JPH04116348A - Nearly reverse ericsson cycle refrigerating machine - Google Patents

Nearly reverse ericsson cycle refrigerating machine

Info

Publication number
JPH04116348A
JPH04116348A JP23320890A JP23320890A JPH04116348A JP H04116348 A JPH04116348 A JP H04116348A JP 23320890 A JP23320890 A JP 23320890A JP 23320890 A JP23320890 A JP 23320890A JP H04116348 A JPH04116348 A JP H04116348A
Authority
JP
Japan
Prior art keywords
gas
oil
compressor
expander
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23320890A
Other languages
Japanese (ja)
Inventor
Naoji Isshiki
一色 尚次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23320890A priority Critical patent/JPH04116348A/en
Publication of JPH04116348A publication Critical patent/JPH04116348A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1401Ericsson or Ericcson cycles

Abstract

PURPOSE:To improve COP and compact the size of equipment by spraying different circulation oil in a respective actuation gas flow of a compressor and an expander and separating gas from said circulation oil directly after it is sprayed, and using the gas and the oil separately for radiation and refrigeration, and allowing both the gas and oil to be recirculated by a jet pump. CONSTITUTION:Cyclones 12, 13 for air and oil separation are installed to gas outlet passages 10 and 11 from a compressor 1 and an expander 2 respectively. A greater portion of liquid droplet is arranged to flow from flow down pipes 1 and 15. Then, the gas which has dropped most droplet at the cyclones 12 and 13 is introduced into an expander inlet passage 8 and a compressor inlet passage 6 by way of flow passages 18, 19, 20, and 21, 22, and 13. The circulation oil which flows down in the flow down pipe 14 from the cyclone 12 is fed again into a jet nozzle 7 from a compressor side oil jet pump 27 by way of a radiator 26 and a recirculated. The circulation oil which flows down in the flow down pipe 15 from the cyclone 13 is fed back to a jet nozzle 9 by way of an oil jet nozzle 29.

Description

【発明の詳細な説明】 (1)産業上の利用分野 現在非フロンで高COPの冷凍機が要望されているが5
本発明はそれに適った近似エリクソンザイクル冷凍機を
実現して、家庭用、事業用の冷凍と空調の全分野に利用
Uんとするものである。
[Detailed description of the invention] (1) Industrial application field There is currently a demand for a refrigerator that is CFC-free and has a high COP.
The present invention realizes an approximate Ericsson cycle refrigerator suitable for this purpose, and is intended to be used in all fields of home and commercial refrigeration and air conditioning.

(2)従来の技術とその課題 従来より、理論的にはずぐ才また非フロン、高COPの
冷凍機として逆=[リクソン勺イクルが研究されていた
が、その実現上の最大の課題は圧縮機及びエキスパンダ
ー内のガスの状態変化を等温変化とすることが難し、<
、むしろ温度変化の大きい断熱変化に近くなることと、
ガスによる放熱、玲熱利用を行なう諸熱交換器が、ガス
の熱伝達率が低いので大きくなりすぎることであった。
(2) Conventional technology and its challenges The Rixon cycle has been studied as a theoretically brilliant, CFC-free, and high COP refrigerator, but the biggest challenge in its realization is compression. It is difficult to make the change in the state of the gas inside the expander and the expander an isothermal change.
, rather, it is closer to an adiabatic change with a large temperature change,
The various heat exchangers that dissipate heat and utilize the heat from the gas have become too large due to the low heat transfer coefficient of the gas.

゛(3)課題解決の手段 と記課題に対し1本発明は圧縮機およびエキスパンダー
のガス内に、犬■の不揮発イ′4低枯竹の循環油を微細
な噴霧として噴射し、その比熱が大きいことを利用し、
もってガスの圧縮および膨張課程を極めて等温変化に近
づ(つることと、圧縮機およびエキスパンダーのそれぞ
れの出口直後の気油分離装置で分離採集された一組の循
環油をも放熱と冷熱利用に利用せんとするもので、油は
ガスより熱伝達率が高いので熱交換器もコンパクトどな
るものである。
゛(3) Means for Solving Problems and Problems 1. The present invention injects circulating oil of non-volatile I'4 low dried bamboo into the gas of a compressor and an expander as a fine spray, and its specific heat is Take advantage of the fact that it is big,
This makes the gas compression and expansion processes extremely close to isothermal changes (in addition, a set of circulating oil separated and collected in the air-oil separator immediately after the outlet of the compressor and expander can also be used for heat radiation and cooling. Since oil has a higher heat transfer coefficient than gas, the heat exchanger is also compact.

