases the overall running cost and also increases the refrigerant supply and
A discharge device, a refrigerant sealing device, etc. are required, resulting in mechanical changes to VI and H and increased costs. In the case of (2), a temperature distribution control device that comprehensively controls the temperature distribution is required, which makes the device complicated and expensive, and the running cost increases due to the use of a Peltier cooling device.

■の場合、送風機が振動原因となったり、埃の飛散を誘
発ずろと共に、送風に使うエネルギーに比して均熱効果
が小さい。
In the case of (2), the blower causes vibrations, causes dust to scatter, and has a small heating effect compared to the energy used for blowing.

また、■〜■の共通の問題として発熱部と他の所の温度
差を数度以下まで低減することが難しい。
Furthermore, a common problem in (1) to (2) is that it is difficult to reduce the temperature difference between the heat generating part and other parts to a few degrees or less.

く課題を解決するための手段〉 本発明による均熱装置は、外部からの熱あるいは内部の
発熱により変形を生ずる部材内に形成されt二流体流路
と、この流体流路内に設置され且つこの流体流路内に注
入されて熱を伝達し得る流体を乙の流体流路の流路方向
に振動させる振動発生部材と、この振動発生部材に連結
されて乙の振動発生部材を前記流体流路内で動作させる
駆動源とを有することを特徴とするものである。
Means for Solving the Problems> A heat equalizing device according to the present invention includes a two-fluid flow path formed in a member that is deformed by external heat or internal heat generation, and a two-fluid flow path installed within the fluid flow path. A vibration generating member that vibrates the fluid that is injected into the fluid flow path and can transfer heat in the flow path direction of the fluid flow path B; The vehicle is characterized by having a drive source that is operated within the road.

〈作   用〉 駆動源により駆動さねて動作する振動発生部材により、
流体流路に注入された流体が流体流路内で振動さねろ。
<Function> The vibration-generating member that is driven by the drive source generates
The fluid injected into the fluid channel vibrates within the fluid channel.

この振動に伴い、流体が部材内て熱を伝達して、部材の
温度を均一・化ずろ。
With this vibration, the fluid transfers heat within the member, making the temperature of the member uniform.

〈実 施 例〉 本発明の灼熱装置に係る−・実施例を旋盤のベツドに適
用したものを第1図に示し、この図に基づき本実施例を
説明する。
<Embodiment> An embodiment of the burning device of the present invention applied to the bed of a lathe is shown in FIG. 1, and this embodiment will be explained based on this figure.

尚、従来の技術にて説明した部材と同一の部材には同一
の符号を付し、重複した説明を省略する。
Incidentally, the same members as those described in the related art are given the same reference numerals, and redundant explanation will be omitted.

第1図に示すように、旋盤100ベツド3内には、環状
の流体流路である流路4が形成されており、熱により変
形を生じる部材であるベツド3は、その上部に設置され
たヘッドストック1で発熱した熱が伝達され得るように
構成さねている。また、ヘッドストック1の図示しない
主軸には、ワークが取付けられている。
As shown in Fig. 1, a flow path 4, which is an annular fluid flow path, is formed in the bed 3 of the lathe 100, and the bed 3, which is a member that deforms due to heat, is installed above the bed 3. The structure is such that the heat generated by the headstock 1 can be transferred. Further, a workpiece is attached to a main shaft (not shown) of the headstock 1.

一方、流路4内には、水等の熱を伝達し得る流体5が注
入されて封止されると共に、ベラ1〜3外の図示しない
駆動源からピストンロッド6aが伸びている。このピス
トンロッド6aの先端には、振動発生部材であるピスト
ン6が設置されており、駆動源によりピストン6が流路
4内を図上、左右方向の繰返1ツ摺動し得るように成っ
ている。
On the other hand, a fluid 5 such as water capable of transmitting heat is injected into the flow path 4 and sealed, and a piston rod 6a extends from a drive source (not shown) outside the bellows 1 to 3. A piston 6, which is a vibration generating member, is installed at the tip of the piston rod 6a, and the piston 6 can repeatedly slide in the left and right directions in the figure by a driving source. ing.

そして、ピストン6が流路4内で繰返し摺動すると、こ
れに伴い環状の流路4内て、流体5の時計回り方向への
流れ及び反時計回り方向への流れが繰返し発生ずる。
When the piston 6 repeatedly slides within the flow path 4, the fluid 5 repeatedly flows clockwise and counterclockwise within the annular flow path 4.