(4)実施例による説明 第1図は線図による本発明の一実施例の説明図であり、
第2図(、I第1図の実施例の作動ガスと循環油の状態
変化を在来のザイクルと比較しつつ説明する。]゛〜S
(温度〜エントロピー)線図である。 第1図において
1は圧縮機(COM)2は]−キスパンダ=(EXP)
であっていずれも形式は任意であるがスクロール形、ロ
ータリー形、二軸スクリュー形など容積形を曹通とする
(4) Explanation based on an embodiment FIG. 1 is an explanatory diagram of an embodiment of the present invention using a diagram,
Fig. 2 (I) The state changes of the working gas and circulating oil in the embodiment shown in Fig. 1 will be explained by comparing them with the conventional cycle.] ~S
It is a (temperature-entropy) diagram. In Figure 1, 1 is a compressor (COM) and 2 is ]-kispanda = (EXP)
The type can be any type, but displacement types such as scroll type, rotary type, and twin screw type are considered to be the most suitable.

3は電動機(M)であって圧縮機1に動力を供給し、エ
キスパンダー2より動力を回収し、がっ圧縮機1とエキ
スパンダ−2とともに密封ゲージング4の中に密封され
ている。また5は対向流再生熱交換機(HX )である
Reference numeral 3 denotes an electric motor (M) which supplies power to the compressor 1 and recovers power from the expander 2, and is sealed in a sealed gauging 4 together with the compressor 1 and the expander 2. Further, 5 is a counterflow regenerative heat exchanger (HX).

さて本発明の特色として、圧縮機のガス人L−] (A
F路6には圧縮磯側の噴射ノズル7が取りイ・」けられ
Now, as a feature of the present invention, the compressor gas person L-] (A
The injection nozzle 7 on the compression side is removed from the F path 6.

またエキスパンダーのガス人[1流路8にはエキスパン
ダー側の噴射ノズル9]が設(づられぞれぞれより非揮
発性で低粘度の任意の循環油が微S、■な液滴の噴霧と
してガス流に吹き込まれ圧縮機〕及びエキスパンダ−2
の内部にrIlI人さUられる。また圧縮機1とエキス
パンダー2よりのガス出L−1流路1゜と11にば気油
分離用のザイク[]ン12と13がそれぞれに設けられ
て、ガス気流中に存在する液滴の大部分を分離回収し−
C流下管14.15から流下さぜ゛る。
In addition, the expander's gas cylinder [injection nozzle 9 on the expander side in channel 8] is installed (respectively, non-volatile and low viscosity circulating oil is sprayed in fine droplets). blown into the gas stream as a compressor] and expander 2
There are people inside. In addition, the gas outlet L-1 channels 1° and 11 from the compressor 1 and expander 2 are provided with zykes 12 and 13 for separating gas and oil, respectively, to separate droplets present in the gas flow. Separate and collect most of the
It flows down from the C flow pipes 14 and 15.

ここで16.17はサイクロン12.13内の液面であ
る。
Here, 16.17 is the liquid level inside the cyclone 12.13.

ついでサイクロン12で油滴の大部分を落したガスば流
路18.1.9.20を経てエキスパンダー人「1′(
Ilt路8に導かれる。また、サイクE1ン13より出
るガスは流路21.22.23を経て圧縮機人[−]流
路6(こ導かれるが、そのさいMi[のリイクr1ン1
2より出る流路はガスの放熱器24.対向流再生熱交換
器5を中途で通過し、また後者の規イクロン13を出る
ガスはガスの冷熱でブラインを冷却する冷熱利用熱交換
器25及び該対向イAll再生熱交換器5を逆方向から
通過する。
Next, the gas from which most of the oil droplets fell in cyclone 12 passes through the flow path 18.1.9.20 and reaches the expander person ``1' (
Directed to Ilt path 8. In addition, the gas coming out of the cycle E1-13 is guided through the flow paths 21, 22, and 23 to the compressor air flow path 6 (the flow path 6).
The flow path exiting from the gas radiator 24. The gas that passes through the counterflow regenerative heat exchanger 5 midway and exits the latter Ikron 13 passes through the cold heat utilization heat exchanger 25 that cools the brine with the cold heat of the gas, and the opposite flow regenerative heat exchanger 5 in the opposite direction. pass from.

またやや高温となってサイクロン12より流下管14に
流下する循環油は放熱器26を通じてほぼ環境温度まで
冷却された後、圧縮機側油噴射ポンプ27に導入されて
再び噴射ノズル7に送られ再循環されるよう構成されて
いる。
In addition, the circulating oil, which has reached a slightly high temperature and flows down from the cyclone 12 to the downflow pipe 14, is cooled down to approximately the ambient temperature through the radiator 26, and then introduced into the compressor-side oil injection pump 27 and sent to the injection nozzle 7 again. It is configured to be circulated.

またサイクロン13より流下管15に流下するやや低温
の循環油はその冷熱によってブラインを冷却する冷熱利
用熱交換器28とエキスパンダー側油噴射ポンプ29を
経過した後噴射ノズル9に返され再循環されるよう構成
されている。
In addition, the somewhat low-temperature circulating oil flowing down from the cyclone 13 to the downflow pipe 15 passes through the cold heat utilization heat exchanger 28 that cools the brine with its cold heat and the expander side oil injection pump 29, and then is returned to the injection nozzle 9 and recirculated. It is configured like this.

なお、循環油の流量は、単位時間に噴射される循環油の
全比熱が単位時間に流れるガスの全比熱の数倍ないし1
0倍となるように調整される。
The flow rate of the circulating oil is such that the total specific heat of the circulating oil injected per unit time is several times to 1 times the total specific heat of the gas flowing per unit time.
It is adjusted so that it becomes 0 times.

(5)作用と効果の説明 第1図の実施例の作用と効果を第2図のT−8(温度〜
エントロピー)線図で説明する。同図にて曲線■〕、と
曲線p +=はガスの低圧側」3よび高圧側の圧力P、
、i)2における等圧エントロピー曲線を示す。また、
Toは環境温度、T、は冷凍室温度を示す。
(5) Explanation of functions and effects The functions and effects of the embodiment in Figure 1 are explained below at T-8 (temperature ~
entropy) diagram. In the same figure, the curve ■] and the curve p += are the pressure P on the low pressure side of the gas and the pressure P on the high pressure side,
, i) shows isobaric entropy curves in 2. Also,
To represents the environmental temperature, and T represents the freezer temperature.

さて点Aは圧縮機1の入[−1流路7におけるガスの状
態5点I3+、、l該圧縮機の出1−j流路10におけ
るガスの状態を示しA B l+l fil圧縮機内で
あり(COM)と記しである。
Now, point A indicates the state of the gas in the inlet [-1 flow path 7 of the compressor 1, point I3+,,l indicates the state of the gas in the outlet 1-j flow path 10 of the compressor, and A B l+l fil is inside the compressor. It is marked as (COM).