すなわら、ピストン6が繰返し摺動すると、流路方向に
沿って流体5が振動し、流路方向の伝熱促進効果により
、ベツド3の温度分布が、第2図の点線Aて表す従来の
技術に比較して実線Bで表す本実施例のように、均一ど
なる。
In other words, when the piston 6 repeatedly slides, the fluid 5 vibrates along the flow path direction, and due to the effect of promoting heat transfer in the flow path direction, the temperature distribution of the bed 3 changes from that of the conventional method shown by the dotted line A in FIG. As compared to the technique shown in FIG.

この結果、従来の技術の第3図で示した相対位置δが大
幅に小さくなり、旋盤10の加工精度が向上する。
As a result, the relative position δ shown in FIG. 3 of the prior art is significantly reduced, and the machining accuracy of the lathe 10 is improved.

尚、第2図に示すグラフの横軸(よベツド3の左端部を
基準としてベツド3の各部分に対応した位置を表し、縦
軸は温度1”(’C)を表している。
In addition, the horizontal axis of the graph shown in FIG. 2 (represents the position corresponding to each part of the bed 3 with the left end of the bed 3 as a reference, and the vertical axis represents the temperature 1''('C).

また、以上のように温度の分布が均一・どなるの(よ、
以下の理由からである。
Also, as mentioned above, how is the temperature distribution uniform?
This is for the following reasons.

つまり、流路方向に温度差を自“する場合に、流体5を
流路方向に振動させると、高温側の熱が流体5と流路4
の内壁と間を伝達しなから流路方向の低温側に移動する
からである。
In other words, when creating a temperature difference in the direction of the flow path, when the fluid 5 is vibrated in the direction of the flow path, the heat on the high temperature side is transferred between the fluid 5 and the flow path.
This is because it does not transmit between the inner wall of the tube and moves toward the low temperature side in the flow path direction.

発明者の実験によれば、この熱の移動量は、流路4断面
の流体5が接触する長さであろむれぶち長さ、振動数の
3/2乗、振幅の2乗、流体の熱伝導率及び流体の動粘
度の一一一凍に比例する。例えば、内径1.0 mmの
鋼性流路内で、流体である水をl OHz X振幅20
 nunて加振すると、同径の中実銅棒10倍の熱輸送
景を実現ずろことができる。
According to the inventor's experiments, the amount of heat transferred is determined by the length of the cross section of the flow path 4 where the fluid 5 contacts, the length of the cross section, the 3/2 power of the frequency, the square of the amplitude, and the heat of the fluid. It is proportional to the conductivity and kinematic viscosity of the fluid. For example, in a steel channel with an inner diameter of 1.0 mm, water as a fluid is heated at l OHz x amplitude 20
By shaking a solid copper rod with the same diameter, it is possible to achieve a heat transport scene ten times as large.

この結果、流路方向のベツドの温度むら(ま無くなり、
ベツドは熱対称設計された場合と同じ熱変位低減効果を
発揮ずろ、−1 尚、本実施例においては、旋盤に均熱装置を適用したも
のについて説明したが、他の工作機械にも本装置を適用
できろこと(J゛いうJ二でもなく、さらに、工作機械
以外の光学機器、電子部品製造装置等の広範囲な分前の
機器にも適用可能である。
As a result, the temperature unevenness of the bed in the direction of the flow path disappears.
The bed exhibits the same thermal displacement reduction effect as a thermally symmetrical design. It can be applied to a wide range of equipment other than machine tools, such as optical equipment and electronic component manufacturing equipment.

また、流体としては、水辺外の低価格な液体を本発明の
装置に適用するととも可能であり、流路も本実施例以外
の形状とずろこととしてもよい。
Further, as the fluid, it is possible to apply a low-cost liquid from outside the waterside to the apparatus of the present invention, and the flow path may also have a shape other than that of this embodiment.

〈発明の効果〉 本発明に依れば、部材内に流体流路を形成ずろと共に流
体流路内の流体を振動させるような構造とした結果、従
来数度の温度差が問題どなるような精密機械装置におい
て、その差を殆ど無くずことがてき、よって温度差が原
因どなる変形を防止てき、高い位置決め精度で、装置を
作動させることが可能となる。
<Effects of the Invention> According to the present invention, a structure is adopted in which a fluid flow path is formed in a member and the fluid in the fluid flow path is vibrated, so that precision processing can be achieved where conventionally a temperature difference of several degrees would be a problem. In mechanical devices, this difference can be almost eliminated, thereby preventing deformation caused by temperature differences, and making it possible to operate the device with high positioning accuracy.