本発明ではA点の圧縮機千の流入ガス内には大量の循環
油が噴射されるのでその比熱の存在のため圧縮機内(C
OM)間でのガスの圧縮は等温変化にちかづき図のよう
に僅かに温度が−1−1るだけである。 点Cはガスの
放熱器24出L1直後のガスの状態であり5点りは対向
流再生熱交換器5を経て冷却された後、エキスパンダー
2の入口直前に至ったガスの状態でおり、CD間は再生
熱交換器(1−IX)の記号をつ(つである。点Eはエ
キスパンダー2の出口直後のガスの状態を示しD E間
はエキスパンダー(EXP)の記号がつけである。
In the present invention, a large amount of circulating oil is injected into the inflow gas of the compressor at point A, and due to the presence of its specific heat, the inside of the compressor (C
The compression of the gas between OM) is close to an isothermal change, and the temperature is only -1-1 as shown in the figure. Point C is the state of the gas immediately after the gas radiator 24 exit L1, and point 5 is the state of the gas just before the inlet of the expander 2 after being cooled through the counterflow regenerative heat exchanger 5. The space between DE and E is marked with the symbol of the regenerative heat exchanger (1-IX). Point E indicates the state of the gas immediately after the outlet of the expander 2, and the space between DE and E is marked with the symbol of the expander (EXP).

ここで、エキスパンダー2の入1−」のD点からば大量
の循環油がガス内に噴射されるのでエキスパンダー内の
ガスの膨張は図のように僅かに温度が下がるだけとなる
。点Fはガス・ブライン冷却器25出口のガスの状態を
示す。そして再生熱交換器(HX )を再び通ることに
より点Fより点Aまでのガスの得る熱量は点Cより点り
に至るガスの放熱量によって再生される。
Here, since a large amount of circulating oil is injected into the gas from point D when the expander 2 is turned on, the expansion of the gas in the expander causes the temperature to drop only slightly as shown in the figure. Point F indicates the state of the gas at the outlet of the gas brine cooler 25. Then, by passing through the regenerative heat exchanger (HX) again, the amount of heat obtained by the gas from point F to point A is regenerated by the amount of heat released from the gas from point C to point A.

以1.のように第]Vの装置のガスの通るサイクルは第
2図のABCDEFAとなり、理想的な等温変化の逆エ
リクソンザイクルACDFに極めて近づき、所要動力も
十分小さくなるのでCOPが極めて犬となることがわか
る。もし循環油が全く使用されないとぎは、圧縮機とエ
キスパンダー内では断熱変化が生ずるのでその→ノーイ
クルは第2図の点線で示ずAdDiのような大きい面積
をもつものとなり、それだけ所要動力も大きいのてその
COPは低く9本発明の勺イクルがCJるかに優れてい
ることが示される。
Below 1. As shown in [V], the cycle through which the gas passes through the device becomes the ABCDEFA shown in Figure 2, which is very close to the reverse Ericsson cycle ACDF of ideal isothermal change, and the required power is sufficiently small, so the COP is extremely small. Recognize. If no circulating oil is used at all, adiabatic changes will occur in the compressor and expander, so the no-cycle will have a large area like AdDi, not indicated by the dotted line in Figure 2, and the required power will be correspondingly large. It is shown that the COP of the present invention is far superior to CJ since its COP is low.

よって本発明(Jずぐれた高いCOPをもつ近似逆エリ
クソン゛す′イクルを形成てきる。また放熱と冷熱の熱
量の大部分が循環油の通る熱交換器で取扱われるが油の
熱伝達率はガスの熱伝達率より高いので各熱交換器は十
分コンパクトどなる効果も存在する。
Therefore, an approximate inverse Ericsson cycle with a higher COP than the present invention (J) is formed.Also, most of the amount of heat radiation and cooling is handled by the heat exchanger through which the circulating oil passes, but the heat transfer coefficient of the oil Since the heat transfer coefficient is higher than the heat transfer coefficient of gas, each heat exchanger is sufficiently compact to have a roaring effect.

なお、第2図において圧縮pj、側の循環油の温度はA
B間を往復し、エキスパンダー側の循環油の温度はD 
E間を往復すると考えてよい。
In addition, in Fig. 2, the temperature of the circulating oil on the compression pj side is A.
The temperature of the circulating oil on the expander side is D.
You can think of it as going back and forth between E and E.

本発明に用いられる圧縮n、及びエキスパンダーとして
は前記のように容積型が好まし7いがそれは油滴とガス
流の相対速度が小さいからてあって速度型で(Jガスと
油滴の相対まさつ損失が大きくなりすぎよう。そして最
近の形式としてヌクロル形や二軸スクリュー型が最も適
していると思われる。
The compressor and expander used in the present invention are preferably of the volumetric type as described above, but they are of the velocity type because the relative velocity of the oil droplets and the gas flow is small (the relative velocity of the gas and the oil droplets). The loss would probably be too large, and the most recent types, such as the nuclear type and the twin screw type, seem to be most suitable.

以−1xのように本発明の近似逆エリクソン冷凍機は高
効率で非フロンの冷凍機やヒートポンプを1に供するも
のであり、今後の開発が期待できる。
As described above, the approximate inverse Ericsson refrigerator of the present invention can be used as a high-efficiency, CFC-free refrigerator or heat pump, and future development can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の線図(こよる説明図第2図
は第1図の実施例の作動ガスと循環油の状態変化を在来
の勺イクルと比較しつつ説明するT〜S(温度〜エンド
L1ビー)線図である。 1、圧縮機 2、エキスパンダ 5;対向流再生熱交換器 7.8;噴射ノズル 12、 +3;ヅイクL1ン 24、26;放熱器 25、28;玲熱利用熱交換器
Fig. 1 is a diagram of an embodiment of the present invention (an explanatory diagram) Fig. 2 is a diagram illustrating changes in the state of the working gas and circulating oil in the embodiment of Fig. ~S (temperature ~ end L1 be) diagram. 1. Compressor 2, expander 5; counterflow regenerative heat exchanger 7.8; injection nozzle 12, +3; , 28; heat exchanger using heat

Claims (1)

【特許請求の範囲】 圧縮機とエキスパンダーと再生熱交換器を主要部分とす
る密閉サイクルの逆エリクソンサイクル冷凍機において
,圧縮機とエキスパンダーのそれぞれの作動ガスの流れ
の中にそれぞれ別個の噴射ポンプより不揮発生の循環油
を微細な液滴噴霧として大量に噴射してガスの圧縮過程
と膨張過程とをそれぞれ十分等温変化に近づけるととも
に圧縮機とエキスパンダーの直後にて任意のサイクロン
等の気油分離装置にてガスと循環油を分離し,作動ガス
ばかりでなく分離採取された二組の循環油をもそれぞれ
放熱と冷凍に別個に利用するように構成し,かつ二組の
該循環油がそれぞれ自らが噴射された噴射ポンプに再循
環されるようにした,近似逆エリクソンサイクル冷凍機
。 ただしこの冷凍機をヒートポンプとして利用することは
自由であり,また圧縮機,エキスパンダー再生熱交換器
,気油分離装置,作動ガス,循環油等の種類等の選択は
全く自由である。
[Claims] In a closed-cycle reverse Ericsson cycle refrigerator whose main parts are a compressor, an expander, and a regenerative heat exchanger, separate injection pumps are provided in the working gas flows of the compressor and expander, respectively. A large amount of non-volatile circulating oil is injected as fine droplet spray to make the compression and expansion processes of the gas sufficiently close to isothermal changes, and immediately after the compressor and expander, a gas-oil separation device such as a cyclone can be installed. The structure is such that not only the working gas but also the separated and collected two sets of circulating oil are used separately for heat dissipation and refrigeration, and the two sets of circulating oil are used independently. Approximate reverse Ericsson cycle refrigerator in which the fuel is recirculated to the injected injection pump. However, this refrigerator can be freely used as a heat pump, and the type of compressor, expander regenerative heat exchanger, gas-oil separator, working gas, circulating oil, etc. can be selected freely.
JP23320890A 1990-09-05 1990-09-05 Nearly reverse ericsson cycle refrigerating machine Pending JPH04116348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23320890A JPH04116348A (en) 1990-09-05 1990-09-05 Nearly reverse ericsson cycle refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23320890A JPH04116348A (en) 1990-09-05 1990-09-05 Nearly reverse ericsson cycle refrigerating machine

Publications (1)