また、上記のことか、コンパクトな設計−C可能どなり
、コストを低く抑え、ランニングコス)へも低いものと
することがてきる3゜
In addition, as mentioned above, it is possible to have a compact design, keep costs low, and reduce running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(=1、本発明の灼熱装置に係る一実施例が適用
される旋盤の正面断面図、第2図は本発明の一実施例及
び従来の技術のベツドの温度分布のグラフを表す図、第
3図は従来の技術に係る旋盤の正面図である。 図  面  中、 1はヘソ]・ス)・ツク、2;;rタレット、3(よベ
ツド、4は流路、5は流体、6はビス1−ン、10は旋
盤、A、+3は温度の、/IJを表1曲線である。 特  許  出  1願  人 三菱重工業株式会社
Fig. 1 (=1) is a front sectional view of a lathe to which an embodiment of the sintering device of the present invention is applied, and Fig. 2 is a graph of bed temperature distribution of an embodiment of the present invention and a conventional technology. Fig. 3 is a front view of a lathe according to the conventional technology. Fluid, 6 is screw 1-on, 10 is lathe, A, +3 is temperature, /IJ is the curve in Table 1. Patent filed 1 person Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 外部からの熱あるいは内部の発熱により変形を生ずる部
材内に形成された流体流路と、この流体流路内に設置さ
れ且つこの流体流路内に注入されて熱を伝達し得る流体
をこの流体流路の流路方向に振動させる振動発生部材と
、この振動発生部材に連結されてこの振動発生部材を前
記流体流路内で動作させる駆動源とを有することを特徴
とする均熱装置。
A fluid passage formed in a member that causes deformation due to external heat or internal heat generation, and a fluid installed in this fluid passage and injected into this fluid passage to transfer heat. A heat soaking device comprising: a vibration generating member that vibrates in the direction of the fluid flow path; and a drive source that is connected to the vibration generating member and operates the vibration generating member within the fluid flow path.
JP23337190A 1990-09-05 1990-09-05 Heat equalizer Expired - Lifetime JP2647542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23337190A JP2647542B2 (en) 1990-09-05 1990-09-05 Heat equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23337190A JP2647542B2 (en) 1990-09-05 1990-09-05 Heat equalizer

Publications (2)

Publication Number Publication Date
JPH04116393A true JPH04116393A (en) 1992-04-16
JP2647542B2 JP2647542B2 (en) 1997-08-27

Family

ID=16954075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23337190A Expired - Lifetime JP2647542B2 (en) 1990-09-05 1990-09-05 Heat equalizer

Country Status (1)

Country Link
JP (1) JP2647542B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354920A (en) * 1999-06-14 2000-12-26 Toshiba Mach Co Ltd Thermal displacement preventing device for machine tool component member
KR20020059104A (en) * 2000-12-31 2002-07-12 양재신 headstock structure of CNC lathe for vibration absorbing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564202B2 (en) * 2001-05-07 2010-10-20 高松機械工業株式会社 Machine Tools

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354920A (en) * 1999-06-14 2000-12-26 Toshiba Mach Co Ltd Thermal displacement preventing device for machine tool component member
KR20020059104A (en) * 2000-12-31 2002-07-12 양재신 headstock structure of CNC lathe for vibration absorbing

Also Published As

Publication number Publication date
JP2647542B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
Denkena et al. Cooling of motor spindles—a review
JP2015163428A (en) Machine tool comprising functional part which generates heat during operation
JPH07111238A (en) Self-weight support device
CN109623461B (en) Heat dissipation method and device and ball screw feeding system with device
CN111590092B (en) Shock attenuation cooling device and have its lathe
JPH04116393A (en) Soaking device
JP6186210B2 (en) Stage apparatus and charged particle beam apparatus using the same
CN108067639B (en) Lathe
JP4276277B2 (en) Fluid bearing structure and fluid bearing assembly method
JP3822497B2 (en) Electric discharge machine by linear motor drive
JP2002103102A (en) Working apparatus and working method
JPH03296241A (en) Heat insulation device
JP4811780B2 (en) Linear motor, machine tool and measuring instrument
KR100283767B1 (en) Active Vibration Isolation Using Thermal Drive Mechanism
WO2021100143A1 (en) Table rotation device and machine tool
JPS60223119A (en) Noncontacting driving type precise moving base
JP2000018363A (en) Cooling device for feed screw mechanism
JP4702825B2 (en) Stage device and machine tool
JP2002305895A (en) Mover system
JP4558589B2 (en) Temperature control device, movable stage with temperature control function, and radiation heat transfer device
JP2002168319A (en) Feed screw device
JP2006246643A (en) Direct-acting guide device
JP2007122181A (en) Driving stage device
JP2013064421A (en) Precision positioning table
TW202308268A (en) Tube-in-tube structure for linear motor machine