Publication Number Publication Date
JPH04116348A true JPH04116348A (en) 1992-04-16

Family

ID=16951452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23320890A Pending JPH04116348A (en) 1990-09-05 1990-09-05 Nearly reverse ericsson cycle refrigerating machine

Country Status (1)

Country Link
JP (1) JPH04116348A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025027A2 (en) * 2005-08-24 2007-03-01 Purdue Research Foundation Thermodynamic systems operating with near-isothermal compression and expansion cycles
EP2009368A1 (en) * 2006-04-20 2008-12-31 Daikin Industries, Ltd. Refrigerating apparatus
EP2012075A1 (en) * 2006-04-20 2009-01-07 Daikin Industries, Ltd. Refrigeration device
WO2009098862A1 (en) 2008-02-06 2009-08-13 Daikin Industries, Ltd. Refrigeration device
DE102021125108A1 (en) 2021-09-28 2023-03-30 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Expansion-compression machine for refrigeration circuits

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025027A2 (en) * 2005-08-24 2007-03-01 Purdue Research Foundation Thermodynamic systems operating with near-isothermal compression and expansion cycles
WO2007025027A3 (en) * 2005-08-24 2007-05-03 Purdue Research Foundation Thermodynamic systems operating with near-isothermal compression and expansion cycles
EP2009368A1 (en) * 2006-04-20 2008-12-31 Daikin Industries, Ltd. Refrigerating apparatus
EP2012075A1 (en) * 2006-04-20 2009-01-07 Daikin Industries, Ltd. Refrigeration device
EP2009368A4 (en) * 2006-04-20 2012-09-12 Daikin Ind Ltd Refrigerating apparatus
EP2012075A4 (en) * 2006-04-20 2013-05-01 Daikin Ind Ltd Refrigeration device
WO2009098862A1 (en) 2008-02-06 2009-08-13 Daikin Industries, Ltd. Refrigeration device
DE102021125108A1 (en) 2021-09-28 2023-03-30 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Expansion-compression machine for refrigeration circuits

Similar Documents

Publication Publication Date Title
CN101403536B (en) Refrigerant cycle device with ejector
CN101852490B (en) Air source carbon dioxide heat pump water heater
CN108253651B (en) A kind of double evaporating temperature refrigeration systems with injector
CN100545546C (en) The ejector type kind of refrigeration cycle
CN204373252U (en) Change type CO2 trans critical cycle refrigeration system
MXPA03001819A (en) Reversible vapor compression system.
CN105571202B (en) A kind of fountain source pump using water as thermal source
CN103442913A (en) Cooling apparatus
CN100541050C (en) Utilize CO 2Heat pump and operation method thereof as cold-producing medium
CN104567089B (en) The compression injection composite refrigeration system of gloomy compressor is exerted in a kind of utilization
CN110173913A (en) A kind of steam compressed high temperature heat pump unit of very large super cooling degree
CN105222399B (en) A kind of refrigerating and heating systems of solar energy auxiliary
JPH04116348A (en) Nearly reverse ericsson cycle refrigerating machine
CN207585127U (en) It can carry out the transcritical refrigerant heat pump assembly of single twin-stage conversion
JP3515998B2 (en) Mechanical compressor
JPS6231194B2 (en)
CN105841401A (en) First-kind heat drive compression-absorption type heat pump
TWM245304U (en) Refrigerant cooling system featuring with dual functions of air conditioning and engine cooling
CN203824147U (en) Freon multiple-machine-head parallel highly-efficient oil-separating barrel and pump combined refrigeration machine
CN103307677B (en) A kind of air-conditioning dehumidification unit
CN208698425U (en) A kind of new-energy automobile carbon dioxide heat-pump heat management system
CN207219254U (en) It is a kind of to use misting cooling and the airborne high heat flux equipment heat management system of absorption type refrigerating
CN110068169A (en) A kind of includes the heat pump unit of multiple cold and hot source heat exchangers
US11009282B2 (en) Refrigerator appliance with a caloric heat pump
CN209165818U (en) The freon heat recovery system of refrigeration machine